Merge branch 'dev' into plugin

This commit is contained in:
UnCLAS-Prommer
2025-07-09 13:11:26 +08:00
20 changed files with 349 additions and 1337 deletions

View File

@@ -1,4 +1,3 @@
from src.manager.mood_manager import mood_manager
import enum
@@ -12,6 +11,3 @@ class ChatStateInfo:
def __init__(self):
self.chat_status: ChatState = ChatState.NORMAL
self.current_state_time = 120
self.mood_manager = mood_manager
self.mood = self.mood_manager.get_mood_prompt()

View File

@@ -1,5 +1,6 @@
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.config.config import global_config
import asyncio
from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.storage import MessageStorage
from src.chat.heart_flow.heartflow import heartflow
@@ -12,6 +13,7 @@ import traceback
from typing import Tuple
from src.person_info.relationship_manager import get_relationship_manager
from src.mood.mood_manager import mood_manager
logger = get_logger("chat")
@@ -105,6 +107,9 @@ class HeartFCMessageReceiver:
interested_rate, is_mentioned = await _calculate_interest(message)
subheartflow.add_message_to_normal_chat_cache(message, interested_rate, is_mentioned)
chat_mood = mood_manager.get_mood_by_chat_id(subheartflow.chat_id)
asyncio.create_task(chat_mood.update_mood_by_message(message, interested_rate))
# 3. 日志记录
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
# current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time))

View File

@@ -26,8 +26,6 @@ class SubHeartflow:
Args:
subheartflow_id: 子心流唯一标识符
mai_states: 麦麦状态信息实例
hfc_no_reply_callback: HFChatting 连续不回复时触发的回调
"""
# 基础属性,两个值是一样的
self.subheartflow_id = subheartflow_id

View File

@@ -205,7 +205,7 @@ class Hippocampus:
# 从数据库加载记忆图
self.entorhinal_cortex.sync_memory_from_db()
# TODO: API-Adapter修改标记
self.model_summary = LLMRequest(global_config.model.memory_summary, request_type="memory")
self.model_summary = LLMRequest(global_config.model.memory, request_type="memory")
def get_all_node_names(self) -> list:
"""获取记忆图中所有节点的名字列表"""

View File

@@ -3,7 +3,7 @@ import os
from typing import Dict, Any
from src.common.logger import get_logger
from src.manager.mood_manager import mood_manager # 导入情绪管理器
from src.mood.mood_manager import mood_manager # 导入情绪管理器
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.message_receive.message import MessageRecv
from src.experimental.only_message_process import MessageProcessor

View File

@@ -22,7 +22,7 @@ from src.chat.planner_actions.planner import ActionPlanner
from src.chat.planner_actions.action_modifier import ActionModifier
from src.chat.utils.utils import get_chat_type_and_target_info
from src.manager.mood_manager import mood_manager
from src.mood.mood_manager import mood_manager
willing_manager = get_willing_manager()

View File

@@ -18,7 +18,7 @@ from src.chat.utils.chat_message_builder import build_readable_messages, get_raw
import time
import asyncio
from src.chat.express.expression_selector import expression_selector
from src.manager.mood_manager import mood_manager
from src.mood.mood_manager import mood_manager
from src.person_info.relationship_fetcher import relationship_fetcher_manager
import random
import ast
@@ -55,9 +55,9 @@ def init_prompt():
{identity}
{action_descriptions}
你正在{chat_target_2},现在请你读读之前的聊天记录,{mood_prompt},请你给出回复
{config_expression_style}
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,注意不要复读你说过的话
你正在{chat_target_2},现在的心情是:{mood_state}
现在请你读读之前的聊天记录,并给出回复
{config_expression_style}注意不要复读你说过的话
{keywords_reaction_prompt}
请注意不要输出多余内容(包括前后缀冒号和引号at或 @等 )。只输出回复内容。
{moderation_prompt}
@@ -504,6 +504,9 @@ class DefaultReplyer:
reply_to = reply_data.get("reply_to", "none")
extra_info_block = reply_data.get("extra_info", "") or reply_data.get("extra_info_block", "")
chat_mood = mood_manager.get_mood_by_chat_id(chat_id)
mood_prompt = chat_mood.mood_state
sender, target = self._parse_reply_target(reply_to)
# 构建action描述 (如果启用planner)
@@ -639,8 +642,6 @@ class DefaultReplyer:
else:
reply_target_block = ""
mood_prompt = mood_manager.get_mood_prompt()
prompt_info = await get_prompt_info(target, threshold=0.38)
if prompt_info:
prompt_info = await global_prompt_manager.format_prompt("knowledge_prompt", prompt_info=prompt_info)
@@ -682,7 +683,7 @@ class DefaultReplyer:
config_expression_style=global_config.expression.expression_style,
action_descriptions=action_descriptions,
chat_target_2=chat_target_2,
mood_prompt=mood_prompt,
mood_state=mood_prompt,
)
return prompt
@@ -774,8 +775,6 @@ class DefaultReplyer:
else:
reply_target_block = ""
mood_manager.get_mood_prompt()
if is_group_chat:
chat_target_1 = await global_prompt_manager.get_prompt_async("chat_target_group1")
chat_target_2 = await global_prompt_manager.get_prompt_async("chat_target_group2")

