fix:修复LPMM学习问题

This commit is contained in:
墨梓柒
2025-07-16 19:58:19 +08:00
parent c0cde24529
commit 2229f98993
7 changed files with 313 additions and 114 deletions

123
bot.py
View File

@@ -8,6 +8,7 @@ if os.path.exists(".env"):
print("成功加载环境变量配置")
else:
print("未找到.env文件请确保程序所需的环境变量被正确设置")
raise FileNotFoundError(".env 文件不存在,请创建并配置所需的环境变量")
import sys
import time
import platform
@@ -140,81 +141,85 @@ async def graceful_shutdown():
logger.error(f"麦麦关闭失败: {e}", exc_info=True)
def check_eula():
eula_confirm_file = Path("eula.confirmed")
privacy_confirm_file = Path("privacy.confirmed")
eula_file = Path("EULA.md")
privacy_file = Path("PRIVACY.md")
def _calculate_file_hash(file_path: Path, file_type: str) -> str:
"""计算文件的MD5哈希值"""
if not file_path.exists():
logger.error(f"{file_type} 文件不存在")
raise FileNotFoundError(f"{file_type} 文件不存在")
eula_updated = True
privacy_updated = True
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
return hashlib.md5(content.encode("utf-8")).hexdigest()
eula_confirmed = False
privacy_confirmed = False
# 首先计算当前EULA文件的哈希值
if eula_file.exists():
with open(eula_file, "r", encoding="utf-8") as f:
eula_content = f.read()
eula_new_hash = hashlib.md5(eula_content.encode("utf-8")).hexdigest()
else:
logger.error("EULA.md 文件不存在")
raise FileNotFoundError("EULA.md 文件不存在")
def _check_agreement_status(file_hash: str, confirm_file: Path, env_var: str) -> tuple[bool, bool]:
"""检查协议确认状态
# 首先计算当前隐私条款文件的哈希值
if privacy_file.exists():
with open(privacy_file, "r", encoding="utf-8") as f:
privacy_content = f.read()
privacy_new_hash = hashlib.md5(privacy_content.encode("utf-8")).hexdigest()
else:
logger.error("PRIVACY.md 文件不存在")
raise FileNotFoundError("PRIVACY.md 文件不存在")
Returns:
tuple[bool, bool]: (已确认, 未更新)
"""
# 检查环境变量确认
if file_hash == os.getenv(env_var):
return True, False
# 检查EULA确认文件是否存在
if eula_confirm_file.exists():
with open(eula_confirm_file, "r", encoding="utf-8") as f:
# 检查确认文件
if confirm_file.exists():
with open(confirm_file, "r", encoding="utf-8") as f:
confirmed_content = f.read()
if eula_new_hash == confirmed_content:
eula_confirmed = True
eula_updated = False
if eula_new_hash == os.getenv("EULA_AGREE"):
eula_confirmed = True
eula_updated = False
if file_hash == confirmed_content:
return True, False
# 检查隐私条款确认文件是否存在
if privacy_confirm_file.exists():
with open(privacy_confirm_file, "r", encoding="utf-8") as f:
confirmed_content = f.read()
if privacy_new_hash == confirmed_content:
privacy_confirmed = True
privacy_updated = False
if privacy_new_hash == os.getenv("PRIVACY_AGREE"):
privacy_confirmed = True
privacy_updated = False
return False, True
# 如果EULA或隐私条款有更新提示用户重新确认
if eula_updated or privacy_updated:
def _prompt_user_confirmation(eula_hash: str, privacy_hash: str) -> None:
"""提示用户确认协议"""
confirm_logger.critical("EULA或隐私条款内容已更新请在阅读后重新确认继续运行视为同意更新后的以上两款协议")
confirm_logger.critical(
f'输入"同意""confirmed"或设置环境变量"EULA_AGREE={eula_new_hash}""PRIVACY_AGREE={privacy_new_hash}"继续运行'
f'输入"同意""confirmed"或设置环境变量"EULA_AGREE={eula_hash}""PRIVACY_AGREE={privacy_hash}"继续运行'
)
while True:
user_input = input().strip().lower()
if user_input in ["同意", "confirmed"]:
# print("确认成功,继续运行")
# print(f"确认成功,继续运行{eula_updated} {privacy_updated}")
if eula_updated:
logger.info(f"更新EULA确认文件{eula_new_hash}")
eula_confirm_file.write_text(eula_new_hash, encoding="utf-8")
if privacy_updated:
logger.info(f"更新隐私条款确认文件{privacy_new_hash}")
privacy_confirm_file.write_text(privacy_new_hash, encoding="utf-8")
break
else:
return
confirm_logger.critical('请输入"同意""confirmed"以继续运行')
def _save_confirmations(eula_updated: bool, privacy_updated: bool,
eula_hash: str, privacy_hash: str) -> None:
"""保存用户确认结果"""
if eula_updated:
logger.info(f"更新EULA确认文件{eula_hash}")
Path("eula.confirmed").write_text(eula_hash, encoding="utf-8")
if privacy_updated:
logger.info(f"更新隐私条款确认文件{privacy_hash}")
Path("privacy.confirmed").write_text(privacy_hash, encoding="utf-8")
def check_eula():
"""检查EULA和隐私条款确认状态"""
# 计算文件哈希值
eula_hash = _calculate_file_hash(Path("EULA.md"), "EULA.md")
privacy_hash = _calculate_file_hash(Path("PRIVACY.md"), "PRIVACY.md")
# 检查确认状态
eula_confirmed, eula_updated = _check_agreement_status(
eula_hash, Path("eula.confirmed"), "EULA_AGREE"
)
privacy_confirmed, privacy_updated = _check_agreement_status(
privacy_hash, Path("privacy.confirmed"), "PRIVACY_AGREE"
)
# 早期返回:如果都已确认且未更新
if eula_confirmed and privacy_confirmed:
return
elif eula_confirmed and privacy_confirmed:
return
# 如果有更新,需要重新确认
if eula_updated or privacy_updated:
_prompt_user_confirmation(eula_hash, privacy_hash)
_save_confirmations(eula_updated, privacy_updated, eula_hash, privacy_hash)
def raw_main():

