refactor: 删除和项目无关的文件

This commit is contained in:
Rikki
2025-03-30 04:44:42 +08:00
parent 7a72f5c26e
commit 20d11dfffa
51 changed files with 0 additions and 7132 deletions

View File

@@ -1,20 +0,0 @@
Jonathan R. Wolpaw 在 “Memory in neuroscience: rhetoric versus reality.” 一文中提到,从神经科学的感觉运动假设出发,整个神经系统的功能是将经验与适当的行为联系起来,而不是单纯的信息存储。
Jonathan R,Wolpaw. (2019). Memory in neuroscience: rhetoric versus reality.. Behavioral and cognitive neuroscience reviews(2).
1. **单一过程理论**
- 单一过程理论认为,识别记忆主要是基于熟悉性这一单一因素的影响。熟悉性是指对刺激的一种自动的、无意识的感知,它可以使我们在没有回忆起具体细节的情况下,判断一个刺激是否曾经出现过。
- 例如在一些实验中研究者发现被试可以在没有回忆起具体学习情境的情况下对曾经出现过的刺激做出正确的判断这被认为是熟悉性在起作用1。
2. **双重过程理论**
- 双重过程理论则认为,识别记忆是基于两个过程:回忆和熟悉性。回忆是指对过去经验的有意识的回忆,它可以使我们回忆起具体的细节和情境;熟悉性则是一种自动的、无意识的感知。
- 该理论认为,在识别记忆中,回忆和熟悉性共同作用,使我们能够判断一个刺激是否曾经出现过。例如,在 “记得 / 知道” 范式中被试被要求判断他们对一个刺激的记忆是基于回忆还是熟悉性。研究发现被试可以区分这两种不同的记忆过程这为双重过程理论提供了支持1。
1. **神经元节点与连接**:借鉴神经网络原理,将每个记忆单元视为一个神经元节点。节点之间通过连接相互关联,连接的强度代表记忆之间的关联程度。在形态学联想记忆中,具有相似形态特征的记忆节点连接强度较高。例如,苹果和橘子的记忆节点,由于在形状、都是水果等形态语义特征上相似,它们之间的连接强度大于苹果与汽车记忆节点间的连接强度。
2. **记忆聚类与层次结构**:依据形态特征的相似性对记忆进行聚类,形成不同的记忆簇。每个记忆簇内部的记忆具有较高的相似性,而不同记忆簇之间的记忆相似性较低。同时,构建记忆的层次结构,高层次的记忆节点代表更抽象、概括的概念,低层次的记忆节点对应具体的实例。比如,“水果” 作为高层次记忆节点,连接着 “苹果”“橘子”“香蕉” 等低层次具体水果的记忆节点。
3. **网络的动态更新**:随着新记忆的不断加入,记忆网络动态调整。新记忆节点根据其形态特征与现有网络中的节点建立连接,同时影响相关连接的强度。若新记忆与某个记忆簇的特征高度相似,则被纳入该记忆簇;若具有独特特征,则可能引发新的记忆簇的形成。例如,当系统学习到一种新的水果 “番石榴”,它会根据番石榴的形态、语义等特征,在记忆网络中找到与之最相似的区域(如水果记忆簇),并建立相应连接,同时调整周围节点连接强度以适应这一新记忆。
- **相似性联想**:该理论认为,当两个或多个事物在形态上具有相似性时,它们在记忆中会形成关联。例如,梨和苹果在形状和都是水果这一属性上有相似性,所以当我们看到梨时,很容易通过形态学联想记忆联想到苹果。这种相似性联想有助于我们对新事物进行分类和理解,当遇到一个新的类似水果时,我们可以通过与已有的水果记忆进行相似性匹配,来推测它的一些特征。
- **时空关联性联想**除了相似性联想MAM 还强调时空关联性联想。如果两个事物在时间或空间上经常同时出现,它们也会在记忆中形成关联。比如,每次在公园里看到花的时候,都能听到鸟儿的叫声,那么花和鸟儿叫声的形态特征(花的视觉形态和鸟叫的听觉形态)就会在记忆中形成关联,以后听到鸟叫可能就会联想到公园里的花。

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

View File

@@ -1 +0,0 @@
gource gource.log --user-image-dir docs/avatars/ --default-user-image docs/avatars/default.png

