This commit is contained in:
SengokuCola
2025-05-01 22:50:29 +08:00
parent c4a7b842f6
commit 2669572b30
9 changed files with 220 additions and 188 deletions

View File

@@ -26,7 +26,6 @@ from .heartFC_sender import HeartFCSender
from src.plugins.chat.utils import process_llm_response
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
from src.plugins.moods.moods import MoodManager
from src.individuality.individuality import Individuality
from src.heart_flow.utils_chat import get_chat_type_and_target_info
@@ -197,9 +196,9 @@ class HeartFChatting:
# 日志前缀
self.log_prefix: str = str(chat_id) # Initial default, will be updated
# --- Initialize attributes (defaults) ---
# --- Initialize attributes (defaults) ---
self.is_group_chat: bool = False
self.chat_target_info: Optional[dict] = None
self.chat_target_info: Optional[dict] = None
# --- End Initialization ---
# 动作管理器
@@ -244,26 +243,30 @@ class HeartFChatting:
"""
if self._initialized:
return True
# --- Use utility function to determine chat type and fetch info ---
# Note: get_chat_type_and_target_info handles getting the chat_stream internally
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.stream_id)
# Update log prefix based on potential stream name (if needed, or get it from chat_stream if util doesn't return it)
# Assuming get_chat_type_and_target_info focuses only on type/target
# We still need the chat_stream object itself for other operations
try:
self.chat_stream = await asyncio.to_thread(chat_manager.get_stream, self.stream_id)
if not self.chat_stream:
logger.error(f"[HFC:{self.stream_id}] 获取ChatStream失败 during _initialize, though util func might have succeeded earlier.")
return False # Cannot proceed without chat_stream object
logger.error(
f"[HFC:{self.stream_id}] 获取ChatStream失败 during _initialize, though util func might have succeeded earlier."
)
return False # Cannot proceed without chat_stream object
# Update log prefix using the fetched stream object
self.log_prefix = f"[{chat_manager.get_stream_name(self.stream_id) or self.stream_id}]"
except Exception as e:
logger.error(f"[HFC:{self.stream_id}] 获取ChatStream时出错 in _initialize: {e}")
return False
logger.debug(f"{self.log_prefix} HeartFChatting initialized: is_group={self.is_group_chat}, target_info={self.chat_target_info}")
logger.error(f"[HFC:{self.stream_id}] 获取ChatStream时出错 in _initialize: {e}")
return False
logger.debug(
f"{self.log_prefix} HeartFChatting initialized: is_group={self.is_group_chat}, target_info={self.chat_target_info}"
)
# --- End using utility function ---
self._initialized = True
@@ -853,13 +856,13 @@ class HeartFChatting:
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
prompt = await prompt_builder.build_planner_prompt(
is_group_chat=self.is_group_chat, # <-- Pass HFC state
chat_target_info=self.chat_target_info, # <-- Pass HFC state
cycle_history=self._cycle_history, # <-- Pass HFC state
observed_messages_str=observed_messages_str, # <-- Pass local variable
current_mind=current_mind, # <-- Pass argument
structured_info=self.sub_mind.structured_info, # <-- Pass SubMind info
current_available_actions=current_available_actions # <-- Pass determined actions
is_group_chat=self.is_group_chat, # <-- Pass HFC state
chat_target_info=self.chat_target_info, # <-- Pass HFC state
cycle_history=self._cycle_history, # <-- Pass HFC state
observed_messages_str=observed_messages_str, # <-- Pass local variable
current_mind=current_mind, # <-- Pass argument
structured_info=self.sub_mind.structured_info, # <-- Pass SubMind info
current_available_actions=current_available_actions, # <-- Pass determined actions
)
# --- 调用 LLM (普通文本生成) ---
@@ -1279,25 +1282,29 @@ class HeartFChatting:
# 2. 获取信息捕捉器
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
# --- Determine sender_name for private chat ---
sender_name_for_prompt = "某人" # Default for group or if info unavailable
# --- Determine sender_name for private chat ---
sender_name_for_prompt = "某人" # Default for group or if info unavailable
if not self.is_group_chat and self.chat_target_info:
# Prioritize person_name, then nickname
sender_name_for_prompt = self.chat_target_info.get('person_name') or self.chat_target_info.get('user_nickname') or sender_name_for_prompt
# --- End determining sender_name ---
sender_name_for_prompt = (
self.chat_target_info.get("person_name")
or self.chat_target_info.get("user_nickname")