View File

@@ -15,6 +15,7 @@ from src.chat.knowledge.kg_manager import KGManager
from src.common.logger import get_logger
from src.chat.knowledge.utils.hash import get_sha256
from src.manager.local_store_manager import local_storage
from dotenv import load_dotenv
# 添加项目根目录到 sys.path
@@ -23,6 +24,45 @@ OPENIE_DIR = os.path.join(ROOT_PATH, "data", "openie")
logger = get_logger("OpenIE导入")
ENV_FILE = os.path.join(ROOT_PATH, ".env")
if os.path.exists(".env"):
load_dotenv(".env", override=True)
print("成功加载环境变量配置")
else:
print("未找到.env文件请确保程序所需的环境变量被正确设置")
raise FileNotFoundError(".env 文件不存在,请创建并配置所需的环境变量")
env_mask = {key: os.getenv(key) for key in os.environ}
def scan_provider(env_config: dict):
provider = {}
# 利用未初始化 env 时获取的 env_mask 来对新的环境变量集去重
# 避免 GPG_KEY 这样的变量干扰检查
env_config = dict(filter(lambda item: item[0] not in env_mask, env_config.items()))
# 遍历 env_config 的所有键
for key in env_config:
# 检查键是否符合 {provider}_BASE_URL 或 {provider}_KEY 的格式
if key.endswith("_BASE_URL") or key.endswith("_KEY"):
# 提取 provider 名称
provider_name = key.split("_", 1)[0] # 从左分割一次,取第一部分
# 初始化 provider 的字典(如果尚未初始化)
if provider_name not in provider:
provider[provider_name] = {"url": None, "key": None}
# 根据键的类型填充 url 或 key
if key.endswith("_BASE_URL"):
provider[provider_name]["url"] = env_config[key]
elif key.endswith("_KEY"):
provider[provider_name]["key"] = env_config[key]
# 检查每个 provider 是否同时存在 url 和 key
for provider_name, config in provider.items():
if config["url"] is None or config["key"] is None:
logger.error(f"provider 内容:{config}\nenv_config 内容:{env_config}")
raise ValueError(f"请检查 '{provider_name}' 提供商配置是否丢失 BASE_URL 或 KEY 环境变量")
def ensure_openie_dir():
"""确保OpenIE数据目录存在"""
@@ -174,6 +214,8 @@ def handle_import_openie(openie_data: OpenIE, embed_manager: EmbeddingManager, k
def main(): # sourcery skip: dict-comprehension
# 新增确认提示
env_config = {key: os.getenv(key) for key in os.environ}
scan_provider(env_config)
print("=== 重要操作确认 ===")
print("OpenIE导入时会大量发送请求可能会撞到请求速度上限请注意选用的模型")
print("同之前样例在本地模型下在70分钟内我们发送了约8万条请求在网络允许下速度会更快")