View File

@@ -1,175 +0,0 @@
# 📂 文件及功能介绍 (2025年更新)
## 根目录
- **README.md**: 项目的概述和使用说明。
- **requirements.txt**: 项目所需的Python依赖包列表。
- **bot.py**: 主启动文件负责环境配置加载和NoneBot初始化。
- **template.env**: 环境变量模板文件。
- **pyproject.toml**: Python项目配置文件。
- **docker-compose.yml** 和 **Dockerfile**: Docker配置文件用于容器化部署。
- **run_*.bat**: 各种启动脚本包括数据库、maimai和thinking功能。
## `src/` 目录结构
- **`plugins/` 目录**: 存放不同功能模块的插件。
- **chat/**: 处理聊天相关的功能,如消息发送和接收。
- **memory_system/**: 处理机器人的记忆功能。
- **knowledege/**: 知识库相关功能。
- **models/**: 模型相关工具。
- **schedule/**: 处理日程管理的功能。
- **`gui/` 目录**: 存放图形用户界面相关的代码。
- **reasoning_gui.py**: 负责推理界面的实现,提供用户交互。
- **`common/` 目录**: 存放通用的工具和库。
- **database.py**: 处理与数据库的交互,负责数据的存储和检索。
- ****init**.py**: 初始化模块。
## `config/` 目录
- **bot_config_template.toml**: 机器人配置模板。
- **auto_format.py**: 自动格式化工具。
### `src/plugins/chat/` 目录文件详细介绍
1. **`__init__.py`**:
- 初始化 `chat` 模块,使其可以作为一个包被导入。
2. **`bot.py`**:
- 主要的聊天机器人逻辑实现,处理消息的接收、思考和回复。
- 包含 `ChatBot` 类,负责消息处理流程控制。
- 集成记忆系统和意愿管理。
3. **`config.py`**:
- 配置文件,定义了聊天机器人的各种参数和设置。
- 包含 `BotConfig` 和全局配置对象 `global_config`
4. **`cq_code.py`**:
- 处理 CQ 码CoolQ 码),用于发送和接收特定格式的消息。
5. **`emoji_manager.py`**:
- 管理表情包的发送和接收,根据情感选择合适的表情。
- 提供根据情绪获取表情的方法。
6. **`llm_generator.py`**:
- 生成基于大语言模型的回复,处理用户输入并生成相应的文本。
- 通过 `ResponseGenerator` 类实现回复生成。
7. **`message.py`**:
- 定义消息的结构和处理逻辑,包含多种消息类型:
- `Message`: 基础消息类
- `MessageSet`: 消息集合
- `Message_Sending`: 发送中的消息
- `Message_Thinking`: 思考状态的消息
8. **`message_sender.py`**:
- 控制消息的发送逻辑,确保消息按照特定规则发送。
- 包含 `message_manager` 对象,用于管理消息队列。
9. **`prompt_builder.py`**:
- 构建用于生成回复的提示,优化机器人的响应质量。
10. **`relationship_manager.py`**:
- 管理用户之间的关系,记录用户的互动和偏好。
- 提供更新关系和关系值的方法。
11. **`Segment_builder.py`**:
- 构建消息片段的工具。
12. **`storage.py`**:
- 处理数据存储,负责将聊天记录和用户信息保存到数据库。
- 实现 `MessageStorage` 类管理消息存储。
13. **`thinking_idea.py`**:
- 实现机器人的思考机制。
14. **`topic_identifier.py`**:
- 识别消息中的主题,帮助机器人理解用户的意图。
15. **`utils.py`** 和 **`utils_*.py`** 系列文件:
- 存放各种工具函数,提供辅助功能以支持其他模块。
- 包括 `utils_cq.py``utils_image.py``utils_user.py` 等专门工具。
16. **`willing_manager.py`**:
- 管理机器人的回复意愿,动态调整回复概率。
- 通过多种因素(如被提及、话题兴趣度)影响回复决策。
### `src/plugins/memory_system/` 目录文件介绍
1. **`memory.py`**:
- 实现记忆管理核心功能,包含 `memory_graph` 对象。
- 提供相关项目检索,支持多层次记忆关联。
2. **`draw_memory.py`**:
- 记忆可视化工具。
3. **`memory_manual_build.py`**:
- 手动构建记忆的工具。
4. **`offline_llm.py`**:
- 离线大语言模型处理功能。
## 消息处理流程
### 1. 消息接收与预处理
- 通过 `ChatBot.handle_message()` 接收群消息。
- 进行用户和群组的权限检查。
- 更新用户关系信息。
- 创建标准化的 `Message` 对象。
- 对消息进行过滤和敏感词检测。
### 2. 主题识别与决策
- 使用 `topic_identifier` 识别消息主题。
- 通过记忆系统检查对主题的兴趣度。
- `willing_manager` 动态计算回复概率。
- 根据概率决定是否回复消息。
### 3. 回复生成与发送
- 如需回复,首先创建 `Message_Thinking` 对象表示思考状态。
- 调用 `ResponseGenerator.generate_response()` 生成回复内容和情感状态。
- 删除思考消息,创建 `MessageSet` 准备发送回复。
- 计算模拟打字时间,设置消息发送时间点。
- 可能附加情感相关的表情包。
- 通过 `message_manager` 将消息加入发送队列。
### 消息发送控制系统
`message_sender.py` 中实现了消息发送控制系统,采用三层结构:
1. **消息管理**:
- 支持单条消息和消息集合的发送。
- 处理思考状态消息,控制思考时间。
- 模拟人类打字速度,添加自然发送延迟。
2. **情感表达**:
- 根据生成回复的情感状态选择匹配的表情包。
- 通过 `emoji_manager` 管理表情资源。
3. **记忆交互**:
- 通过 `memory_graph` 检索相关记忆。
- 根据记忆内容影响回复意愿和内容。
## 系统特色功能
1. **智能回复意愿系统**:
- 动态调整回复概率,模拟真实人类交流特性。
- 考虑多种因素:被提及、话题兴趣度、用户关系等。
2. **记忆系统集成**:
- 支持多层次记忆关联和检索。
- 影响机器人的兴趣和回复内容。
3. **自然交流模拟**:
- 模拟思考和打字过程,添加合理延迟。
- 情感表达与表情包结合。
4. **多环境配置支持**:
- 支持开发环境和生产环境的不同配置。
- 通过环境变量和配置文件灵活管理设置。
5. **Docker部署支持**:
- 提供容器化部署方案,简化安装和运行。

