初始化

This commit is contained in:
雅诺狐
2025-08-11 19:34:18 +08:00
committed by Windpicker-owo
parent ef7a3aee23
commit 23ee3767ef
77 changed files with 10000 additions and 7525 deletions

View File

@@ -16,8 +16,10 @@ from rich.traceback import install
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config, model_config
from src.common.database.database_model import Messages, GraphNodes, GraphEdges # Peewee Models导入
from sqlalchemy import select,insert,update,text,delete
from src.common.database.sqlalchemy_models import Messages, GraphNodes, GraphEdges # SQLAlchemy Models导入
from src.common.logger import get_logger
from src.common.database.sqlalchemy_database_api import get_session
from src.chat.memory_system.sample_distribution import MemoryBuildScheduler # 分布生成器
from src.chat.utils.chat_message_builder import (
get_raw_msg_by_timestamp,
@@ -37,7 +39,7 @@ def cosine_similarity(v1, v2):
install(extra_lines=3)
session = get_session()
def calculate_information_content(text):
"""计算文本的信息量(熵)"""
@@ -731,13 +733,14 @@ class Hippocampus:
memory_items = node_data.get("memory_items", "")
# 直接使用完整的记忆内容
if memory_items:
logger.debug("节点包含完整记忆")
# 计算记忆与关键词的相似度
memory_words = set(jieba.cut(memory_items))
text_words = set(keywords)
all_words = memory_words | text_words
if all_words:
# 计算相似度(虽然这里没有使用,但保持逻辑一致性)
logger.debug(f"节点包含 {len(memory_items)}记忆")
# 计算每条记忆与输入文本的相似度
memory_similarities = []
for memory in memory_items:
# 计算与输入文本的相似度
memory_words = set(jieba.cut(memory))
text_words = set(jieba.cut(text))
all_words = memory_words | text_words
v1 = [1 if word in memory_words else 0 for word in all_words]
v2 = [1 if word in text_words else 0 for word in all_words]
_ = cosine_similarity(v1, v2) # 计算但不使用用_表示
@@ -844,11 +847,6 @@ class Hippocampus:
else:
activate_map[node] = activation_value
# 输出激活映射
# logger.info("激活映射统计:")
# for node, total_activation in sorted(activate_map.items(), key=lambda x: x[1], reverse=True):
# logger.info(f"节点 '{node}': 累计激活值 = {total_activation:.2f}")
# 计算激活节点数与总节点数的比值
total_activation = sum(activate_map.values())
# logger.debug(f"总激活值: {total_activation:.2f}")
@@ -942,10 +940,13 @@ class EntorhinalCortex:
for message in messages:
# 确保在更新前获取最新的 memorized_times
current_memorized_times = message.get("memorized_times", 0)
# 使用 Peewee 更新记录
Messages.update(memorized_times=current_memorized_times + 1).where(
Messages.message_id == message["message_id"]
).execute()
# 使用 SQLAlchemy 2.0 更新记录
session.execute(
update(Messages)
.where(Messages.message_id == message["message_id"])
.values(memorized_times=current_memorized_times + 1)
)
session.commit()
return messages # 直接返回原始的消息列表
target_timestamp -= 120 # 如果第一次尝试失败,稍微向前调整时间戳再试
@@ -959,7 +960,7 @@ class EntorhinalCortex:
current_time = datetime.datetime.now().timestamp()
# 获取数据库中所有节点和内存中所有节点
db_nodes = {node.concept: node for node in GraphNodes.select()}
db_nodes = {node.concept: node for node in session.execute(select(GraphNodes)).scalars()}
memory_nodes = list(self.memory_graph.G.nodes(data=True))
# 批量准备节点数据
@@ -1025,22 +1026,27 @@ class EntorhinalCortex:
batch_size = 100
for i in range(0, len(nodes_to_create), batch_size):
batch = nodes_to_create[i : i + batch_size]
GraphNodes.insert_many(batch).execute()
session.execute(insert(GraphNodes), batch)
session.commit()
if nodes_to_update:
batch_size = 100
