feat: 集成 AWS Bedrock 支持

- 新增 BedrockClient 客户端实现,支持 Converse API
- 支持两种认证方式:IAM 凭证和 IAM 角色
- 支持对话生成、流式输出、工具调用、多模态、文本嵌入
- 添加配置模板和完整文档
- 更新依赖:aioboto3, botocore
This commit is contained in:
Eric-Terminal
2025-12-06 17:26:40 +08:00
parent c059c7a2f1
commit 2348dc1082
9 changed files with 1115 additions and 2 deletions

View File

@@ -12,8 +12,8 @@ class APIProvider(ValidatedConfigBase):
name: str = Field(..., min_length=1, description="API提供商名称")
base_url: str = Field(..., description="API基础URL")
api_key: str | list[str] = Field(..., min_length=1, description="API密钥支持单个密钥或密钥列表轮询")
client_type: Literal["openai", "gemini", "aiohttp_gemini"] = Field(
default="openai", description="客户端类型如openai/google等默认为openai"
client_type: Literal["openai", "gemini", "aiohttp_gemini", "bedrock"] = Field(
default="openai", description="客户端类型如openai/google/bedrock默认为openai"
)
max_retry: int = Field(default=2, ge=0, description="最大重试次数单个模型API调用失败最多重试的次数")
timeout: int = Field(

View File

@@ -6,3 +6,5 @@ if "openai" in used_client_types:
from . import openai_client # noqa: F401
if "aiohttp_gemini" in used_client_types:
from . import aiohttp_gemini_client # noqa: F401
if "bedrock" in used_client_types:
from . import bedrock_client # noqa: F401

