feat: llm统计现已记录模型反应时间
This commit is contained in:
@@ -38,7 +38,7 @@ def init_prompt() -> None:
|
||||
|
||||
请从上面这段群聊中概括除了人名为"SELF"之外的人的语言风格
|
||||
1. 只考虑文字,不要考虑表情包和图片
|
||||
2. 不要涉及具体的人名,只考虑语言风格,特殊的梗,不要总结自己
|
||||
2. 不要涉及具体的人名,但是可以涉及具体名词
|
||||
3. 思考有没有特殊的梗,一并总结成语言风格
|
||||
4. 例子仅供参考,请严格根据群聊内容总结!!!
|
||||
注意:总结成如下格式的规律,总结的内容要详细,但具有概括性:
|
||||
@@ -59,7 +59,7 @@ def init_prompt() -> None:
|
||||
class ExpressionLearner:
|
||||
def __init__(self, chat_id: str) -> None:
|
||||
self.express_learn_model: LLMRequest = LLMRequest(
|
||||
model_set=model_config.model_task_config.replyer, request_type="expressor.learner"
|
||||
model_set=model_config.model_task_config.replyer, request_type="expression.learner"
|
||||
)
|
||||
self.chat_id = chat_id
|
||||
self.chat_name = get_chat_manager().get_stream_name(chat_id) or chat_id
|
||||
|
||||
@@ -25,7 +25,7 @@ def init_prompt():
|
||||
以下是可选的表达情境:
|
||||
{all_situations}
|
||||
|
||||
请你分析聊天内容的语境、情绪、话题类型,从上述情境中选择最适合当前聊天情境的{min_num}-{max_num}个情境。
|
||||
请你分析聊天内容的语境、情绪、话题类型,从上述情境中选择最适合当前聊天情境的,最多{max_num}个情境。
|
||||
考虑因素包括:
|
||||
1. 聊天的情绪氛围(轻松、严肃、幽默等)
|
||||
2. 话题类型(日常、技术、游戏、情感等)
|
||||
@@ -35,7 +35,7 @@ def init_prompt():
|
||||
请以JSON格式输出,只需要输出选中的情境编号:
|
||||
例如:
|
||||
{{
|
||||
"selected_situations": [2, 3, 5, 7, 19, 22, 25, 38, 39, 45, 48, 64]
|
||||
"selected_situations": [2, 3, 5, 7, 19]
|
||||
}}
|
||||
|
||||
请严格按照JSON格式输出,不要包含其他内容:
|
||||
@@ -195,7 +195,6 @@ class ExpressionSelector:
|
||||
chat_id: str,
|
||||
chat_info: str,
|
||||
max_num: int = 10,
|
||||
min_num: int = 5,
|
||||
target_message: Optional[str] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
# sourcery skip: inline-variable, list-comprehension
|
||||
@@ -206,8 +205,8 @@ class ExpressionSelector:
|
||||
logger.debug(f"聊天流 {chat_id} 不允许使用表达,返回空列表")
|
||||
return []
|
||||
|
||||
# 1. 获取35个随机表达方式(现在按权重抽取)
|
||||
style_exprs = self.get_random_expressions(chat_id, 30)
|
||||
# 1. 获取20个随机表达方式(现在按权重抽取)
|
||||
style_exprs = self.get_random_expressions(chat_id, 10)
|
||||
|
||||
# 2. 构建所有表达方式的索引和情境列表
|
||||
all_expressions = []
|
||||
@@ -219,7 +218,7 @@ class ExpressionSelector:
|
||||
expr_with_type = expr.copy()
|
||||
expr_with_type["type"] = "style"
|
||||
all_expressions.append(expr_with_type)
|
||||
all_situations.append(f"{len(all_expressions)}.{expr['situation']}")
|
||||
all_situations.append(f"{len(all_expressions)}.当 {expr['situation']} 时,使用 {expr['style']}")
|
||||
|
||||
if not all_expressions:
|
||||
logger.warning("没有找到可用的表达方式")
|
||||
@@ -239,13 +238,12 @@ class ExpressionSelector:
|
||||
bot_name=global_config.bot.nickname,
|
||||
chat_observe_info=chat_info,
|
||||
all_situations=all_situations_str,
|
||||
min_num=min_num,
|
||||
max_num=max_num,
|
||||
target_message=target_message_str,
|
||||
target_message_extra_block=target_message_extra_block,
|
||||
)
|
||||
|
||||
# print(prompt)
|
||||
print(prompt)
|
||||
|
||||
# 4. 调用LLM
|
||||
try:
|
||||
@@ -255,7 +253,7 @@ class ExpressionSelector:
|
||||
# logger.info(f"LLM请求时间: {model_name} {time.time() - start_time} \n{prompt}")
|
||||
|
||||
# logger.info(f"模型名称: {model_name}")
|
||||
# logger.info(f"LLM返回结果: {content}")
|
||||
logger.info(f"LLM返回结果: {content}")
|
||||
# if reasoning_content:
|
||||
# logger.info(f"LLM推理: {reasoning_content}")
|
||||
# else:
|
||||
|
||||
Reference in New Issue
Block a user