for i in range(0, len(nodes_to_update), batch_size):
batch = nodes_to_update[i : i + batch_size]
for node_data in batch:
GraphNodes.update(**{k: v for k, v in node_data.items() if k != "concept"}).where(
GraphNodes.concept == node_data["concept"]
).execute()
session.execute(
update(GraphNodes)
.where(GraphNodes.concept == node_data["concept"])
.values(**{k: v for k, v in node_data.items() if k != "concept"})
)
session.commit()
if nodes_to_delete:
GraphNodes.delete().where(GraphNodes.concept.in_(nodes_to_delete)).execute() # type: ignore
session.execute(delete(GraphNodes).where(GraphNodes.concept.in_(nodes_to_delete)))
session.commit()
# 处理边的信息
db_edges = list(GraphEdges.select())
db_edges = list(session.execute(select(GraphEdges)).scalars())
memory_edges = list(self.memory_graph.G.edges(data=True))
# 创建边的哈希值字典
@@ -1092,20 +1098,29 @@ class EntorhinalCortex:
batch_size = 100
for i in range(0, len(edges_to_create), batch_size):
batch = edges_to_create[i : i + batch_size]
GraphEdges.insert_many(batch).execute()
session.execute(insert(GraphEdges), batch)
session.commit()
if edges_to_update:
batch_size = 100
for i in range(0, len(edges_to_update), batch_size):
batch = edges_to_update[i : i + batch_size]
for edge_data in batch:
GraphEdges.update(**{k: v for k, v in edge_data.items() if k not in ["source", "target"]}).where(
(GraphEdges.source == edge_data["source"]) & (GraphEdges.target == edge_data["target"])
).execute()
session.execute(
update(GraphEdges)
.where(
(GraphEdges.source == edge_data["source"]) & (GraphEdges.target == edge_data["target"])
)
.values(**{k: v for k, v in edge_data.items() if k not in ["source", "target"]})
)
session.commit()
if edges_to_delete:
for source, target in edges_to_delete:
GraphEdges.delete().where((GraphEdges.source == source) & (GraphEdges.target == target)).execute()
session.execute(
delete(GraphEdges).where((GraphEdges.source == source) & (GraphEdges.target == target))
)
session.commit()
end_time = time.time()
logger.info(f"[数据库] 同步完成,总耗时: {end_time - start_time:.2f}")
@@ -1118,8 +1133,9 @@ class EntorhinalCortex:
# 清空数据库
clear_start = time.time()
GraphNodes.delete().execute()
GraphEdges.delete().execute()
session.execute(delete(GraphNodes))
session.execute(delete(GraphEdges))
session.commit()
clear_end = time.time()
logger.info(f"[数据库] 清空数据库耗时: {clear_end - clear_start:.2f}")
@@ -1186,12 +1202,27 @@ class EntorhinalCortex:
logger.error(f"准备边 {source}-{target} 数据时发生错误: {e}")
continue
# 批量插入边
# 批量写入节点
node_start = time.time()
if nodes_data:
batch_size = 500 # 增加批量大小
for i in range(0, len(nodes_data), batch_size):
batch = nodes_data[i : i + batch_size]
session.execute(insert(GraphNodes), batch)
session.commit()
node_end = time.time()
logger.info(f"[数据库] 写入 {len(nodes_data)} 个节点耗时: {node_end - node_start:.2f}")
# 批量写入边
edge_start = time.time()
if edges_data:
batch_size = 100
batch_size = 500 # 增加批量大小
for i in range(0, len(edges_data), batch_size):
batch = edges_data[i : i + batch_size]
GraphEdges.insert_many(batch).execute()
session.execute(insert(GraphEdges), batch)
session.commit()
edge_end = time.time()
logger.info(f"[数据库] 写入 {len(edges_data)} 条边耗时: {edge_end - edge_start:.2f}")
end_time = time.time()
logger.info(f"[数据库] 重新同步完成,总耗时: {end_time - start_time:.2f}")
@@ -1211,9 +1242,7 @@ class EntorhinalCortex:
skipped_nodes = 0
