better:重整配置,分离表达,聊天模式区分
重整配置文件路径,添加更多配置选项 分离了人设表达方式和学习到的表达方式 将聊天模式区分为normal focus和auto
This commit is contained in:
@@ -17,7 +17,7 @@ from src.manager.mood_manager import mood_manager
|
||||
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
|
||||
from src.chat.message_receive.chat_stream import ChatStream
|
||||
from src.chat.focus_chat.hfc_utils import parse_thinking_id_to_timestamp
|
||||
from src.individuality.individuality import Individuality
|
||||
from src.individuality.individuality import individuality
|
||||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||||
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
|
||||
import time
|
||||
@@ -281,7 +281,6 @@ class DefaultExpressor:
|
||||
in_mind_reply,
|
||||
target_message,
|
||||
) -> str:
|
||||
individuality = Individuality.get_instance()
|
||||
prompt_personality = individuality.get_prompt(x_person=0, level=2)
|
||||
|
||||
# Determine if it's a group chat
|
||||
@@ -294,7 +293,7 @@ class DefaultExpressor:
|
||||
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
|
||||
chat_id=chat_stream.stream_id,
|
||||
timestamp=time.time(),
|
||||
limit=global_config.chat.observation_context_size,
|
||||
limit=global_config.focus_chat.observation_context_size,
|
||||
)
|
||||
chat_talking_prompt = await build_readable_messages(
|
||||
message_list_before_now,
|
||||
|
||||
@@ -36,24 +36,6 @@ def init_prompt() -> None:
|
||||
"""
|
||||
Prompt(learn_style_prompt, "learn_style_prompt")
|
||||
|
||||
personality_expression_prompt = """
|
||||
{personality}
|
||||
|
||||
请从以上人设中总结出这个角色可能的语言风格
|
||||
思考回复的特殊内容和情感
|
||||
思考有没有特殊的梗,一并总结成语言风格
|
||||
总结成如下格式的规律,总结的内容要详细,但具有概括性:
|
||||
当"xxx"时,可以"xxx", xxx不超过10个字
|
||||
|
||||
例如:
|
||||
当"表示十分惊叹"时,使用"我嘞个xxxx"
|
||||
当"表示讽刺的赞同,不想讲道理"时,使用"对对对"
|
||||
当"想说明某个观点,但懒得明说",使用"懂的都懂"
|
||||
|
||||
现在请你概括
|
||||
"""
|
||||
Prompt(personality_expression_prompt, "personality_expression_prompt")
|
||||
|
||||
learn_grammar_prompt = """
|
||||
{chat_str}
|
||||
|
||||
@@ -278,44 +260,6 @@ class ExpressionLearner:
|
||||
expressions.append((chat_id, situation, style))
|
||||
return expressions
|
||||
|
||||
async def extract_and_store_personality_expressions(self):
|
||||
"""
|
||||
检查data/expression/personality目录,不存在则创建。
|
||||
用peronality变量作为chat_str,调用LLM生成表达风格,解析后count=100,存储到expressions.json。
|
||||
"""
|
||||
dir_path = os.path.join("data", "expression", "personality")
|
||||
os.makedirs(dir_path, exist_ok=True)
|
||||
file_path = os.path.join(dir_path, "expressions.json")
|
||||
|
||||
# 构建prompt
|
||||
prompt = await global_prompt_manager.format_prompt(
|
||||
"personality_expression_prompt",
|
||||
personality=global_config.personality.expression_style,
|
||||
)
|
||||
# logger.info(f"个性表达方式提取prompt: {prompt}")
|
||||
|
||||
try:
|
||||
response, _ = await self.express_learn_model.generate_response_async(prompt)
|
||||
except Exception as e:
|
||||
logger.error(f"个性表达方式提取失败: {e}")
|
||||
return
|
||||
|
||||
logger.info(f"个性表达方式提取response: {response}")
|
||||
# chat_id用personality
|
||||
expressions = self.parse_expression_response(response, "personality")
|
||||
# 转为dict并count=100
|
||||
result = []
|
||||
for _, situation, style in expressions:
|
||||
result.append({"situation": situation, "style": style, "count": 100})
|
||||
# 超过50条时随机删除多余的,只保留50条
|
||||
if len(result) > 50:
|
||||
remove_count = len(result) - 50
|
||||
remove_indices = set(random.sample(range(len(result)), remove_count))
|
||||
result = [item for idx, item in enumerate(result) if idx not in remove_indices]
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
json.dump(result, f, ensure_ascii=False, indent=2)
|
||||
logger.info(f"已写入{len(result)}条表达到{file_path}")
|
||||
|
||||
|
||||
init_prompt()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user