or sender_name_for_prompt
)
# --- End determining sender_name ---
# 3. 构建 Prompt
with Timer("构建Prompt", {}): # 内部计时器,可选保留
prompt = await prompt_builder.build_prompt(
build_mode="focus",
chat_stream=self.chat_stream, # Pass the stream object
chat_stream=self.chat_stream, # Pass the stream object
# Focus specific args:
reason=reason,
current_mind_info=self.sub_mind.current_mind,
structured_info=self.sub_mind.structured_info,
sender_name=sender_name_for_prompt, # Pass determined name
sender_name=sender_name_for_prompt, # Pass determined name
# Normal specific args (not used in focus mode):
# message_txt="",
# message_txt="",
)
# 4. 调用 LLM 生成回复
@@ -1305,9 +1312,9 @@ class HeartFChatting:
reasoning_content = None
model_name = "unknown_model"
if not prompt:
logger.error(f"{self.log_prefix}[Replier-{thinking_id}] Prompt 构建失败,无法生成回复。")
return None
logger.error(f"{self.log_prefix}[Replier-{thinking_id}] Prompt 构建失败,无法生成回复。")
return None
try:
with Timer("LLM生成", {}): # 内部计时器,可选保留
content, reasoning_content, model_name = await self.model_normal.generate_response(prompt)

View File

@@ -138,7 +138,7 @@ JSON 结构如下,包含三个字段 "action", "reasoning", "emoji_query":
Prompt("你现在正在做的事情是:{schedule_info}", "schedule_prompt")
Prompt("\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
# --- Template for HeartFChatting (FOCUSED mode) ---
# --- Template for HeartFChatting (FOCUSED mode) ---
Prompt(
"""
{info_from_tools}
@@ -157,10 +157,10 @@ JSON 结构如下,包含三个字段 "action", "reasoning", "emoji_query":
回复尽量简短一些。请注意把握聊天内容,{reply_style2}{prompt_ger}
{reply_style1},说中文,不要刻意突出自身学科背景,注意只输出回复内容。
{moderation_prompt}。注意:回复不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。""",
"heart_flow_private_prompt", # New template for private FOCUSED chat
"heart_flow_private_prompt", # New template for private FOCUSED chat
)
# --- Template for NormalChat (CHAT mode) ---
# --- Template for NormalChat (CHAT mode) ---
Prompt(
"""
{memory_prompt}
@@ -179,17 +179,17 @@ JSON 结构如下,包含三个字段 "action", "reasoning", "emoji_query":
请注意不要输出多余内容(包括前后缀,冒号和引号,括号等),只输出回复内容。
{moderation_prompt}
不要输出多余内容(包括前后缀,冒号和引号,括号()表情包at或 @等 )。只输出回复内容""",
"reasoning_prompt_private_main", # New template for private CHAT chat
"reasoning_prompt_private_main", # New template for private CHAT chat
)
async def _build_prompt_focus(reason, current_mind_info, structured_info, chat_stream, sender_name) -> str:
individuality = Individuality.get_instance()
prompt_personality = individuality.get_prompt(x_person=0, level=2)
# Determine if it's a group chat
is_group_chat = bool(chat_stream.group_info)
# Use sender_name passed from caller for private chat, otherwise use a default for group
# Default sender_name for group chat isn't used in the group prompt template, but set for consistency
effective_sender_name = sender_name if not is_group_chat else "某人"
@@ -243,21 +243,21 @@ async def _build_prompt_focus(reason, current_mind_info, structured_info, chat_s
logger.debug("开始构建 focus prompt")
# --- Choose template based on chat type ---
# --- Choose template based on chat type ---
if is_group_chat:
template_name = "heart_flow_prompt"
# Group specific formatting variables (already fetched or default)
chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1")
chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2")
prompt = await global_prompt_manager.format_prompt(
template_name,
info_from_tools=structured_info_prompt,
chat_target=chat_target_1, # Used in group template
chat_target=chat_target_1, # Used in group template
chat_talking_prompt=chat_talking_prompt,
bot_name=global_config.BOT_NICKNAME,
prompt_personality=prompt_personality,
chat_target_2=chat_target_2, # Used in group template
chat_target_2=chat_target_2, # Used in group template
current_mind_info=current_mind_info,
reply_style2=reply_style2_chosen,
reply_style1=reply_style1_chosen,
@@ -266,12 +266,12 @@ async def _build_prompt_focus(reason, current_mind_info, structured_info, chat_s
moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
# sender_name is not used in the group template
)
else: # Private chat
else: # Private chat
template_name = "heart_flow_private_prompt"
prompt = await global_prompt_manager.format_prompt(
template_name,
info_from_tools=structured_info_prompt,
sender_name=effective_sender_name, # Used in private template
sender_name=effective_sender_name, # Used in private template