View File

@@ -8,7 +8,8 @@ import numpy as np
from maim_message import UserInfo
from src.common.logger import get_logger
from src.manager.mood_manager import mood_manager
# from src.mood.mood_manager import mood_manager
from ..message_receive.message import MessageRecv
from src.llm_models.utils_model import LLMRequest
from .typo_generator import ChineseTypoGenerator
@@ -412,12 +413,12 @@ def calculate_typing_time(
- 在所有输入结束后额外加上回车时间0.3秒
- 如果is_emoji为True将使用固定1秒的输入时间
"""
# 将0-1的唤醒度映射到-1到1
mood_arousal = mood_manager.current_mood.arousal
# 映射到0.5到2倍的速度系数
typing_speed_multiplier = 1.5**mood_arousal # 唤醒度为1时速度翻倍,为-1时速度减半
chinese_time *= 1 / typing_speed_multiplier
english_time *= 1 / typing_speed_multiplier
# # 将0-1的唤醒度映射到-1到1
# mood_arousal = mood_manager.current_mood.arousal
# # 映射到0.5到2倍的速度系数
# typing_speed_multiplier = 1.5**mood_arousal # 唤醒度为1时速度翻倍,为-1时速度减半
# chinese_time *= 1 / typing_speed_multiplier
# english_time *= 1 / typing_speed_multiplier
# 计算中文字符数
chinese_chars = sum(1 for char in input_string if "\u4e00" <= char <= "\u9fff")

View File

@@ -33,9 +33,9 @@ class MemoryManager:
self._id_map: Dict[str, MemoryItem] = {}
self.llm_summarizer = LLMRequest(
model=global_config.model.focus_working_memory,
model=global_config.model.memory,
temperature=0.3,
request_type="focus.processor.working_memory",
request_type="working_memory",
)
@property

View File

@@ -57,15 +57,10 @@ class RelationshipConfig(ConfigBase):
"""关系配置类"""
enable_relationship: bool = True
give_name: bool = False
"""是否给其他人取名"""
build_relationship_interval: int = 600
"""构建关系间隔 单位秒如果为0则不构建关系"""
"""是否启用关系系统"""
relation_frequency: int = 1
"""关系频率,麦麦构建关系的速度仅在normal_chat模式下有效"""
"""关系频率,麦麦构建关系的速度"""
@dataclass
@@ -637,32 +632,20 @@ class ModelConfig(ConfigBase):
replyer_2: dict[str, Any] = field(default_factory=lambda: {})
"""normal_chat次要回复模型配置"""
memory_summary: dict[str, Any] = field(default_factory=lambda: {})
"""记忆的概括模型配置"""
memory: dict[str, Any] = field(default_factory=lambda: {})
"""记忆模型配置"""
emotion: dict[str, Any] = field(default_factory=lambda: {})
"""情绪模型配置"""
vlm: dict[str, Any] = field(default_factory=lambda: {})
"""视觉语言模型配置"""
focus_working_memory: dict[str, Any] = field(default_factory=lambda: {})
"""专注工作记忆模型配置"""
tool_use: dict[str, Any] = field(default_factory=lambda: {})
"""专注工具使用模型配置"""
planner: dict[str, Any] = field(default_factory=lambda: {})
"""规划模型配置"""
relation: dict[str, Any] = field(default_factory=lambda: {})
"""关系模型配置"""
embedding: dict[str, Any] = field(default_factory=lambda: {})
"""嵌入模型配置"""
pfc_action_planner: dict[str, Any] = field(default_factory=lambda: {})
"""PFC动作规划模型配置"""
pfc_chat: dict[str, Any] = field(default_factory=lambda: {})
"""PFC聊天模型配置"""
pfc_reply_checker: dict[str, Any] = field(default_factory=lambda: {})
"""PFC回复检查模型配置"""