View File

@@ -1,93 +0,0 @@
# 🐳 Docker 部署指南
## 部署步骤 (不一定是最新)
**"更新镜像与容器"部分在本文档 [Part 6](#6-更新镜像与容器)**
### 0. 前提说明
**本文假设读者已具备一定的 Docker 基础知识。若您对 Docker 不熟悉,建议先参考相关教程或文档进行学习,或选择使用 [📦Linux手动部署指南](./manual_deploy_linux.md) 或 [📦Windows手动部署指南](./manual_deploy_windows.md) 。**
### 1. 获取Docker配置文件
- 建议先单独创建好一个文件夹并进入,作为工作目录
```bash
wget https://raw.githubusercontent.com/SengokuCola/MaiMBot/main/docker-compose.yml -O docker-compose.yml
```
- 若需要启用MongoDB数据库的用户名和密码可进入docker-compose.yml取消MongoDB处的注释并修改变量旁 `=` 后方的值为你的用户名和密码\
修改后请注意在之后配置 `.env` 文件时指定MongoDB数据库的用户名密码
### 2. 启动服务
- **!!! 请在第一次启动前确保当前工作目录下 `.env``bot_config.toml` 文件存在 !!!**\
由于Docker文件映射行为的特殊性若宿主机的映射路径不存在可能导致意外的目录创建而不会创建文件由于此处需要文件映射到文件需提前确保文件存在且路径正确可使用如下命令:
```bash
touch .env
touch bot_config.toml
```
- 启动Docker容器:
```bash
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose up -d
# 旧版Docker中可能找不到docker compose请使用docker-compose工具替代
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker-compose up -d
```
### 3. 修改配置并重启Docker
- 请前往 [🎀 新手配置指南](./installation_cute.md) 或 [⚙️ 标准配置指南](./installation_standard.md) 完成`.env``bot_config.toml`配置文件的编写\
**需要注意`.env`中HOST处IP的填写Docker中部署和系统中直接安装的配置会有所不同**
- 重启Docker容器:
```bash
docker restart maimbot # 若修改过容器名称则替换maimbot为你自定的名称
```
- 下方命令可以但不推荐只是同时重启NapCat、MongoDB、MaiMBot三个服务
```bash
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
# 旧版Docker中可能找不到docker compose请使用docker-compose工具替代
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker-compose restart
```
### 4. 登入NapCat管理页添加反向WebSocket
- 在浏览器地址栏输入 `http://<宿主机IP>:6099/` 进入NapCat的管理Web页添加一个Websocket客户端
> 网络配置 -> 新建 -> Websocket客户端
- Websocket客户端的名称自定URL栏填入 `ws://maimbot:8080/onebot/v11/ws`,启用并保存即可\
(若修改过容器名称则替换maimbot为你自定的名称)
### 5. 部署完成,愉快地和麦麦对话吧!
### 6. 更新镜像与容器
- 拉取最新镜像
```bash
docker-compose pull
```
- 执行启动容器指令,该指令会自动重建镜像有更新的容器并启动
```bash
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose up -d
# 旧版Docker中可能找不到docker compose请使用docker-compose工具替代
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker-compose up -d
```
## ⚠️ 注意事项
- 目前部署方案仍在测试中,可能存在未知问题
- 配置文件中的API密钥请妥善保管不要泄露
- 建议先在测试环境中运行,确认无误后再部署到生产环境