View File

@@ -27,6 +27,7 @@ from rich.progress import (
from raw_data_preprocessor import RAW_DATA_PATH, load_raw_data
from src.config.config import global_config
from src.llm_models.utils_model import LLMRequest
from dotenv import load_dotenv
logger = get_logger("LPMM知识库-信息提取")
@@ -35,6 +36,45 @@ ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
TEMP_DIR = os.path.join(ROOT_PATH, "temp")
# IMPORTED_DATA_PATH = os.path.join(ROOT_PATH, "data", "imported_lpmm_data")
OPENIE_OUTPUT_DIR = os.path.join(ROOT_PATH, "data", "openie")
ENV_FILE = os.path.join(ROOT_PATH, ".env")
if os.path.exists(".env"):
load_dotenv(".env", override=True)
print("成功加载环境变量配置")
else:
print("未找到.env文件请确保程序所需的环境变量被正确设置")
raise FileNotFoundError(".env 文件不存在,请创建并配置所需的环境变量")
env_mask = {key: os.getenv(key) for key in os.environ}
def scan_provider(env_config: dict):
provider = {}
# 利用未初始化 env 时获取的 env_mask 来对新的环境变量集去重
# 避免 GPG_KEY 这样的变量干扰检查
env_config = dict(filter(lambda item: item[0] not in env_mask, env_config.items()))
# 遍历 env_config 的所有键
for key in env_config:
# 检查键是否符合 {provider}_BASE_URL 或 {provider}_KEY 的格式
if key.endswith("_BASE_URL") or key.endswith("_KEY"):
# 提取 provider 名称
provider_name = key.split("_", 1)[0] # 从左分割一次,取第一部分
# 初始化 provider 的字典(如果尚未初始化)
if provider_name not in provider:
provider[provider_name] = {"url": None, "key": None}
# 根据键的类型填充 url 或 key
if key.endswith("_BASE_URL"):
provider[provider_name]["url"] = env_config[key]
elif key.endswith("_KEY"):
provider[provider_name]["key"] = env_config[key]
# 检查每个 provider 是否同时存在 url 和 key
for provider_name, config in provider.items():
if config["url"] is None or config["key"] is None:
logger.error(f"provider 内容:{config}\nenv_config 内容:{env_config}")
raise ValueError(f"请检查 '{provider_name}' 提供商配置是否丢失 BASE_URL 或 KEY 环境变量")
def ensure_dirs():
"""确保临时目录和输出目录存在"""
@@ -118,6 +158,8 @@ def main(): # sourcery skip: comprehension-to-generator, extract-method
# 设置信号处理器
signal.signal(signal.SIGINT, signal_handler)
ensure_dirs() # 确保目录存在
env_config = {key: os.getenv(key) for key in os.environ}
scan_provider(env_config)
# 新增用户确认提示
print("=== 重要操作确认,请认真阅读以下内容哦 ===")
print("实体提取操作将会花费较多api余额和时间建议在空闲时段执行。")

View File

@@ -2,6 +2,7 @@ from dataclasses import dataclass
import json
import os
import math
import asyncio
from typing import Dict, List, Tuple
import numpy as np
@@ -99,7 +100,30 @@ class EmbeddingStore:
self.idx2hash = None
def _get_embedding(self, s: str) -> List[float]:
return get_embedding(s)
"""获取字符串的嵌入向量,处理异步调用"""
try:
# 尝试获取当前事件循环
asyncio.get_running_loop()
# 如果在事件循环中,使用线程池执行
import concurrent.futures
def run_in_thread():
return asyncio.run(get_embedding(s))
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(run_in_thread)
result = future.result()
if result is None:
logger.error(f"获取嵌入失败: {s}")
return []
return result
except RuntimeError:
# 没有运行的事件循环,直接运行
result = asyncio.run(get_embedding(s))
if result is None:
logger.error(f"获取嵌入失败: {s}")
return []
return result
def get_test_file_path(self):
return EMBEDDING_TEST_FILE