# 从数据库加载所有节点
nodes = list(GraphNodes.select())
total_nodes = len(nodes)
nodes = list(session.execute(select(GraphNodes)).scalars())
for node in nodes:
concept = node.concept
try:
@@ -1235,8 +1264,10 @@ class EntorhinalCortex:
if not node.last_modified:
update_data["last_modified"] = current_time
if update_data:
GraphNodes.update(**update_data).where(GraphNodes.concept == concept).execute()
session.execute(
update(GraphNodes).where(GraphNodes.concept == concept).values(**update_data)
)
session.commit()
# 获取时间信息(如果不存在则使用当前时间)
created_time = node.created_time or current_time
@@ -1256,7 +1287,7 @@ class EntorhinalCortex:
continue
# 从数据库加载所有边
edges = list(GraphEdges.select())
edges = list(session.execute(select(GraphEdges)).scalars())
for edge in edges:
source = edge.source
target = edge.target
@@ -1272,9 +1303,12 @@ class EntorhinalCortex:
if not edge.last_modified:
update_data["last_modified"] = current_time
GraphEdges.update(**update_data).where(
(GraphEdges.source == source) & (GraphEdges.target == target)
).execute()
session.execute(
update(GraphEdges)
.where((GraphEdges.source == source) & (GraphEdges.target == target))
.values(**update_data)
)
session.commit()
# 获取时间信息(如果不存在则使用当前时间)
created_time = edge.created_time or current_time
@@ -1398,7 +1432,6 @@ class ParahippocampalGyrus:
all_words = topic_words | existing_words
v1 = [1 if word in topic_words else 0 for word in all_words]
v2 = [1 if word in existing_words else 0 for word in all_words]
similarity = cosine_similarity(v1, v2)
if similarity >= 0.7:
@@ -1502,7 +1535,7 @@ class ParahippocampalGyrus:
check_nodes_count = max(1, min(len(all_nodes), int(len(all_nodes) * percentage)))
check_edges_count = max(1, min(len(all_edges), int(len(all_edges) * percentage)))
# 只有在有足够的节点和边时进行采样
# 只有在有足够的节点和边时进行采样
if len(all_nodes) >= check_nodes_count and len(all_edges) >= check_edges_count:
try:
nodes_to_check = random.sample(all_nodes, check_nodes_count)
@@ -1548,6 +1581,11 @@ class ParahippocampalGyrus:
logger.info("[遗忘] 开始检查节点...")
node_check_start = time.time()
# 初始化整合相关变量
merged_count = 0
nodes_modified = set()
for node in nodes_to_check:
# 检查节点是否存在,以防在迭代中被移除(例如边移除导致)
if node not in self.memory_graph.G:
@@ -1567,64 +1605,91 @@ class ParahippocampalGyrus:
logger.warning(f"[遗忘] 移除空节点 {node} 时发生错误(可能已被移除): {e}")
continue # 处理下一个节点
# --- 如果节点不为空,则执行原来的不活跃检查和随机移除逻辑 ---
# 检查节点的最后修改时间,如果太旧则尝试遗忘
last_modified = node_data.get("last_modified", current_time)
node_weight = node_data.get("weight", 1.0)
# 条件1检查是否长时间未修改 (使用配置的遗忘时间)
time_threshold = 3600 * global_config.memory.memory_forget_time
# 基于权重调整遗忘阈值:权重越高,需要更长时间才能被遗忘
# 权重为1时使用默认阈值权重越高阈值越大越难遗忘
adjusted_threshold = time_threshold * node_weight
if current_time - last_modified > adjusted_threshold and memory_items:
# 既然每个节点现在是完整记忆,直接删除整个节点
try:
self.memory_graph.G.remove_node(node)
node_changes["removed"].append(f"{node}(长时间未修改,权重{node_weight:.1f})")
logger.debug(f"[遗忘] 移除了长时间未修改的节点: {node} (权重: {node_weight:.1f})")
except nx.NetworkXError as e:
logger.warning(f"[遗忘] 移除节点 {node} 时发生错误(可能已被移除): {e}")
continue
if current_time - last_modified > 3600 * global_config.memory.memory_forget_time:
# 随机遗忘一条记忆
if len(memory_items) > 1:
removed_item = self.memory_graph.forget_topic(node)
if removed_item:
node_changes["reduced"].append(f"{node} (移除: {removed_item[:50]}...)")