View File

@@ -1,289 +0,0 @@
## 快速更新Q&A❓
- 这个文件用来记录一些常见的新手问题。
### 完整安装教程
[MaiMbot简易配置教程](https://www.bilibili.com/video/BV1zsQ5YCEE6)
### Api相关问题
- 为什么显示:"缺失必要的API KEY" ❓
<img src="./pic/API_KEY.png" width=650>
>你需要在 [Silicon Flow Api](https://cloud.siliconflow.cn/account/ak) 网站上注册一个账号然后点击这个链接打开API KEY获取页面。
>
>点击 "新建API密钥" 按钮新建一个给MaiMBot使用的API KEY。不要忘了点击复制。
>
>之后打开MaiMBot在你电脑上的文件根目录使用记事本或者其他文本编辑器打开 [.env](../.env)
>这个文件。把你刚才复制的API KEY填入到 `SILICONFLOW_KEY=` 这个等号的右边。
>
>在默认情况下MaiMBot使用的默认Api都是硅基流动的。
---
- 我想使用硅基流动之外的Api网站我应该怎么做 ❓
>你需要使用记事本或者其他文本编辑器打开config目录下的 [bot_config.toml](../config/bot_config.toml)
>
>然后修改其中的 `provider = ` 字段。同时不要忘记模仿 [.env](../.env) 文件的写法添加 Api Key 和 Base URL。
>
>举个例子,如果你写了 `provider = "ABC"`,那你需要相应的在 [.env](../.env) 文件里添加形如 `ABC_BASE_URL = https://api.abc.com/v1` 和 `ABC_KEY = sk-1145141919810` 的字段。
>
>**如果你对AI模型没有较深的了解修改识图模型和嵌入模型的provider字段可能会产生bug因为你从Api网站调用了一个并不存在的模型**
>
>这个时候,你需要把字段的值改回 `provider = "SILICONFLOW"` 以此解决此问题。
### MongoDB相关问题
- 我应该怎么清空bot内存储的表情包 ❓
>需要先安装`MongoDB Compass`[下载链接](https://www.mongodb.com/try/download/compass),软件支持`macOS、Windows、Ubuntu、Redhat`系统
>以Windows为例保持如图所示选项点击`Download`即可,如果是其他系统,请在`Platform`中自行选择:
><img src="./pic/compass_downloadguide.png" width=400>
>打开你的MongoDB Compass软件你会在左上角看到这样的一个界面
>
><img src="./pic/MONGO_DB_0.png" width=250>
>
><br>
>
>点击 "CONNECT" 之后,点击展开 MegBot 标签栏
>
><img src="./pic/MONGO_DB_1.png" width=250>
>
><br>
>
>点进 "emoji" 再点击 "DELETE" 删掉所有条目,如图所示
>
><img src="./pic/MONGO_DB_2.png" width=450>
>
><br>
>
>你可以用类似的方式手动清空MaiMBot的所有服务器数据。
>
>MaiMBot的所有图片均储存在 [data](../data) 文件夹内,按类型分为 [emoji](../data/emoji) 和 [image](../data/image)
>
>在删除服务器数据时不要忘记清空这些图片。
---
- 为什么我连接不上MongoDB服务器 ❓
>这个问题比较复杂,但是你可以按照下面的步骤检查,看看具体是什么问题
>#### Windows
> 1. 检查有没有把 mongod.exe 所在的目录添加到 path。 具体可参照
>
>&emsp;&emsp;[CSDN-windows10设置环境变量Path详细步骤](https://blog.csdn.net/flame_007/article/details/106401215)
>
>&emsp;&emsp;**需要往path里填入的是 exe 所在的完整目录!不带 exe 本体**
>
><br>
>
> 2. 环境变量添加完之后,可以按下`WIN+R`,在弹出的小框中输入`powershell`回车进入到powershell界面后输入`mongod --version`如果有输出信息,就说明你的环境变量添加成功了。
> 接下来,直接输入`mongod --port 27017`命令(`--port`指定了端口,方便在可视化界面中连接),如果连不上,很大可能会出现
>```shell
>"error":"NonExistentPath: Data directory \\data\\db not found. Create the missing directory or specify another path using (1) the --dbpath command line option, or (2) by adding the 'storage.dbPath' option in the configuration file."
>```
>这是因为你的C盘下没有`data\db`文件夹mongo不知道将数据库文件存放在哪不过不建议在C盘中添加,因为这样你的C盘负担会很大可以通过`mongod --dbpath=PATH --port 27017`来执行,将`PATH`替换成你的自定义文件夹但是不要放在mongodb的bin文件夹下例如你可以在D盘中创建一个mongodata文件夹然后命令这样写
>```shell
>mongod --dbpath=D:\mongodata --port 27017
>```
>
>如果还是不行有可能是因为你的27017端口被占用了
>通过命令
>```shell
> netstat -ano | findstr :27017
>```
>可以查看当前端口是否被占用,如果有输出,其一般的格式是这样的
>```shell
> TCP 127.0.0.1:27017 0.0.0.0:0 LISTENING 5764
> TCP 127.0.0.1:27017 127.0.0.1:63387 ESTABLISHED 5764
> TCP 127.0.0.1:27017 127.0.0.1:63388 ESTABLISHED 5764
> TCP 127.0.0.1:27017 127.0.0.1:63389 ESTABLISHED 5764
>```
>最后那个数字就是PID,通过以下命令查看是哪些进程正在占用
>```shell
>tasklist /FI "PID eq 5764"
>```
>如果是无关紧要的进程,可以通过`taskkill`命令关闭掉它,例如`Taskkill /F /PID 5764`
>
>如果你对命令行实在不熟悉,可以通过`Ctrl+Shift+Esc`调出任务管理器在搜索框中输入PID也可以找到相应的进程。
>
>如果你害怕关掉重要进程,可以修改`.env.dev`中的`MONGODB_PORT`为其它值,并在启动时同时修改`--port`参数为一样的值
>```ini