View File

@@ -6,7 +6,6 @@ from src.chat.express.exprssion_learner import get_expression_learner
from src.common.remote import TelemetryHeartBeatTask
from src.manager.async_task_manager import async_task_manager
from src.chat.utils.statistic import OnlineTimeRecordTask, StatisticOutputTask
from src.manager.mood_manager import MoodPrintTask, MoodUpdateTask
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.normal_chat.willing.willing_manager import get_willing_manager
from src.chat.message_receive.chat_stream import get_chat_manager
@@ -17,6 +16,7 @@ from src.chat.message_receive.bot import chat_bot
from src.common.logger import get_logger
from src.individuality.individuality import get_individuality, Individuality
from src.common.server import get_global_server, Server
from src.mood.mood_manager import mood_manager
from rich.traceback import install
# from src.api.main import start_api_server
@@ -95,18 +95,15 @@ class MainSystem:
get_emoji_manager().initialize()
logger.info("表情包管理器初始化成功")
# 添加情绪衰减任务
await async_task_manager.add_task(MoodUpdateTask())
# 添加情绪打印任务
await async_task_manager.add_task(MoodPrintTask())
logger.info("情绪管理器初始化成功")
# 启动愿望管理器
await willing_manager.async_task_starter()
logger.info("willing管理器初始化成功")
# 启动情绪管理器
await mood_manager.start()
logger.info("情绪管理器初始化成功")
# 初始化聊天管理器
await get_chat_manager()._initialize()

View File

@@ -1,6 +1,5 @@
import os
from typing import AsyncGenerator
from src.llm_models.utils_model import LLMRequest
from src.mais4u.openai_client import AsyncOpenAIClient
from src.config.config import global_config
from src.chat.message_receive.message import MessageRecv
@@ -36,7 +35,6 @@ class S4UStreamGenerator:
raise ValueError("`replyer_1` 在配置文件中缺少 `model_name` 字段")
self.replyer_1_config = replyer_1_config
self.model_sum = LLMRequest(model=global_config.model.memory_summary, temperature=0.7, request_type="relation")
self.current_model_name = "unknown model"
self.partial_response = ""