chat_talking_prompt=chat_talking_prompt,
bot_name=global_config.BOT_NICKNAME,
prompt_personality=prompt_personality,
@@ -283,7 +283,7 @@ async def _build_prompt_focus(reason, current_mind_info, structured_info, chat_s
prompt_ger=prompt_ger,
moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
)
# --- End choosing template ---
# --- End choosing template ---
logger.debug(f"focus_chat_prompt (is_group={is_group_chat}): \n{prompt}")
return prompt
@@ -302,10 +302,8 @@ class PromptBuilder:
current_mind_info=None,
structured_info=None,
message_txt=None,
sender_name = "某人",
sender_name="某人",
) -> Optional[str]:
is_group_chat = bool(chat_stream.group_info)
if build_mode == "normal":
return await self._build_prompt_normal(chat_stream, message_txt, sender_name)
@@ -326,20 +324,22 @@ class PromptBuilder:
who_chat_in_group = []
if is_group_chat:
who_chat_in_group = get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id) if chat_stream.user_info else None,
limit=global_config.observation_context_size,
)
who_chat_in_group = get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id) if chat_stream.user_info else None,
limit=global_config.observation_context_size,
)
elif chat_stream.user_info:
who_chat_in_group.append((chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname))
who_chat_in_group.append(
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
)
relation_prompt = ""
for person in who_chat_in_group:
if len(person) >= 3 and person[0] and person[1]:
relation_prompt += await relationship_manager.build_relationship_info(person)
relation_prompt += await relationship_manager.build_relationship_info(person)
else:
logger.warning(f"Invalid person tuple encountered for relationship prompt: {person}")
logger.warning(f"Invalid person tuple encountered for relationship prompt: {person}")
mood_manager = MoodManager.get_instance()
mood_prompt = mood_manager.get_prompt()
@@ -425,8 +425,6 @@ class PromptBuilder:
end_time = time.time()
logger.debug(f"知识检索耗时: {(end_time - start_time):.3f}")
if global_config.ENABLE_SCHEDULE_GEN:
schedule_prompt = await global_prompt_manager.format_prompt(
"schedule_prompt", schedule_info=bot_schedule.get_current_num_task(num=1, time_info=False)
@@ -435,14 +433,14 @@ class PromptBuilder:
schedule_prompt = ""
logger.debug("开始构建 normal prompt")
# --- Choose template and format based on chat type ---
# --- Choose template and format based on chat type ---
if is_group_chat:
template_name = "reasoning_prompt_main"
effective_sender_name = sender_name
effective_sender_name = sender_name
chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1")
chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2")
prompt = await global_prompt_manager.format_prompt(
template_name,
relation_prompt=relation_prompt,
@@ -466,8 +464,8 @@ class PromptBuilder:
)
else:
template_name = "reasoning_prompt_private_main"
effective_sender_name = sender_name
effective_sender_name = sender_name
prompt = await global_prompt_manager.format_prompt(
template_name,
relation_prompt=relation_prompt,
@@ -487,7 +485,7 @@ class PromptBuilder:
prompt_ger=prompt_ger,
moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
)
# --- End choosing template ---
# --- End choosing template ---
return prompt
@@ -749,9 +747,9 @@ class PromptBuilder:
async def build_planner_prompt(
self,
is_group_chat: bool, # Now passed as argument
chat_target_info: Optional[dict], # Now passed as argument
cycle_history: Deque["CycleInfo"], # Now passed as argument (Type hint needs import or string)
is_group_chat: bool, # Now passed as argument
chat_target_info: Optional[dict], # Now passed as argument
cycle_history: Deque["CycleInfo"], # Now passed as argument (Type hint needs import or string)
observed_messages_str: str,
current_mind: Optional[str],
structured_info: Dict[str, Any],
@@ -760,20 +758,22 @@ class PromptBuilder:
) -> str:
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
# --- Determine chat context ---
# --- Determine chat context ---
chat_context_description = "你现在正在一个群聊中"
chat_target_name = None # Only relevant for private
chat_target_name = None # Only relevant for private
if not is_group_chat and chat_target_info:
chat_target_name = chat_target_info.get('person_name') or chat_target_info.get('user_nickname') or "对方"
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方"
)
chat_context_description = f"你正在和 {chat_target_name} 私聊"