>MONGODB_HOST=127.0.0.1
>MONGODB_PORT=27017 #修改这里
>DATABASE_NAME=MegBot
>```
<details>
<summary>Linux点击展开</summary>
#### **1. 检查 MongoDB 服务是否运行**
- **命令**
```bash
systemctl status mongod # 检查服务状态Ubuntu/Debian/CentOS 7+
service mongod status # 旧版系统(如 CentOS 6
```
- **可能结果**
- 如果显示 `active (running)`,服务已启动。
- 如果未运行,启动服务:
```bash
sudo systemctl start mongod # 启动服务
sudo systemctl enable mongod # 设置开机自启
```
---
#### **2. 检查 MongoDB 端口监听**
MongoDB 默认使用 **27017** 端口。
- **检查端口是否被监听**
```bash
sudo ss -tulnp | grep 27017
sudo netstat -tulnp | grep 27017
```
- **预期结果**
```bash
tcp LISTEN 0 128 0.0.0.0:27017 0.0.0.0:* users:(("mongod",pid=123,fd=11))
```
- 如果无输出,说明 MongoDB 未监听端口。
---
#### **3. 检查防火墙设置**
- **Ubuntu/DebianUFW 防火墙)**
```bash
sudo ufw status # 查看防火墙状态
sudo ufw allow 27017/tcp # 开放 27017 端口
sudo ufw reload # 重新加载规则
```
- **CentOS/RHELfirewalld**
```bash
sudo firewall-cmd --list-ports # 查看已开放端口
sudo firewall-cmd --add-port=27017/tcp --permanent # 永久开放端口
sudo firewall-cmd --reload # 重新加载
```
- **云服务器用户注意**:检查云平台安全组规则,确保放行 27017 端口。
---
#### **4. 检查端口占用**
如果 MongoDB 服务无法监听端口,可能是其他进程占用了 `27017` 端口。
- **检查端口占用进程**
```bash
sudo lsof -i :27017 # 查看占用 27017 端口的进程
sudo ss -ltnp 'sport = :27017' # 使用 ss 过滤端口
```
- **结果示例**
```bash
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
java 1234 root 12u IPv4 123456 0t0 TCP *:27017 (LISTEN)
```
- 输出会显示占用端口的 **进程名** 和 **PID**(此处 `PID=1234`)。
- **解决方案**
1. **终止占用进程**(谨慎操作!确保进程非关键):
```bash
sudo kill 1234 # 正常终止进程
sudo kill -9 1234 # 强制终止(若正常终止无效)
```
2. **修改端口**
编辑麦麦目录里的`.env.dev`文件,修改端口号:
```ini
MONGODB_HOST=127.0.0.1
MONGODB_PORT=27017 #修改这里
DATABASE_NAME=MegBot
```
##### **注意事项**
- 终止进程前,务必确认该进程非系统关键服务(如未知进程占用,建议先排查来源),如果你不知道这个进程是否关键,请更改端口使用。
</details>
<details>
<summary>macOS点击展开</summary>
### **1. 检查 MongoDB 服务状态**
**问题原因**MongoDB 服务未启动
**操作步骤**
```bash
# 查看 MongoDB 是否正在运行Homebrew 安装的默认服务名)
brew services list | grep mongodb
# 如果状态为 "stopped" 或 "error",手动启动
brew services start mongodb-community@8.0
```
✅ **预期结果**:输出显示 `started` 或 `running`
❌ **失败处理**
- 若报错 `unrecognized service`,可能未正确安装 MongoDB建议[重新安装](https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-os-x/#install-mongodb-community-edition)。
---
### **2. 检查端口是否被占用**
**问题原因**:其他程序占用了 MongoDB 的默认端口(`27017`),导致服务无法启动或连接
**操作步骤**
```bash
# 检查 27017 端口占用情况(需 sudo 权限查看完整信息)
sudo lsof -i :27017
# 或使用 netstat 快速检测
netstat -an | grep 27017
```
✅ **预期结果**
- 若无 MongoDB 运行,应无输出
- 若 MongoDB 已启动,应显示 `mongod` 进程
❌ **发现端口被占用**
#### **解决方案1终止占用进程**
1. 从 `lsof` 输出中找到占用端口的 **PID**(进程号)
2. 强制终止该进程(谨慎操作!确保进程非关键):
```bash
kill -9 PID # 替换 PID 为实际数字(例如 kill -9 12345
```
3. 重新启动 MongoDB 服务:
```bash
brew services start mongodb-community@8.0
```
#### **解决方案2修改端口**
编辑麦麦目录里的`.env.dev`文件,修改端口号:
```ini
MONGODB_HOST=127.0.0.1
MONGODB_PORT=27017 #修改这里
DATABASE_NAME=MegBot
```
---
### **3. 检查防火墙设置**
**问题原因**macOS 防火墙阻止连接
**操作步骤**
1. 打开 **系统设置 > 隐私与安全性 > 防火墙**
2. 临时关闭防火墙测试连接
3. 若需长期开放,添加 MongoDB 到防火墙允许列表(通过终端或 GUI
---
### **4. 重置 MongoDB 环境**
***仅在以上步骤都无效时使用***
**适用场景**:配置混乱导致无法修复
```bash
# 停止服务并删除数据
brew services stop mongodb-community@8.0
rm -rf /usr/local/var/mongodb
# 重新初始化(确保目录权限)
sudo mkdir -p /usr/local/var/mongodb
sudo chown -R $(whoami) /usr/local/var/mongodb
# 重新启动
brew services start mongodb-community@8.0
```
</details>