View File

@@ -1,296 +0,0 @@
import asyncio
import math
import time
from dataclasses import dataclass
from typing import Dict, Tuple
from ..config.config import global_config
from ..common.logger import get_logger
from ..manager.async_task_manager import AsyncTask
from ..individuality.individuality import get_individuality
logger = get_logger("mood")
@dataclass
class MoodState:
valence: float
"""愉悦度 (-1.0 到 1.0)-1表示极度负面1表示极度正面"""
arousal: float
"""唤醒度 (-1.0 到 1.0)-1表示抑制1表示兴奋"""
text: str
"""心情的文本描述"""
@dataclass
class MoodChangeHistory:
valence_direction_factor: int
"""愉悦度变化的系数(正为增益,负为抑制)"""
arousal_direction_factor: int
"""唤醒度变化的系数(正为增益,负为抑制)"""
class MoodUpdateTask(AsyncTask):
def __init__(self):
super().__init__(
task_name="Mood Update Task",
wait_before_start=global_config.mood.mood_update_interval,
run_interval=global_config.mood.mood_update_interval,
)
# 从配置文件获取衰减率
self.decay_rate_valence: float = 1 - global_config.mood.mood_decay_rate
"""愉悦度衰减率"""
self.decay_rate_arousal: float = 1 - global_config.mood.mood_decay_rate
"""唤醒度衰减率"""
self.last_update = time.time()
"""上次更新时间"""
async def run(self):
current_time = time.time()
time_diff = current_time - self.last_update
agreeableness_factor = 1 # 宜人性系数
agreeableness_bias = 0 # 宜人性偏置
neuroticism_factor = 0.5 # 神经质系数
# 获取人格特质
personality = get_individuality().personality
if personality:
# 神经质:影响情绪变化速度
neuroticism_factor = 1 + (personality.neuroticism - 0.5) * 0.4
agreeableness_factor = 1 + (personality.agreeableness - 0.5) * 0.4
# 宜人性:影响情绪基准线
if personality.agreeableness < 0.2:
agreeableness_bias = (personality.agreeableness - 0.2) * 0.5
elif personality.agreeableness > 0.8:
agreeableness_bias = (personality.agreeableness - 0.8) * 0.5
else:
agreeableness_bias = 0
# 分别计算正向和负向的衰减率
if mood_manager.current_mood.valence >= 0:
# 正向情绪衰减
decay_rate_positive = self.decay_rate_valence * (1 / agreeableness_factor)
valence_target = 0 + agreeableness_bias
new_valence = valence_target + (mood_manager.current_mood.valence - valence_target) * math.exp(
-decay_rate_positive * time_diff * neuroticism_factor
)
else:
# 负向情绪衰减
decay_rate_negative = self.decay_rate_valence * agreeableness_factor
valence_target = 0 + agreeableness_bias
new_valence = valence_target + (mood_manager.current_mood.valence - valence_target) * math.exp(
-decay_rate_negative * time_diff * neuroticism_factor
)
# Arousal 向中性0回归
arousal_target = 0
new_arousal = arousal_target + (mood_manager.current_mood.arousal - arousal_target) * math.exp(
-self.decay_rate_arousal * time_diff * neuroticism_factor
)
mood_manager.set_current_mood(new_valence, new_arousal)