View File

@@ -1,3 +1,4 @@
import asyncio
import json
import time
from typing import List, Union
@@ -7,8 +8,12 @@ from . import prompt_template
from .knowledge_lib import INVALID_ENTITY
from src.llm_models.utils_model import LLMRequest
from json_repair import repair_json
def _extract_json_from_text(text: str) -> dict:
def _extract_json_from_text(text: str):
"""从文本中提取JSON数据的高容错方法"""
if text is None:
logger.error("输入文本为None")
return []
try:
fixed_json = repair_json(text)
if isinstance(fixed_json, str):
@@ -16,23 +21,66 @@ def _extract_json_from_text(text: str) -> dict:
else:
parsed_json = fixed_json
if isinstance(parsed_json, list) and parsed_json:
parsed_json = parsed_json[0]
if isinstance(parsed_json, dict):
# 如果是列表,直接返回
if isinstance(parsed_json, list):
return parsed_json
# 如果是字典且只有一个项目,可能包装了列表
if isinstance(parsed_json, dict):
# 如果字典只有一个键,并且值是列表,返回那个列表
if len(parsed_json) == 1:
value = list(parsed_json.values())[0]
if isinstance(value, list):
return value
return parsed_json
# 其他情况,尝试转换为列表
logger.warning(f"解析的JSON不是预期格式: {type(parsed_json)}, 内容: {parsed_json}")
return []
except Exception as e:
logger.error(f"JSON提取失败: {e}, 原始文本: {text[:100]}...")
logger.error(f"JSON提取失败: {e}, 原始文本: {text[:100] if text else 'None'}...")
return []
def _entity_extract(llm_req: LLMRequest, paragraph: str) -> List[str]:
"""对段落进行实体提取返回提取出的实体列表JSON格式"""
entity_extract_context = prompt_template.build_entity_extract_context(paragraph)
response, (reasoning_content, model_name) = llm_req.generate_response_async(entity_extract_context)
# 使用 asyncio.run 来运行异步方法
try:
# 如果当前已有事件循环在运行,使用它
loop = asyncio.get_running_loop()
future = asyncio.run_coroutine_threadsafe(
llm_req.generate_response_async(entity_extract_context), loop
)
response, (reasoning_content, model_name) = future.result()
except RuntimeError:
# 如果没有运行中的事件循环,直接使用 asyncio.run
response, (reasoning_content, model_name) = asyncio.run(
llm_req.generate_response_async(entity_extract_context)
)
# 添加调试日志
logger.debug(f"LLM返回的原始响应: {response}")
entity_extract_result = _extract_json_from_text(response)
# 尝试load JSON数据
json.loads(entity_extract_result)
# 检查返回的是否为有效的实体列表
if not isinstance(entity_extract_result, list):
# 如果不是列表,可能是字典格式,尝试从中提取列表
if isinstance(entity_extract_result, dict):
# 尝试常见的键名
for key in ['entities', 'result', 'data', 'items']:
if key in entity_extract_result and isinstance(entity_extract_result[key], list):
entity_extract_result = entity_extract_result[key]
break
else:
# 如果找不到合适的列表,抛出异常
raise Exception(f"实体提取结果格式错误,期望列表但得到: {type(entity_extract_result)}")
else:
raise Exception(f"实体提取结果格式错误,期望列表但得到: {type(entity_extract_result)}")
# 过滤无效实体
entity_extract_result = [
entity
for entity in entity_extract_result
@@ -50,16 +98,47 @@ def _rdf_triple_extract(llm_req: LLMRequest, paragraph: str, entities: list) ->
rdf_extract_context = prompt_template.build_rdf_triple_extract_context(
paragraph, entities=json.dumps(entities, ensure_ascii=False)
)
response, (reasoning_content, model_name) = llm_req.generate_response_async(rdf_extract_context)
entity_extract_result = _extract_json_from_text(response)
# 尝试load JSON数据
json.loads(entity_extract_result)
for triple in entity_extract_result:
if len(triple) != 3 or (triple[0] is None or triple[1] is None or triple[2] is None) or "" in triple:
# 使用 asyncio.run 来运行异步方法
try:
# 如果当前已有事件循环在运行,使用它
loop = asyncio.get_running_loop()
future = asyncio.run_coroutine_threadsafe(
llm_req.generate_response_async(rdf_extract_context), loop
)
response, (reasoning_content, model_name) = future.result()
except RuntimeError:
# 如果没有运行中的事件循环,直接使用 asyncio.run
response, (reasoning_content, model_name) = asyncio.run(
llm_req.generate_response_async(rdf_extract_context)
)
# 添加调试日志
logger.debug(f"RDF LLM返回的原始响应: {response}")
rdf_triple_result = _extract_json_from_text(response)
# 检查返回的是否为有效的三元组列表
if not isinstance(rdf_triple_result, list):
# 如果不是列表,可能是字典格式,尝试从中提取列表
if isinstance(rdf_triple_result, dict):
# 尝试常见的键名
for key in ['triples', 'result', 'data', 'items']:
if key in rdf_triple_result and isinstance(rdf_triple_result[key], list):
rdf_triple_result = rdf_triple_result[key]
break
else:
# 如果找不到合适的列表,抛出异常
raise Exception(f"RDF三元组提取结果格式错误期望列表但得到: {type(rdf_triple_result)}")
else:
raise Exception(f"RDF三元组提取结果格式错误期望列表但得到: {type(rdf_triple_result)}")
# 验证三元组格式
for triple in rdf_triple_result:
if not isinstance(triple, list) or len(triple) != 3 or (triple[0] is None or triple[1] is None or triple[2] is None) or "" in triple:
raise Exception("RDF提取结果格式错误")
return entity_extract_result
return rdf_triple_result
def info_extract_from_str(