# --- End determining chat context ---
# ... (Copy logic from HeartFChatting._build_planner_prompt here) ...
# Structured info block
structured_info_block = ""
if structured_info:
structured_info_block = f"以下是一些额外的信息:\n{structured_info}\n"
# Chat content block
chat_content_block = ""
if observed_messages_str:
@@ -784,14 +784,14 @@ class PromptBuilder:
---"""
else:
chat_content_block = "当前没有观察到新的聊天内容。\\n"
# Current mind block
current_mind_block = ""
if current_mind:
current_mind_block = f"你的内心想法:\n{current_mind}"
else:
current_mind_block = "你的内心想法:\n[没有特别的想法]"
# Cycle info block (using passed cycle_history)
cycle_info_block = ""
recent_active_cycles = []

View File

@@ -33,14 +33,14 @@ class NormalChat:
self.chat_stream = chat_stream
self.stream_id = chat_stream.stream_id
# Get initial stream name, might be updated in initialize
self.stream_name = chat_manager.get_stream_name(self.stream_id) or self.stream_id
self.stream_name = chat_manager.get_stream_name(self.stream_id) or self.stream_id
# Interest dict
self.interest_dict = interest_dict
# --- Initialize attributes (defaults) ---
# --- Initialize attributes (defaults) ---
self.is_group_chat: bool = False
self.chat_target_info: Optional[dict] = None
self.chat_target_info: Optional[dict] = None
# --- End Initialization ---
# Other sync initializations
@@ -49,21 +49,23 @@ class NormalChat:
self.start_time = time.time()
self.last_speak_time = 0
self._chat_task: Optional[asyncio.Task] = None
self._initialized = False # Track initialization status
# logger.info(f"[{self.stream_name}] NormalChat 实例 __init__ 完成 (同步部分)。")
self._initialized = False # Track initialization status
# logger.info(f"[{self.stream_name}] NormalChat 实例 __init__ 完成 (同步部分)。")
# Avoid logging here as stream_name might not be final
async def initialize(self):
"""异步初始化,获取聊天类型和目标信息。"""
if self._initialized:
return
# --- Use utility function to determine chat type and fetch info ---
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.stream_id)
# Update stream_name again after potential async call in util func
self.stream_name = chat_manager.get_stream_name(self.stream_id) or self.stream_id
logger.debug(f"[{self.stream_name}] NormalChat initialized: is_group={self.is_group_chat}, target_info={self.chat_target_info}")
self.stream_name = chat_manager.get_stream_name(self.stream_id) or self.stream_id
logger.debug(
f"[{self.stream_name}] NormalChat initialized: is_group={self.is_group_chat}, target_info={self.chat_target_info}"
)
# --- End using utility function ---
self._initialized = True
logger.info(f"[{self.stream_name}] NormalChat 实例 initialize 完成 (异步部分)。")
@@ -437,8 +439,8 @@ class NormalChat:
async def start_chat(self):
"""先进行异步初始化,然后启动聊天任务。"""
if not self._initialized:
await self.initialize() # Ensure initialized before starting tasks
await self.initialize() # Ensure initialized before starting tasks
if self._chat_task is None or self._chat_task.done():
logger.info(f"[{self.stream_name}] 开始后台处理初始兴趣消息和轮询任务...")
# Process initial messages first