self.last_update = current_time
class MoodPrintTask(AsyncTask):
def __init__(self):
super().__init__(
task_name="Mood Print Task",
wait_before_start=60,
run_interval=60,
)
async def run(self):
# 打印当前心情
logger.info(
f"愉悦度: {mood_manager.current_mood.valence:.2f}, "
f"唤醒度: {mood_manager.current_mood.arousal:.2f}, "
f"心情: {mood_manager.current_mood.text}"
)
class MoodManager:
# TODO: 改进,使用具有实验支持的新情绪模型
EMOTION_FACTOR_MAP: Dict[str, Tuple[float, float]] = {
"开心": (0.21, 0.6),
"害羞": (0.15, 0.2),
"愤怒": (-0.24, 0.8),
"恐惧": (-0.21, 0.7),
"悲伤": (-0.21, 0.3),
"厌恶": (-0.12, 0.4),
"惊讶": (0.06, 0.7),
"困惑": (0.0, 0.6),
"平静": (0.03, 0.5),
}
"""
情绪词映射表 {mood: (valence, arousal)}
将情绪描述词映射到愉悦度和唤醒度的元组
"""
EMOTION_POINT_MAP: Dict[Tuple[float, float], str] = {
# 第一象限:高唤醒,正愉悦
(0.5, 0.4): "兴奋",
(0.3, 0.6): "快乐",
(0.2, 0.3): "满足",
# 第二象限:高唤醒,负愉悦
(-0.5, 0.4): "愤怒",
(-0.3, 0.6): "焦虑",
(-0.2, 0.3): "烦躁",
# 第三象限:低唤醒,负愉悦
(-0.5, -0.4): "悲伤",
(-0.3, -0.3): "疲倦",
(-0.4, -0.7): "疲倦",
# 第四象限:低唤醒,正愉悦
(0.2, -0.1): "平静",
(0.3, -0.2): "安宁",
(0.5, -0.4): "放松",
}
"""
情绪文本映射表 {(valence, arousal): mood}
将量化的情绪状态元组映射到文本描述
"""
def __init__(self):
self.current_mood = MoodState(
valence=0.0,
arousal=0.0,
text="平静",
)
"""当前情绪状态"""
self.mood_change_history: MoodChangeHistory = MoodChangeHistory(
valence_direction_factor=0,
arousal_direction_factor=0,
)
"""情绪变化历史"""
self._lock = asyncio.Lock()
"""异步锁,用于保护线程安全"""
def set_current_mood(self, new_valence: float, new_arousal: float):
"""
设置当前情绪状态
:param new_valence: 新的愉悦度
:param new_arousal: 新的唤醒度
"""
# 限制范围
self.current_mood.valence = max(-1.0, min(new_valence, 1.0))
self.current_mood.arousal = max(-1.0, min(new_arousal, 1.0))
closest_mood = None
min_distance = float("inf")
for (v, a), text in self.EMOTION_POINT_MAP.items():
# 计算当前情绪状态与每个情绪文本的欧氏距离
distance = math.sqrt((self.current_mood.valence - v) ** 2 + (self.current_mood.arousal - a) ** 2)
if distance < min_distance:
min_distance = distance
closest_mood = text
if closest_mood:
self.current_mood.text = closest_mood
def update_current_mood(self, valence_delta: float, arousal_delta: float):
"""
根据愉悦度和唤醒度变化量更新当前情绪状态
:param valence_delta: 愉悦度变化量
:param arousal_delta: 唤醒度变化量
"""
# 计算连续增益/抑制
# 规则:多次相同方向的变化会有更大的影响系数,反方向的变化会清零影响系数(系数的正负号由变化方向决定)
if valence_delta * self.mood_change_history.valence_direction_factor > 0:
# 如果方向相同,则根据变化方向改变系数
if valence_delta > 0:
self.mood_change_history.valence_direction_factor += 1 # 若为正向,则增加
else:
self.mood_change_history.valence_direction_factor -= 1 # 若为负向,则减少
else:
# 如果方向不同,则重置计数
self.mood_change_history.valence_direction_factor = 0