View File

@@ -11,12 +11,14 @@ entity_extract_system_prompt = """你是一个性能优异的实体提取系统
"""
def build_entity_extract_context(paragraph: str) -> list[LLMMessage]:
messages = [
LLMMessage("system", entity_extract_system_prompt).to_dict(),
LLMMessage("user", f"""段落:\n```\n{paragraph}```""").to_dict(),
]
return messages
def build_entity_extract_context(paragraph: str) -> str:
"""构建实体提取的完整提示文本"""
return f"""{entity_extract_system_prompt}
段落:
```
{paragraph}
```"""
rdf_triple_extract_system_prompt = """你是一个性能优异的RDF资源描述框架由节点和边组成节点表示实体/资源、属性边则表示了实体和实体之间的关系以及实体和属性的关系。构造系统。你的任务是根据给定的段落和实体列表构建RDF图。
@@ -36,12 +38,19 @@ rdf_triple_extract_system_prompt = """你是一个性能优异的RDF资源描
"""
def build_rdf_triple_extract_context(paragraph: str, entities: str) -> list[LLMMessage]:
messages = [
LLMMessage("system", rdf_triple_extract_system_prompt).to_dict(),
LLMMessage("user", f"""段落:\n```\n{paragraph}```\n\n实体列表:\n```\n{entities}```""").to_dict(),
]
return messages
def build_rdf_triple_extract_context(paragraph: str, entities: str) -> str:
"""构建RDF三元组提取的完整提示文本"""
return f"""{rdf_triple_extract_system_prompt}
段落:
```
{paragraph}
```
实体列表:
```
{entities}
```"""
qa_system_prompt = """

View File

@@ -255,10 +255,9 @@ class LLMRequest:
if self.temp != 0.7:
payload["temperature"] = self.temp
# 添加enable_thinking参数如果不是默认值False
if not self.enable_thinking:
payload["enable_thinking"] = False
# 添加enable_thinking参数仅在启用时添加
if self.enable_thinking:
payload["enable_thinking"] = True
if self.thinking_budget != 4096:
payload["thinking_budget"] = self.thinking_budget
@@ -670,10 +669,9 @@ class LLMRequest:
if self.temp != 0.7:
payload["temperature"] = self.temp
# 添加enable_thinking参数如果不是默认值False
if not self.enable_thinking:
payload["enable_thinking"] = False
# 添加enable_thinking参数仅在启用时添加
if self.enable_thinking:
payload["enable_thinking"] = True
if self.thinking_budget != 4096:
payload["thinking_budget"] = self.thinking_budget