View File

@@ -0,0 +1,495 @@
import asyncio
import base64
import io
import json
from collections.abc import Callable, Coroutine
from typing import Any
import aioboto3
import orjson
from botocore.config import Config
from json_repair import repair_json
from src.common.logger import get_logger
from src.config.api_ada_configs import APIProvider, ModelInfo
from ..exceptions import (
NetworkConnectionError,
ReqAbortException,
RespNotOkException,
RespParseException,
)
from ..payload_content.message import Message, RoleType
from ..payload_content.resp_format import RespFormat
from ..payload_content.tool_option import ToolCall, ToolOption, ToolParam
from .base_client import APIResponse, BaseClient, UsageRecord, client_registry
logger = get_logger("Bedrock客户端")
def _convert_messages_to_converse(messages: list[Message]) -> list[dict[str, Any]]:
"""
转换消息格式 - 将消息转换为 Bedrock Converse API 所需的格式
:param messages: 消息列表
:return: 转换后的消息列表
"""
def _convert_message_item(message: Message) -> dict[str, Any]:
"""
转换单个消息格式
:param message: 消息对象
:return: 转换后的消息字典
"""
# Bedrock Converse API 格式
content: list[dict[str, Any]] = []
if isinstance(message.content, str):
content.append({"text": message.content})
elif isinstance(message.content, list):
for item in message.content:
if isinstance(item, tuple):
# 图片格式:(format, base64_data)
image_format = item[0].lower()
image_bytes = base64.b64decode(item[1])
content.append(
{
"image": {
"format": image_format if image_format in ["png", "jpeg", "gif", "webp"] else "jpeg",
"source": {"bytes": image_bytes},
}
}
)
elif isinstance(item, str):
content.append({"text": item})
else:
raise RuntimeError("无法触及的代码请使用MessageBuilder类构建消息对象")
ret = {
"role": "user" if message.role == RoleType.User else "assistant",
"content": content,
}
return ret
# Bedrock 不支持 system 和 tool 角色,需要过滤
converted = []
for msg in messages:
if msg.role in [RoleType.User, RoleType.Assistant]:
converted.append(_convert_message_item(msg))
return converted
def _convert_tool_options_to_bedrock(tool_options: list[ToolOption]) -> list[dict[str, Any]]:
"""
转换工具选项格式 - 将工具选项转换为 Bedrock Converse API 所需的格式
:param tool_options: 工具选项列表
:return: 转换后的工具选项列表
"""
def _convert_tool_param(tool_param: ToolParam) -> dict[str, Any]:
"""转换单个工具参数"""
param_dict: dict[str, Any] = {
"type": tool_param.param_type.value,
"description": tool_param.description,
}
if tool_param.enum_values:
param_dict["enum"] = tool_param.enum_values
return param_dict
def _convert_tool_option_item(tool_option: ToolOption) -> dict[str, Any]:
"""转换单个工具项"""
tool_spec: dict[str, Any] = {
"name": tool_option.name,
"description": tool_option.description,
}
if tool_option.params:
tool_spec["inputSchema"] = {
"json": {
"type": "object",
"properties": {param.name: _convert_tool_param(param) for param in tool_option.params},
"required": [param.name for param in tool_option.params if param.required],
}
}
return {"toolSpec": tool_spec}
return [_convert_tool_option_item(opt) for opt in tool_options]
async def _default_stream_response_handler(
resp_stream: Any,
interrupt_flag: asyncio.Event | None,
) -> tuple[APIResponse, tuple[int, int, int] | None]:
"""
流式响应处理函数 - 处理 Bedrock Converse Stream API 的响应
:param resp_stream: 流式响应对象
:param interrupt_flag: 中断标志
:return: (APIResponse对象, usage元组)
"""
_fc_delta_buffer = io.StringIO() # 正式内容缓冲区
_tool_calls_buffer: list[tuple[str, str, io.StringIO]] = [] # 工具调用缓冲区
_usage_record = None
def _insure_buffer_closed():
if _fc_delta_buffer and not _fc_delta_buffer.closed:
_fc_delta_buffer.close()
for _, _, buffer in _tool_calls_buffer:
if buffer and not buffer.closed:
buffer.close()
try:
async for event in resp_stream["stream"]:
if interrupt_flag and interrupt_flag.is_set():
_insure_buffer_closed()
raise ReqAbortException("请求被外部信号中断")
# 处理内容块
if "contentBlockDelta" in event:
delta = event["contentBlockDelta"]["delta"]
if "text" in delta:
_fc_delta_buffer.write(delta["text"])
elif "toolUse" in delta:
# 工具调用
tool_use = delta["toolUse"]
if "input" in tool_use:
# 追加工具调用参数
if tool_use.get("toolUseId"):
# 新的工具调用
_tool_calls_buffer.append(
(
tool_use["toolUseId"],
tool_use.get("name", ""),
io.StringIO(json.dumps(tool_use["input"])),
)
)
# 处理元数据(包含 usage
if "metadata" in event:
metadata = event["metadata"]
if "usage" in metadata:
usage = metadata["usage"]
_usage_record = (
usage.get("inputTokens", 0),
usage.get("outputTokens", 0),
usage.get("totalTokens", 0),
)
# 构建响应
resp = APIResponse()
if _fc_delta_buffer.tell() > 0:
resp.content = _fc_delta_buffer.getvalue()
_fc_delta_buffer.close()
if _tool_calls_buffer:
resp.tool_calls = []
for call_id, function_name, arguments_buffer in _tool_calls_buffer:
if arguments_buffer.tell() > 0:
raw_arg_data = arguments_buffer.getvalue()
arguments_buffer.close()
try:
arguments = orjson.loads(repair_json(raw_arg_data))
if not isinstance(arguments, dict):
raise RespParseException(
None,
f"响应解析失败,工具调用参数无法解析为字典类型。原始响应:\n{raw_arg_data}",
)
except orjson.JSONDecodeError as e:
raise RespParseException(
None,
f"响应解析失败,无法解析工具调用参数。原始响应:{raw_arg_data}",
) from e
else:
arguments_buffer.close()
arguments = None
resp.tool_calls.append(ToolCall(call_id, function_name, args=arguments))
return resp, _usage_record
except Exception as e:
_insure_buffer_closed()
raise
async def _default_async_response_parser(
resp_data: dict[str, Any],
) -> tuple[APIResponse, tuple[int, int, int] | None]:
"""
默认异步响应解析函数 - 解析 Bedrock Converse API 的响应
:param resp_data: 响应数据
:return: (APIResponse对象, usage元组)
"""
resp = APIResponse()
# 解析输出内容
if "output" in resp_data and "message" in resp_data["output"]:
message = resp_data["output"]["message"]
content_blocks = message.get("content", [])
text_parts = []
tool_calls = []
for block in content_blocks:
if "text" in block:
text_parts.append(block["text"])
elif "toolUse" in block:
tool_use = block["toolUse"]
tool_calls.append(
ToolCall(
call_id=tool_use.get("toolUseId", ""),
func_name=tool_use.get("name", ""),
args=tool_use.get("input", {}),
)
)
if text_parts:
resp.content = "".join(text_parts)
if tool_calls:
resp.tool_calls = tool_calls
# 解析 usage
usage_record = None
if "usage" in resp_data:
usage = resp_data["usage"]
usage_record = (
usage.get("inputTokens", 0),
usage.get("outputTokens", 0),
usage.get("totalTokens", 0),
)
resp.raw_data = resp_data
return resp, usage_record
@client_registry.register_client_class("bedrock")
class BedrockClient(BaseClient):
"""AWS Bedrock 客户端"""
def __init__(self, api_provider: APIProvider):
super().__init__(api_provider)
# 从 extra_params 获取 AWS 配置
# 支持两种认证方式:
# 方式1显式凭证api_key + extra_params.aws_secret_key
# 方式2IAM角色只配置 region自动从环境/实例角色获取凭证
region = api_provider.extra_params.get("region", "us-east-1")
aws_secret_key = api_provider.extra_params.get("aws_secret_key")
# 配置 boto3
self.region = region
self.boto_config = Config(
region_name=self.region,
connect_timeout=api_provider.timeout,
read_timeout=api_provider.timeout,
retries={"max_attempts": api_provider.max_retry, "mode": "adaptive"},
)
# 判断认证方式
if aws_secret_key:
# 方式1显式 IAM 凭证
self.aws_access_key_id = api_provider.get_api_key()
self.aws_secret_access_key = aws_secret_key
self.session = aioboto3.Session(
aws_access_key_id=self.aws_access_key_id,
aws_secret_access_key=self.aws_secret_access_key,
region_name=self.region,
)
logger.info(f"初始化 Bedrock 客户端IAM 凭证模式),区域: {self.region}")
else:
# 方式2IAM 角色自动认证从环境变量、EC2/ECS 实例角色获取)
self.session = aioboto3.Session(region_name=self.region)
logger.info(f"初始化 Bedrock 客户端IAM 角色模式),区域: {self.region}")
logger.info("将使用环境变量或实例角色自动获取 AWS 凭证")
async def get_response(
self,
model_info: ModelInfo,
message_list: list[Message],
tool_options: list[ToolOption] | None = None,
max_tokens: int = 1024,
temperature: float = 0.7,
response_format: RespFormat | None = None,
stream_response_handler: Callable[[Any, asyncio.Event | None], tuple[APIResponse, tuple[int, int, int]]]
| None = None,
async_response_parser: Callable[[Any], tuple[APIResponse, tuple[int, int, int]]] | None = None,
interrupt_flag: asyncio.Event | None = None,
extra_params: dict[str, Any] | None = None,
) -> APIResponse:
"""
获取对话响应
"""
try:
# 提取 system prompt
system_prompts = []
filtered_messages = []
for msg in message_list:
if msg.role == RoleType.System:
if isinstance(msg.content, str):
system_prompts.append({"text": msg.content})
else:
filtered_messages.append(msg)
# 转换消息格式
messages = _convert_messages_to_converse(filtered_messages)
# 构建请求参数
request_params: dict[str, Any] = {
"modelId": model_info.model_identifier,