if arousal_delta * self.mood_change_history.arousal_direction_factor > 0:
# 如果方向相同,则根据变化方向改变系数
if arousal_delta > 0:
self.mood_change_history.arousal_direction_factor += 1 # 若为正向,则增加计数
else:
self.mood_change_history.arousal_direction_factor -= 1 # 若为负向,则减少计数
else:
# 如果方向不同,则重置计数
self.mood_change_history.arousal_direction_factor = 0
# 计算增益/抑制的结果
# 规则:如果当前情绪状态与变化方向相同,则增益;否则抑制
if self.current_mood.valence * self.mood_change_history.valence_direction_factor > 0:
valence_delta = valence_delta * (1.01 ** abs(self.mood_change_history.valence_direction_factor))
else:
valence_delta = valence_delta * (0.99 ** abs(self.mood_change_history.valence_direction_factor))
if self.current_mood.arousal * self.mood_change_history.arousal_direction_factor > 0:
arousal_delta = arousal_delta * (1.01 ** abs(self.mood_change_history.arousal_direction_factor))
else:
arousal_delta = arousal_delta * (0.99 ** abs(self.mood_change_history.arousal_direction_factor))
self.set_current_mood(
new_valence=self.current_mood.valence + valence_delta,
new_arousal=self.current_mood.arousal + arousal_delta,
)
def get_mood_prompt(self) -> str:
"""
根据当前情绪状态生成提示词
"""
base_prompt = f"当前心情:{self.current_mood.text}"
# 根据情绪状态添加额外的提示信息
if self.current_mood.valence > 0.5:
base_prompt += "你现在心情很好,"
elif self.current_mood.valence < -0.5:
base_prompt += "你现在心情不太好,"
if self.current_mood.arousal > 0.4:
base_prompt += "情绪比较激动。"
elif self.current_mood.arousal < -0.4:
base_prompt += "情绪比较平静。"
return base_prompt
def get_arousal_multiplier(self) -> float:
"""
根据当前情绪状态返回唤醒度乘数
"""
if self.current_mood.arousal > 0.4:
multiplier = 1 + min(0.15, (self.current_mood.arousal - 0.4) / 3)
return multiplier
elif self.current_mood.arousal < -0.4:
multiplier = 1 - min(0.15, ((0 - self.current_mood.arousal) - 0.4) / 3)
return multiplier
return 1.0
def update_mood_from_emotion(self, emotion: str, intensity: float = 1.0) -> None:
"""
根据情绪词更新心情状态
:param emotion: 情绪词(如'开心', '悲伤'等位于self.EMOTION_FACTOR_MAP中的键
:param intensity: 情绪强度0.0-1.0
"""
if emotion not in self.EMOTION_FACTOR_MAP:
logger.error(f"[情绪更新] 未知情绪词: {emotion}")
return
valence_change, arousal_change = self.EMOTION_FACTOR_MAP[emotion]
old_valence = self.current_mood.valence
old_arousal = self.current_mood.arousal
old_mood = self.current_mood.text
self.update_current_mood(valence_change, arousal_change) # 更新当前情绪状态
logger.info(
f"[情绪变化] {emotion}(强度:{intensity:.2f}) | 愉悦度:{old_valence:.2f}->{self.current_mood.valence:.2f}, 唤醒度:{old_arousal:.2f}->{self.current_mood.arousal:.2f} | 心情:{old_mood}->{self.current_mood.text}"
)
mood_manager = MoodManager()
"""全局情绪管理器"""

