feat(context): 为大语言模型提供过去网页搜索的上下文记忆
此更改使聊天机器人能够记住并引用过去网页搜索的相关信息,从而显著提高响应质量和连贯性。 系统不再将每个查询视为孤立事件,而是在生成新响应之前,对之前的 `web_search` 结果缓存进行向量相似度搜索。如果发现过去的相关信息,会自动作为“相关历史搜索结果”注入到大语言模型的提示中。 这使模型能够立即访问相关背景信息,避免对已经讨论过的主题重复搜索。 为了支持这一新功能: - 对 `web_search` 工具的提示进行了改写,以通过确保结果被高效缓存和调用,鼓励大语言模型更频繁地使用它。 - 重要工具结果(如网页搜索)的预览长度已增加
This commit is contained in:
@@ -574,6 +574,126 @@ class CacheManager:
|
||||
}
|
||||
}
|
||||
|
||||
async def recall_relevant_cache(
|
||||
self,
|
||||
query_text: str,
|
||||
tool_name: str | None = None,
|
||||
top_k: int = 3,
|
||||
similarity_threshold: float = 0.70,
|
||||
) -> list[dict[str, Any]]:
|
||||
"""
|
||||
根据语义相似度主动召回相关的缓存条目
|
||||
|
||||
用于在回复前扫描缓存,找到与当前对话相关的历史搜索结果
|
||||
|
||||
Args:
|
||||
query_text: 用于语义匹配的查询文本(通常是最近几条聊天内容)
|
||||
tool_name: 可选,限制只召回特定工具的缓存(如 "web_search")
|
||||
top_k: 返回的最大结果数
|
||||
similarity_threshold: 相似度阈值(L2距离,越小越相似)
|
||||
|
||||
Returns:
|
||||
相关缓存条目列表,每个条目包含 {tool_name, query, content, similarity}
|
||||
"""
|
||||
if not query_text or not self.embedding_model:
|
||||
return []
|
||||
|
||||
try:
|
||||
# 生成查询向量
|
||||
embedding_result = await self.embedding_model.get_embedding(query_text)
|
||||
if not embedding_result:
|
||||
return []
|
||||
|
||||
embedding_vector = embedding_result[0] if isinstance(embedding_result, tuple) else embedding_result
|
||||
validated_embedding = self._validate_embedding(embedding_vector)
|
||||
if validated_embedding is None:
|
||||
return []
|
||||
|
||||
query_embedding = np.array([validated_embedding], dtype="float32")
|
||||
|
||||
# 从 L2 向量数据库查询
|
||||
results = vector_db_service.query(
|
||||
collection_name=self.semantic_cache_collection_name,
|
||||
query_embeddings=query_embedding.tolist(),
|
||||
n_results=top_k * 2, # 多取一些,后面会过滤
|
||||
)
|
||||
|
||||
if not results or not results.get("ids") or not results["ids"][0]:
|
||||
logger.debug("[缓存召回] 未找到相关缓存")
|
||||
return []
|
||||
|
||||
recalled_items = []
|
||||
ids = results["ids"][0] if isinstance(results["ids"][0], list) else [results["ids"][0]]
|
||||
distances = results.get("distances", [[]])[0] if results.get("distances") else []
|
||||
|
||||
for i, cache_key in enumerate(ids):
|
||||
distance = distances[i] if i < len(distances) else 1.0
|
||||
|
||||
# 过滤相似度不够的
|
||||
if distance > similarity_threshold:
|
||||
continue
|
||||
|
||||
# 从数据库获取缓存数据
|
||||
cache_obj = await db_query(
|
||||
model_class=CacheEntries,
|
||||
query_type="get",
|
||||
filters={"cache_key": cache_key},
|
||||
single_result=True,
|
||||
)
|
||||
|
||||
if not cache_obj:
|
||||
continue
|
||||
|
||||
# 检查是否过期
|
||||
expires_at = getattr(cache_obj, "expires_at", 0)
|
||||
if time.time() >= expires_at:
|
||||
continue
|
||||
|
||||
# 获取工具名称并过滤
|
||||
cached_tool_name = getattr(cache_obj, "tool_name", "")
|
||||
if tool_name and cached_tool_name != tool_name:
|
||||
continue
|
||||
|
||||
# 解析缓存内容
|
||||
try:
|
||||
cache_value = getattr(cache_obj, "cache_value", "{}")
|
||||
data = orjson.loads(cache_value)
|
||||
content = data.get("content", "") if isinstance(data, dict) else str(data)
|
||||
|
||||
# 从 cache_key 中提取原始查询(格式: tool_name::{"query": "xxx", ...}::file_hash)
|
||||
original_query = ""
|
||||
try:
|
||||
key_parts = cache_key.split("::")
|
||||
if len(key_parts) >= 2:
|
||||
args_json = key_parts[1]
|
||||
args = orjson.loads(args_json)
|
||||
original_query = args.get("query", "")
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
recalled_items.append({
|
||||
"tool_name": cached_tool_name,
|
||||
"query": original_query,
|
||||
"content": content,
|
||||
"similarity": 1.0 - distance, # 转换为相似度分数
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"解析缓存内容失败: {e}")
|
||||
continue
|
||||
|
||||
if len(recalled_items) >= top_k:
|
||||
break
|
||||
|
||||
if recalled_items:
|
||||
logger.info(f"[缓存召回] 找到 {len(recalled_items)} 条相关缓存")
|
||||
|
||||
return recalled_items
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[缓存召回] 语义召回失败: {e}")
|
||||
return []
|
||||
|
||||
|
||||
# 全局实例
|
||||
tool_cache = CacheManager()
|
||||
|
||||
@@ -32,15 +32,35 @@ class ToolCallRecord:
|
||||
"""后处理:生成结果预览"""
|
||||
if self.result and not self.result_preview:
|
||||
content = self.result.get("content", "")
|
||||
# 联网搜索等重要工具不截断结果
|
||||
no_truncate_tools = {"web_search", "web_surfing", "knowledge_search"}
|
||||
should_truncate = self.tool_name not in no_truncate_tools
|
||||
max_length = 500 if should_truncate else 10000 # 联网搜索给更大的限制
|
||||
|
||||
if isinstance(content, str):
|
||||
self.result_preview = content[:500] + ("..." if len(content) > 500 else "")
|
||||
if len(content) > max_length:
|
||||
self.result_preview = content[:max_length] + "..."