View File

@@ -1,226 +0,0 @@
# 🔧 配置指南 喵~
## 👋 你好呀
让咱来告诉你我们要做什么喵:
1. 我们要一起设置一个可爱的AI机器人
2. 这个机器人可以在QQ上陪你聊天玩耍哦
3. 需要设置两个文件才能让机器人工作呢
## 📝 需要设置的文件喵
要设置这两个文件才能让机器人跑起来哦:
1. `.env` - 这个文件告诉机器人要用哪些AI服务呢
2. `bot_config.toml` - 这个文件教机器人怎么和你聊天喵
## 🔑 密钥和域名的对应关系
想象一下,你要进入一个游乐园,需要:
1. 知道游乐园的地址(这就是域名 base_url
2. 有入场的门票(这就是密钥 key
`.env` 文件里,我们定义了三个游乐园的地址和门票喵:
```ini
# 硅基流动游乐园
SILICONFLOW_KEY=your_key # 硅基流动的门票
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/ # 硅基流动的地址
# DeepSeek游乐园
DEEP_SEEK_KEY=your_key # DeepSeek的门票
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1 # DeepSeek的地址
# ChatAnyWhere游乐园
CHAT_ANY_WHERE_KEY=your_key # ChatAnyWhere的门票
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1 # ChatAnyWhere的地址
```
然后在 `bot_config.toml` 里,机器人会用这些门票和地址去游乐园玩耍:
```toml
[model.llm_reasoning]
name = "Pro/deepseek-ai/DeepSeek-R1"
provider = "SILICONFLOW" # 告诉机器人:去硅基流动游乐园玩,机器人会自动用硅基流动的门票进去
[model.llm_normal]
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW" # 还是去硅基流动游乐园
```
### 🎪 举个例子喵
如果你想用DeepSeek官方的服务就要这样改
```toml
[model.llm_reasoning]
name = "deepseek-reasoner" # 改成对应的模型名称这里为DeepseekR1
provider = "DEEP_SEEK" # 改成去DeepSeek游乐园
[model.llm_normal]
name = "deepseek-chat" # 改成对应的模型名称这里为DeepseekV3
provider = "DEEP_SEEK" # 也去DeepSeek游乐园
```
### 🎯 简单来说
- `.env` 文件就像是你的票夹,存放着各个游乐园的门票和地址
- `bot_config.toml` 就是告诉机器人:用哪张票去哪个游乐园玩
- 所有模型都可以用同一个游乐园的票,也可以去不同的游乐园玩耍
- 如果用硅基流动的服务,就保持默认配置不用改呢~
记住门票key要保管好不能给别人看哦不然别人就可以用你的票去玩了喵
## ---让我们开始吧---
### 第一个文件:环境配置 (.env)
这个文件就像是机器人的"身份证"呢告诉它要用哪些AI服务喵~
```ini
# 这些是AI服务的密钥就像是魔法钥匙一样呢
# 要把 your_key 换成真正的密钥才行喵
# 比如说SILICONFLOW_KEY=sk-123456789abcdef
SILICONFLOW_KEY=your_key
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
DEEP_SEEK_KEY=your_key
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
CHAT_ANY_WHERE_KEY=your_key
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
# 如果你不知道这是什么,那么下面这些不用改,保持原样就好啦
# 如果使用Docker部署需要改成0.0.0.0喵,不然听不见群友讲话了喵
HOST=127.0.0.1
PORT=8080
# 这些是数据库设置,一般也不用改呢
# 如果使用Docker部署需要把MONGODB_HOST改成数据库容器的名字喵默认是mongodb喵
MONGODB_HOST=127.0.0.1
MONGODB_PORT=27017
DATABASE_NAME=MegBot
# 数据库认证信息,如果需要认证就取消注释并填写下面三行喵
# MONGODB_USERNAME = ""
# MONGODB_PASSWORD = ""
# MONGODB_AUTH_SOURCE = ""
# 也可以使用URI连接数据库取消注释填写在下面这行喵URI的优先级比上面的高
# MONGODB_URI=mongodb://127.0.0.1:27017/MegBot
# 这里是机器人的插件列表呢
PLUGINS=["src2.plugins.chat"]
```
### 第二个文件:机器人配置 (bot_config.toml)
这个文件就像是教机器人"如何说话"的魔法书呢!
```toml
[bot]
qq = "把这里改成你的机器人QQ号喵" # 填写你的机器人QQ号
nickname = "麦麦" # 机器人的名字你可以改成你喜欢的任何名字哦建议和机器人QQ名称/群昵称一样哦
alias_names = ["小麦", "阿麦"] # 也可以用这个招呼机器人,可以不设置呢
[personality]
# 这里可以设置机器人的性格呢,让它更有趣一些喵
prompt_personality = [
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧", # 贴吧风格的性格
"是一个女大学生,你有黑色头发,你会刷小红书" # 小红书风格的性格
]
prompt_schedule = "一个曾经学习地质,现在学习心理学和脑科学的女大学生喜欢刷qq贴吧知乎和小红书" # 用来提示机器人每天干什么的提示词喵
[message]
min_text_length = 2 # 机器人每次至少要说几个字呢
max_context_size = 15 # 机器人能记住多少条消息喵
emoji_chance = 0.2 # 机器人使用表情的概率哦0.2就是20%的机会呢)
thinking_timeout = 120 # 机器人思考时间,时间越长能思考的时间越多,但是不要太长喵
response_willing_amplifier = 1 # 机器人回复意愿放大系数,增大会让他更愿意聊天喵
response_interested_rate_amplifier = 1 # 机器人回复兴趣度放大系数,听到记忆里的内容时意愿的放大系数喵
down_frequency_rate = 3.5 # 降低回复频率的群组回复意愿降低系数
ban_words = ["脏话", "不文明用语"] # 在这里填写不让机器人说的词,要用英文逗号隔开,每个词都要用英文双引号括起来喵
[emoji]
auto_save = true # 是否自动保存看到的表情包呢
enable_check = false # 是否要检查表情包是不是合适的喵
check_prompt = "符合公序良俗" # 检查表情包的标准呢
[others]
enable_kuuki_read = true # 让机器人能够"察言观色"喵
enable_friend_chat = false # 是否启用好友聊天喵
[groups]
talk_allowed = [123456, 789012] # 比如让机器人在群123456和789012里说话
talk_frequency_down = [345678] # 比如在群345678里少说点话
ban_user_id = [111222] # 比如不回复QQ号为111222的人的消息
# 模型配置部分的详细说明喵~
#下面的模型若使用硅基流动则不需要更改使用ds官方则改成在.env自己指定的密钥和域名使用自定义模型则选择定位相似的模型自己填写
[model.llm_reasoning] #推理模型R1用来理解和思考的喵
name = "Pro/deepseek-ai/DeepSeek-R1" # 模型名字
# name = "Qwen/QwQ-32B" # 如果想用千问模型,可以把上面那行注释掉,用这个呢
provider = "SILICONFLOW" # 使用在.env里设置的宏也就是去掉"_BASE_URL"留下来的字喵
[model.llm_reasoning_minor] #R1蒸馏模型是个轻量版的推理模型喵
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
provider = "SILICONFLOW"
[model.llm_normal] #V3模型用来日常聊天的喵
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
[model.llm_normal_minor] #V2.5模型是V3的前代版本呢
name = "deepseek-ai/DeepSeek-V2.5"
provider = "SILICONFLOW"
[model.vlm] #图像识别模型,让机器人能看懂图片喵
name = "deepseek-ai/deepseek-vl2"
provider = "SILICONFLOW"
[model.embedding] #嵌入模型,帮助机器人理解文本的相似度呢
name = "BAAI/bge-m3"
provider = "SILICONFLOW"
# 如果选择了llm方式提取主题就用这个模型配置喵
[topic.llm_topic]
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
```
## 💡 模型配置说明喵
1. **关于模型服务**
- 如果你用硅基流动的服务,这些配置都不用改呢
- 如果用DeepSeek官方API要把provider改成你在.env里设置的宏喵
- 如果要用自定义模型,选择一个相似功能的模型配置来改呢
2. **主要模型功能**
- `llm_reasoning`: 负责思考和推理的大脑喵
- `llm_normal`: 负责日常聊天的嘴巴呢
- `vlm`: 负责看图片的眼睛哦
- `embedding`: 负责理解文字含义的理解力喵
- `topic`: 负责理解对话主题的能力呢
## 🌟 小提示
- 如果你刚开始使用,建议保持默认配置呢
- 不同的模型有不同的特长,可以根据需要调整它们的使用比例哦
## 🌟 小贴士喵
- 记得要好好保管密钥key不要告诉别人呢
- 配置文件要小心修改,改错了机器人可能就不能和你玩了喵
- 如果想让机器人更聪明,可以调整 personality 里的设置呢
- 不想让机器人说某些话,就把那些词放在 ban_words 里面喵
- QQ群号和QQ号都要用数字填写不要加引号哦除了机器人自己的QQ号
## ⚠️ 注意事项
- 这个机器人还在测试中呢,可能会有一些小问题喵
- 如果不知道怎么改某个设置,就保持原样不要动它哦~
- 记得要先有AI服务的密钥不然机器人就不能和你说话了呢
- 修改完配置后要重启机器人才能生效喵~