227
src/mood/mood_manager.py Normal file
View File

@@ -0,0 +1,227 @@
import math
import random
import time
from src.chat.message_receive.message import MessageRecv
from src.llm_models.utils_model import LLMRequest
from ..common.logger import get_logger
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_by_timestamp_with_chat_inclusive
from src.config.config import global_config
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.manager.async_task_manager import AsyncTask, async_task_manager
logger = get_logger("mood")
def init_prompt():
Prompt(
"""
{chat_talking_prompt}
以上是群里正在进行的聊天记录
{indentify_block}
你刚刚的情绪状态是:{mood_state}
现在,发送了消息,引起了你的注意,你对其进行了阅读和思考,请你输出一句话描述你新的情绪状态
请只输出情绪状态,不要输出其他内容:
""",
"change_mood_prompt",
)
Prompt(
"""
{chat_talking_prompt}
以上是群里最近的聊天记录
{indentify_block}
你之前的情绪状态是:{mood_state}
距离你上次关注群里消息已经过去了一段时间,你冷静了下来,请你输出一句话描述你现在的情绪状态
请只输出情绪状态,不要输出其他内容:
""",
"regress_mood_prompt",
)
class ChatMood:
def __init__(self, chat_id: str):
self.chat_id: str = chat_id
self.mood_state: str = "感觉很平静"
self.regression_count: int = 0
self.mood_model = LLMRequest(
model=global_config.model.emotion,
temperature=0.7,
request_type="mood",
)
self.last_change_time = 0
async def update_mood_by_message(self, message: MessageRecv, interested_rate: float):
self.regression_count = 0
during_last_time = message.message_info.time - self.last_change_time
base_probability = 0.05
time_multiplier = 4 * (1 - math.exp(-0.01 * during_last_time))
if interested_rate <= 0:
interest_multiplier = 0
else:
interest_multiplier = 3 * math.pow(interested_rate, 0.25)
logger.info(
f"base_probability: {base_probability}, time_multiplier: {time_multiplier}, interest_multiplier: {interest_multiplier}"
)
update_probability = min(1.0, base_probability * time_multiplier * interest_multiplier)
if random.random() > update_probability:
return
message_time = message.message_info.time
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
prompt = await global_prompt_manager.format_prompt(
"change_mood_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
)
logger.info(f"prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt)
logger.info(f"response: {response}")
logger.info(f"reasoning_content: {reasoning_content}")
self.mood_state = response
self.last_change_time = message_time
async def regress_mood(self):
message_time = time.time()
message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive(
chat_id=self.chat_id,
timestamp_start=self.last_change_time,
timestamp_end=message_time,
limit=15,
limit_mode="last",
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
bot_name = global_config.bot.nickname
if global_config.bot.alias_names:
bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}"
else:
bot_nickname = ""
prompt_personality = global_config.personality.personality_core
indentify_block = f"你的名字是{bot_name}{bot_nickname},你{prompt_personality}"
prompt = await global_prompt_manager.format_prompt(
"regress_mood_prompt",
chat_talking_prompt=chat_talking_prompt,
indentify_block=indentify_block,
mood_state=self.mood_state,
)
logger.info(f"prompt: {prompt}")
response, (reasoning_content, model_name) = await self.mood_model.generate_response_async(prompt=prompt)
logger.info(f"response: {response}")
logger.info(f"reasoning_content: {reasoning_content}")
self.mood_state = response
self.regression_count += 1
class MoodRegressionTask(AsyncTask):
def __init__(self, mood_manager: "MoodManager"):
super().__init__(task_name="MoodRegressionTask", run_interval=30)
self.mood_manager = mood_manager
async def run(self):
logger.debug("Running mood regression task...")
now = time.time()
for mood in self.mood_manager.mood_list:
if mood.last_change_time == 0:
continue
if now - mood.last_change_time > 180:
if mood.regression_count >= 3:
continue
logger.info(f"chat {mood.chat_id} 开始情绪回归, 这是第 {mood.regression_count + 1}")
await mood.regress_mood()
class MoodManager:
def __init__(self):
self.mood_list: list[ChatMood] = []
"""当前情绪状态"""
self.task_started: bool = False
async def start(self):
"""启动情绪回归后台任务"""
if self.task_started:
return
logger.info("启动情绪回归任务...")
task = MoodRegressionTask(self)
await async_task_manager.add_task(task)
self.task_started = True
logger.info("情绪回归任务已启动")
def get_mood_by_chat_id(self, chat_id: str) -> ChatMood:
for mood in self.mood_list:
if mood.chat_id == chat_id:
return mood
new_mood = ChatMood(chat_id)
self.mood_list.append(new_mood)
return new_mood
def reset_mood_by_chat_id(self, chat_id: str):
for mood in self.mood_list:
if mood.chat_id == chat_id:
mood.mood_state = "感觉很平静"
mood.regression_count = 0
return
self.mood_list.append(ChatMood(chat_id))
init_prompt()
mood_manager = MoodManager()
"""全局情绪管理器"""