"messages": messages,
"inferenceConfig": {
"maxTokens": max_tokens,
"temperature": temperature,
},
}
# 添加 system prompt
if system_prompts:
request_params["system"] = system_prompts
# 添加工具配置
if tool_options:
request_params["toolConfig"] = {"tools": _convert_tool_options_to_bedrock(tool_options)}
# 合并额外参数
if extra_params:
request_params.update(extra_params)
# 合并模型配置的额外参数
if model_info.extra_params:
request_params.update(model_info.extra_params)
# 创建 Bedrock Runtime 客户端
async with self.session.client("bedrock-runtime", config=self.boto_config) as bedrock_client:
# 判断是否使用流式模式
use_stream = model_info.force_stream_mode or stream_response_handler is not None
if use_stream:
# 流式调用
response = await bedrock_client.converse_stream(**request_params)
if stream_response_handler:
# 用户提供的处理器(可能是同步的)
result = stream_response_handler(response, interrupt_flag)
if asyncio.iscoroutine(result):
api_resp, usage_tuple = await result
else:
api_resp, usage_tuple = result # type: ignore
else:
# 默认异步处理器
api_resp, usage_tuple = await _default_stream_response_handler(response, interrupt_flag)
else:
# 非流式调用
response = await bedrock_client.converse(**request_params)
if async_response_parser:
# 用户提供的解析器(可能是同步的)
result = async_response_parser(response)
if asyncio.iscoroutine(result):
api_resp, usage_tuple = await result
else:
api_resp, usage_tuple = result # type: ignore
else:
# 默认异步解析器
api_resp, usage_tuple = await _default_async_response_parser(response)
# 设置 usage
if usage_tuple:
api_resp.usage = UsageRecord(
model_name=model_info.model_identifier,
provider_name=self.api_provider.name,
prompt_tokens=usage_tuple[0],
completion_tokens=usage_tuple[1],
total_tokens=usage_tuple[2],
)
return api_resp
except Exception as e:
error_type = type(e).__name__
logger.error(f"Bedrock API 调用失败 ({error_type}): {e!s}")
# 处理特定错误类型
if "ThrottlingException" in error_type or "ServiceQuota" in error_type:
raise RespNotOkException(429, f"请求限流: {e!s}") from e
elif "ValidationException" in error_type:
raise RespParseException(400, f"请求参数错误: {e!s}") from e
elif "AccessDeniedException" in error_type:
raise RespNotOkException(403, f"访问被拒绝: {e!s}") from e
elif "ResourceNotFoundException" in error_type:
raise RespNotOkException(404, f"模型不存在: {e!s}") from e
elif "timeout" in str(e).lower() or "timed out" in str(e).lower():
logger.error(f"请求超时: {e!s}")
raise NetworkConnectionError() from e
else:
logger.error(f"网络连接错误: {e!s}")
raise NetworkConnectionError() from e
async def get_embedding(
self,
model_info: ModelInfo,
embedding_input: str | list[str],
extra_params: dict[str, Any] | None = None,
) -> APIResponse:
"""
获取文本嵌入Bedrock 支持 Titan Embeddings 等模型)
"""
try:
async with self.session.client("bedrock-runtime", config=self.boto_config) as bedrock_client:
# Bedrock Embeddings 使用 InvokeModel API
is_batch = isinstance(embedding_input, list)
input_text = embedding_input if is_batch else [embedding_input]
results = []
total_tokens = 0
for text in input_text:
# 构建请求体Titan Embeddings 格式)
body = json.dumps({"inputText": text})
response = await bedrock_client.invoke_model(
modelId=model_info.model_identifier,
contentType="application/json",
accept="application/json",
body=body,
)
# 解析响应
response_body = json.loads(await response["body"].read())
embedding = response_body.get("embedding", [])
results.append(embedding)
# 累计 token 使用
if "inputTokenCount" in response_body:
total_tokens += response_body["inputTokenCount"]
api_resp = APIResponse()
api_resp.embedding = results if is_batch else results[0]
api_resp.usage = UsageRecord(
model_name=model_info.model_identifier,
provider_name=self.api_provider.name,
prompt_tokens=total_tokens,
completion_tokens=0,
total_tokens=total_tokens,
)
return api_resp
except Exception as e:
logger.error(f"Bedrock Embedding 调用失败: {e!s}")
raise NetworkConnectionError() from e
async def get_audio_transcriptions(
self,
model_info: ModelInfo,
audio_base64: str,
extra_params: dict[str, Any] | None = None,
) -> APIResponse:
"""
获取音频转录Bedrock 暂不直接支持,抛出未实现异常)
"""
raise NotImplementedError("AWS Bedrock 暂不支持音频转录功能,建议使用 AWS Transcribe 服务")
def get_support_image_formats(self) -> list[str]:
"""
获取支持的图片格式
:return: 支持的图片格式列表
"""
return ["png", "jpeg", "jpg", "gif", "webp"]