View File

@@ -1,165 +0,0 @@
# 🔧 配置指南
## 简介
本项目需要配置两个主要文件:
1. `.env` - 配置API服务和系统环境
2. `bot_config.toml` - 配置机器人行为和模型
## API配置说明
`.env``bot_config.toml` 中的API配置关系如下
### 在.env中定义API凭证
```ini
# API凭证配置
SILICONFLOW_KEY=your_key # 硅基流动API密钥
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/ # 硅基流动API地址
DEEP_SEEK_KEY=your_key # DeepSeek API密钥
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1 # DeepSeek API地址
CHAT_ANY_WHERE_KEY=your_key # ChatAnyWhere API密钥
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1 # ChatAnyWhere API地址
```
### 在bot_config.toml中引用API凭证
```toml
[model.llm_reasoning]
name = "Pro/deepseek-ai/DeepSeek-R1"
provider = "SILICONFLOW" # 引用.env中定义的宏
```
如需切换到其他API服务只需修改引用
```toml
[model.llm_reasoning]
name = "deepseek-reasoner" # 改成对应的模型名称这里为DeepseekR1
provider = "DEEP_SEEK" # 使用DeepSeek密钥
```
## 配置文件详解
### 环境配置文件 (.env)
```ini
# API配置
SILICONFLOW_KEY=your_key
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
DEEP_SEEK_KEY=your_key
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
CHAT_ANY_WHERE_KEY=your_key
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
# 服务配置
HOST=127.0.0.1 # 如果使用Docker部署需要改成0.0.0.0否则QQ消息无法传入
PORT=8080 # 与反向端口相同
# 数据库配置
MONGODB_HOST=127.0.0.1 # 如果使用Docker部署需要改成数据库容器的名字默认是mongodb
MONGODB_PORT=27017 # MongoDB端口
DATABASE_NAME=MegBot
# 数据库认证信息,如果需要认证就取消注释并填写下面三行
# MONGODB_USERNAME = ""
# MONGODB_PASSWORD = ""
# MONGODB_AUTH_SOURCE = ""
# 也可以使用URI连接数据库取消注释填写在下面这行URI的优先级比上面的高
# MONGODB_URI=mongodb://127.0.0.1:27017/MegBot
# 插件配置
PLUGINS=["src2.plugins.chat"]
```
### 机器人配置文件 (bot_config.toml)
```toml
[bot]
qq = "机器人QQ号" # 机器人的QQ号必填
nickname = "麦麦" # 机器人昵称
# alias_names: 配置机器人可使用的别名。当机器人在群聊或对话中被调用时,别名可以作为直接命令或提及机器人的关键字使用。
# 该配置项为字符串数组。例如: ["小麦", "阿麦"]
alias_names = ["小麦", "阿麦"] # 机器人别名
[personality]
prompt_personality = [
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧",
"是一个女大学生,你有黑色头发,你会刷小红书"
] # 人格提示词
prompt_schedule = "一个曾经学习地质,现在学习心理学和脑科学的女大学生喜欢刷qq贴吧知乎和小红书" # 日程生成提示词
[message]
min_text_length = 2 # 最小回复长度
max_context_size = 15 # 上下文记忆条数
emoji_chance = 0.2 # 表情使用概率
thinking_timeout = 120 # 机器人思考时间,时间越长能思考的时间越多,但是不要太长
response_willing_amplifier = 1 # 机器人回复意愿放大系数,增大会更愿意聊天
response_interested_rate_amplifier = 1 # 机器人回复兴趣度放大系数,听到记忆里的内容时意愿的放大系数
down_frequency_rate = 3.5 # 降低回复频率的群组回复意愿降低系数
ban_words = [] # 禁用词列表
[emoji]
auto_save = true # 自动保存表情
enable_check = false # 启用表情审核
check_prompt = "符合公序良俗"
[groups]
talk_allowed = [] # 允许对话的群号
talk_frequency_down = [] # 降低回复频率的群号
ban_user_id = [] # 禁止回复的用户QQ号
[others]
enable_kuuki_read = true # 是否启用读空气功能
enable_friend_chat = false # 是否启用好友聊天
# 模型配置
[model.llm_reasoning] # 推理模型
name = "Pro/deepseek-ai/DeepSeek-R1"
provider = "SILICONFLOW"
[model.llm_reasoning_minor] # 轻量推理模型
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
provider = "SILICONFLOW"
[model.llm_normal] # 对话模型
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
[model.llm_normal_minor] # 备用对话模型
name = "deepseek-ai/DeepSeek-V2.5"
provider = "SILICONFLOW"
[model.vlm] # 图像识别模型
name = "deepseek-ai/deepseek-vl2"
provider = "SILICONFLOW"
[model.embedding] # 文本向量模型
name = "BAAI/bge-m3"
provider = "SILICONFLOW"
[topic.llm_topic]
name = "Pro/deepseek-ai/DeepSeek-V3"
provider = "SILICONFLOW"
```
## 注意事项
1. API密钥安全
- 妥善保管API密钥
- 不要将含有密钥的配置文件上传至公开仓库
2. 配置修改:
- 修改配置后需重启服务
- 使用默认服务(硅基流动)时无需修改模型配置
- QQ号和群号使用数字格式(机器人QQ号除外)
3. 其他说明:
- 项目处于测试阶段,可能存在未知问题
- 建议初次使用保持默认配置