View File

@@ -2,6 +2,7 @@ import time
import traceback
import os
import pickle
import random
from typing import List, Dict
from src.config.config import global_config
from src.common.logger import get_logger
@@ -20,11 +21,13 @@ logger = get_logger("relationship_builder")
# 消息段清理配置
SEGMENT_CLEANUP_CONFIG = {
"enable_cleanup": True, # 是否启用清理
"max_segment_age_days": 7, # 消息段最大保存天数
"max_segment_age_days": 3, # 消息段最大保存天数
"max_segments_per_user": 10, # 每用户最大消息段数
"cleanup_interval_hours": 1, # 清理间隔(小时)
"cleanup_interval_hours": 0.5, # 清理间隔(小时)
}
MAX_MESSAGE_COUNT = 80 / global_config.relationship.relation_frequency
class RelationshipBuilder:
"""关系构建器
@@ -330,7 +333,7 @@ class RelationshipBuilder:
for person_id, segments in self.person_engaged_cache.items():
total_count = self._get_total_message_count(person_id)
status_lines.append(f"用户 {person_id}:")
status_lines.append(f" 总消息数:{total_count} ({total_count}/45)")
status_lines.append(f" 总消息数:{total_count} ({total_count}/60)")
status_lines.append(f" 消息段数:{len(segments)}")
for i, segment in enumerate(segments):
@@ -384,7 +387,7 @@ class RelationshipBuilder:
users_to_build_relationship = []
for person_id, segments in self.person_engaged_cache.items():
total_message_count = self._get_total_message_count(person_id)
if total_message_count >= 45:
if total_message_count >= MAX_MESSAGE_COUNT:
users_to_build_relationship.append(person_id)
logger.debug(
f"{self.log_prefix} 用户 {person_id} 满足关系构建条件,总消息数:{total_message_count},消息段数:{len(segments)}"
@@ -392,7 +395,7 @@ class RelationshipBuilder:
elif total_message_count > 0:
# 记录进度信息
logger.debug(
f"{self.log_prefix} 用户 {person_id} 进度:{total_message_count}/45 条消息,{len(segments)} 个消息段"
f"{self.log_prefix} 用户 {person_id} 进度:{total_message_count}60 条消息,{len(segments)} 个消息段"
)
# 2. 为满足条件的用户构建关系
@@ -413,11 +416,28 @@ class RelationshipBuilder:
async def update_impression_on_segments(self, person_id: str, chat_id: str, segments: List[Dict[str, any]]):
"""基于消息段更新用户印象"""
logger.debug(f"开始为 {person_id} 基于 {len(segments)} 个消息段更新印象")
original_segment_count = len(segments)
logger.debug(f"开始为 {person_id} 基于 {original_segment_count} 个消息段更新印象")
try:
# 筛选要处理的消息段每个消息段有10%的概率被丢弃
segments_to_process = [s for s in segments if random.random() >= 0.1]
# 如果所有消息段都被丢弃,但原来有消息段,则至少保留一个(最新的)
if not segments_to_process and segments:
segments.sort(key=lambda x: x["end_time"], reverse=True)
segments_to_process.append(segments[0])
logger.debug("随机丢弃了所有消息段,强制保留最新的一个以进行处理。")
dropped_count = original_segment_count - len(segments_to_process)
if dropped_count > 0:
logger.info(f"{person_id} 随机丢弃了 {dropped_count} / {original_segment_count} 个消息段")
processed_messages = []
for i, segment in enumerate(segments):
# 对筛选后的消息段进行排序,确保时间顺序
segments_to_process.sort(key=lambda x: x["start_time"])
for segment in segments_to_process:
start_time = segment["start_time"]
end_time = segment["end_time"]
start_date = time.strftime("%Y-%m-%d %H:%M", time.localtime(start_time))
@@ -425,12 +445,12 @@ class RelationshipBuilder:
# 获取该段的消息(包含边界)
segment_messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.chat_id, start_time, end_time)
logger.debug(
f"消息段 {i + 1}: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}"
f"消息段: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}"
)
if segment_messages:
# 如果不是第一个消息段,在消息列表前添加间隔标识
if i > 0:
# 如果 processed_messages 不为空,说明这不是第一个被处理的消息段,在消息列表前添加间隔标识
if processed_messages:
# 创建一个特殊的间隔消息
gap_message = {
"time": start_time - 0.1, # 稍微早于段开始时间

View File

@@ -20,7 +20,7 @@ logger = get_logger("relation")
class RelationshipManager:
def __init__(self):
self.relationship_llm = LLMRequest(
model=global_config.model.relation,
model=global_config.model.utils,
request_type="relationship", # 用于动作规划
)
@@ -250,10 +250,26 @@ class RelationshipManager:
# 添加可读时间到每个point
points_list = [(item["point"], float(item["weight"]), current_time) for item in points_data]
logger_str = f"了解了有关{person_name}的新印象:\n"
for point in points_list:
logger_str += f"{point[0]},重要性:{point[1]}\n"
logger.info(logger_str)
original_points_list = list(points_list)
points_list.clear()
discarded_count = 0
for point in original_points_list:
weight = point[1]
if weight < 3 and random.random() < 0.8: # 80% 概率丢弃
discarded_count += 1
elif weight < 5 and random.random() < 0.5: # 50% 概率丢弃
discarded_count += 1
else:
points_list.append(point)
if points_list or discarded_count > 0:
logger_str = f"了解了有关{person_name}的新印象:\n"
for point in points_list:
logger_str += f"{point[0]},重要性:{point[1]}\n"
if discarded_count > 0:
logger_str += f"({discarded_count} 条因重要性低被丢弃)\n"
logger.info(logger_str)
except json.JSONDecodeError:
logger.error(f"解析points JSON失败: {points}")