|
||||
else:
|
||||
self.result_preview = content
|
||||
elif isinstance(content, list | dict):
|
||||
try:
|
||||
self.result_preview = orjson.dumps(content, option=orjson.OPT_NON_STR_KEYS).decode("utf-8")[:500] + "..."
|
||||
json_str = orjson.dumps(content, option=orjson.OPT_NON_STR_KEYS).decode("utf-8")
|
||||
if len(json_str) > max_length:
|
||||
self.result_preview = json_str[:max_length] + "..."
|
||||
else:
|
||||
self.result_preview = json_str
|
||||
except Exception:
|
||||
self.result_preview = str(content)[:500] + "..."
|
||||
str_content = str(content)
|
||||
if len(str_content) > max_length:
|
||||
self.result_preview = str_content[:max_length] + "..."
|
||||
else:
|
||||
self.result_preview = str_content
|
||||
else:
|
||||
self.result_preview = str(content)[:500] + "..."
|
||||
str_content = str(content)
|
||||
if len(str_content) > max_length:
|
||||
self.result_preview = str_content[:max_length] + "..."
|
||||
else:
|
||||
self.result_preview = str_content
|
||||
|
||||
|
||||
class StreamToolHistoryManager:
|
||||
|
||||
@@ -334,12 +334,46 @@ class KFCContextBuilder:
|
||||
|
||||
tool_executor = ToolExecutor(chat_id=self.chat_id)
|
||||
|
||||
# 首先获取当前的历史记录(在执行新工具调用之前)
|
||||
info_parts = []
|
||||
|
||||
# ========== 1. 主动召回联网搜索缓存 ==========
|
||||
try:
|
||||
from src.common.cache_manager import tool_cache
|
||||
|
||||
# 使用聊天历史作为语义查询
|
||||
query_text = chat_history if chat_history else target_message
|
||||
recalled_caches = await tool_cache.recall_relevant_cache(
|
||||
query_text=query_text,
|
||||
tool_name="web_search", # 只召回联网搜索的缓存
|
||||
top_k=2,
|
||||
similarity_threshold=0.65, # 相似度阈值
|
||||
)
|
||||
|
||||
if recalled_caches:
|
||||
recall_parts = ["### 🔍 相关的历史搜索结果"]
|
||||
for item in recalled_caches:
|
||||
original_query = item.get("query", "")
|
||||
content = item.get("content", "")
|
||||
similarity = item.get("similarity", 0)
|
||||
if content:
|
||||
# 截断过长的内容
|
||||
if len(content) > 500:
|
||||
content = content[:500] + "..."
|
||||
recall_parts.append(f"**搜索「{original_query}」** (相关度:{similarity:.0%})\n{content}")
|
||||
|
||||
info_parts.append("\n\n".join(recall_parts))
|
||||
logger.info(f"[缓存召回] 召回了 {len(recalled_caches)} 条相关搜索缓存")
|
||||
except Exception as e:
|
||||
logger.debug(f"[缓存召回] 召回失败(非关键): {e}")
|
||||
|
||||
# ========== 2. 获取工具调用历史 ==========
|
||||
tool_history_str = tool_executor.history_manager.format_for_prompt(
|
||||
max_records=3, include_results=True
|
||||
)
|
||||
if tool_history_str:
|
||||
info_parts.append(tool_history_str)
|
||||
|
||||
# 然后执行工具调用
|
||||
# ========== 3. 执行工具调用 ==========
|
||||
tool_results, _, _ = await tool_executor.execute_from_chat_message(
|
||||
sender=sender_name,
|
||||
target_message=target_message,
|
||||
@@ -347,12 +381,6 @@ class KFCContextBuilder:
|
||||
return_details=False,
|
||||
)
|
||||
|
||||
info_parts = []
|
||||
|
||||
# 显示之前的工具调用历史(不包括当前这次调用)
|
||||
if tool_history_str:
|
||||
info_parts.append(tool_history_str)
|
||||
|
||||
# 显示当前工具调用的结果(简要信息)
|
||||
if tool_results:
|
||||
current_results_parts = ["### 🔧 刚获取的工具信息"]
|
||||
|
||||
@@ -28,7 +28,12 @@ class WebSurfingTool(BaseTool):
|
||||
|
||||
name: str = "web_search"
|
||||
description: str = (
|
||||
"用于执行网络搜索。当用户明确要求搜索,或者需要获取关于公司、产品、事件的最新信息、新闻或动态时,必须使用此工具"
|
||||
"联网搜索工具。使用场景:\n"
|
||||
"1. 用户问的问题你不确定答案、需要验证\n"
|
||||
"2. 涉及最新信息(新闻、产品、事件、时效性内容)\n"
|
||||
"3. 需要查找具体数据、事实、定义\n"
|
||||
"4. 用户明确要求搜索\n"
|
||||
"不要担心调用频率,搜索结果会被缓存。"
|
||||
)
|
||||
available_for_llm: bool = True
|
||||
parameters: ClassVar[list] = [
|
||||
|
||||
Reference in New Issue
Block a user