elif len(memory_items) == 1:
# 如果只有一条记忆,检查是否应该完全移除节点
try:
self.memory_graph.G.remove_node(node)
node_changes["removed"].append(f"{node} (最后记忆)")
except nx.NetworkXError as e:
logger.warning(f"[遗忘] 移除节点 {node} 时发生错误: {e}")
# 检查节点内是否有相似的记忆项需要整合
if len(memory_items) > 1:
merged_in_this_node = False
items_to_remove = []
for i in range(len(memory_items)):
for j in range(i + 1, len(memory_items)):
similarity = self._calculate_item_similarity(memory_items[i], memory_items[j])
if similarity > 0.8: # 相似度阈值
# 合并相似记忆项
longer_item = memory_items[i] if len(memory_items[i]) > len(memory_items[j]) else memory_items[j]
shorter_item = memory_items[j] if len(memory_items[i]) > len(memory_items[j]) else memory_items[i]
# 保留更长的记忆项,标记短的用于删除
if shorter_item not in items_to_remove:
items_to_remove.append(shorter_item)
merged_count += 1
merged_in_this_node = True
logger.debug(f"[整合] 在节点 {node} 中合并相似记忆: {shorter_item[:30]}... -> {longer_item[:30]}...")
# 移除被合并的记忆项
if items_to_remove:
for item in items_to_remove:
if item in memory_items:
memory_items.remove(item)
nodes_modified.add(node)
# 更新节点的记忆项
self.memory_graph.G.nodes[node]["memory_items"] = memory_items
self.memory_graph.G.nodes[node]["last_modified"] = current_time
node_check_end = time.time()
logger.info(f"[遗忘] 节点检查耗时: {node_check_end - node_check_start:.2f}")
if any(edge_changes.values()) or any(node_changes.values()):
# 输出变化统计
if edge_changes["weakened"]:
logger.info(f"[遗忘] 减弱了 {len(edge_changes['weakened'])} 个连接")
if edge_changes["removed"]:
logger.info(f"[遗忘] 移除了 {len(edge_changes['removed'])} 个连接")
if node_changes["reduced"]:
logger.info(f"[遗忘] 减少了 {len(node_changes['reduced'])} 个节点的记忆")
if node_changes["removed"]:
logger.info(f"[遗忘] 移除了 {len(node_changes['removed'])} 个节点")
# 检查是否有变化需要同步到数据库
has_changes = (
edge_changes["weakened"] or
edge_changes["removed"] or
node_changes["reduced"] or
node_changes["removed"] or
merged_count > 0
)
if has_changes:
logger.info("[遗忘] 开始将变更同步到数据库...")
sync_start = time.time()
await self.hippocampus.entorhinal_cortex.resync_memory_to_db()
await self.hippocampus.entorhinal_cortex.sync_memory_to_db()
sync_end = time.time()
logger.info(f"[遗忘] 数据库同步耗时: {sync_end - sync_start:.2f}")
# 汇总输出所有变化
logger.info("[遗忘] 遗忘操作统计:")
if edge_changes["weakened"]:
logger.info(
f"[遗忘] 减弱的连接 ({len(edge_changes['weakened'])}个): {', '.join(edge_changes['weakened'])}"
)
if edge_changes["removed"]:
logger.info(
f"[遗忘] 移除的连接 ({len(edge_changes['removed'])}个): {', '.join(edge_changes['removed'])}"
)
if node_changes["reduced"]:
logger.info(
f"[遗忘] 减少记忆的节点 ({len(node_changes['reduced'])}个): {', '.join(node_changes['reduced'])}"
)
if node_changes["removed"]:
logger.info(
f"[遗忘] 移除的节点 ({len(node_changes['removed'])}个): {', '.join(node_changes['removed'])}"
)
if merged_count > 0:
logger.info(f"[整合] 共合并了 {merged_count} 对相似记忆项,分布在 {len(nodes_modified)} 个节点中。")
sync_start = time.time()
logger.info("[整合] 开始将变更同步到数据库...")
# 使用 resync 更安全地处理删除和添加
await self.hippocampus.entorhinal_cortex.resync_memory_to_db()
sync_end = time.time()
logger.info(f"[整合] 数据库同步耗时: {sync_end - sync_start:.2f}")
else:
logger.info("[遗忘] 本次检查没有节点或连接满足遗忘条件")
end_time = time.time()
logger.info(f"[遗忘] 总耗时: {end_time - start_time:.2f}")
logger.info("[整合] 本次检查未发现需要合并的记忆项。")
@@ -1734,10 +1799,7 @@ class HippocampusManager:
"""获取所有节点名称的公共接口"""
if not self._initialized:
raise RuntimeError("HippocampusManager 尚未初始化,请先调用 initialize 方法")
return self._hippocampus.get_all_node_names()
# 创建全局实例
hippocampus_manager = HippocampusManager()