View File

@@ -1,331 +0,0 @@
# 面向纯新手的Linux服务器麦麦部署指南
## 事前准备
为了能使麦麦不间断的运行,你需要一台一直开着的服务器。
### 如果你想购买服务器
华为云、阿里云、腾讯云等等都是在国内可以选择的选择。
租一台最低配置的就足敷需要了,按月租大概十几块钱就能租到了。
### 如果你不想购买服务器
你可以准备一台可以一直开着的电脑/主机,只需要保证能够正常访问互联网即可
**下文将统称它们为`服务器`**
我们假设你已经有了一台Linux架构的服务器。举例使用的是Ubuntu24.04,其他的原理相似。
## 0.我们就从零开始吧
### 网络问题
为访问Github相关界面推荐去下一款加速器新手可以试试[Watt Toolkit](https://gitee.com/rmbgame/SteamTools/releases/latest)。
### 安装包下载
#### MongoDB
进入[MongoDB下载页](https://www.mongodb.com/try/download/community-kubernetes-operator),并选择版本
以Ubuntu24.04 x86为例保持如图所示选项点击`Download`即可,如果是其他系统,请在`Platform`中自行选择:
![](./pic/MongoDB_Ubuntu_guide.png)
不想使用上述方式?你也可以参考[官方文档](https://www.mongodb.com/zh-cn/docs/manual/administration/install-on-linux/#std-label-install-mdb-community-edition-linux)进行安装,进入后选择自己的系统版本即可
#### QQ可选/Napcat
*如果你使用Napcat的脚本安装可以忽略此步*
访问https://github.com/NapNeko/NapCatQQ/releases/latest
在图中所示区域可以找到QQ的下载链接选择对应版本下载即可
从这里下载可以保证你下载到的QQ版本兼容最新版Napcat
![](./pic/QQ_Download_guide_Linux.png)
如果你不想使用Napcat的脚本安装还需参考[Napcat-Linux手动安装](https://www.napcat.wiki/guide/boot/Shell-Linux-SemiAuto)
#### 麦麦
先打开https://github.com/MaiM-with-u/MaiBot/releases
往下滑找到这个
![下载指引](./pic/linux_beginner_downloadguide.png "")
下载箭头所指这个压缩包。
### 路径
我把麦麦相关文件放在了/moi/mai里面你可以凭喜好更改记得适当调整下面涉及到的部分即可。
文件结构:
```
moi
└─ mai
├─ linuxqq_3.2.16-32793_amd64.deb # linuxqq安装包
├─ mongodb-org-server_8.0.5_amd64.deb # MongoDB的安装包
└─ bot
└─ MaiMBot-0.5.8-alpha.zip # 麦麦的压缩包
```
### 网络
你可以在你的服务器控制台网页更改防火墙规则允许6099808027017这几个端口的出入。
## 1.正式开始!
远程连接你的服务器你会看到一个黑框框闪着白方格这就是我们要进行设置的场所——终端了。以下的bash命令都是在这里输入。
## 2. Python的安装
- 导入 Python 的稳定版 PPAUbuntu需执行此步Debian可忽略
```bash
sudo add-apt-repository ppa:deadsnakes/ppa
```
- 导入 PPA 后,更新 APT 缓存:
```bash
sudo apt update
```
- 在「终端」中执行以下命令来安装 Python 3.12
```bash
sudo apt install python3.12
```
- 验证安装是否成功:
```bash
python3.12 --version
```
- (可选)更新替代方案,设置 python3.12 为默认的 python3 版本:
```bash
sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.12 1
sudo update-alternatives --config python3
```
- 在「终端」中,执行以下命令安装 pip
```bash
sudo apt install python3-pip
```
- 检查Pip是否安装成功
```bash
pip --version
```
- 安装必要组件
``` bash
sudo apt install python-is-python3
```
## 3.MongoDB的安装
*如果你是参考[官方文档](https://www.mongodb.com/zh-cn/docs/manual/administration/install-on-linux/#std-label-install-mdb-community-edition-linux)进行安装的,可跳过此步*
``` bash
cd /moi/mai
```
``` bash
dpkg -i mongodb-org-server_8.0.5_amd64.deb
```
``` bash
mkdir -p /root/data/mongodb/{data,log}
```
## 4.MongoDB的运行
```bash
service mongod start
```
```bash
systemctl status mongod #通过这条指令检查运行状态
```
有需要的话可以把这个服务注册成开机自启
```bash
sudo systemctl enable mongod
```
## 5.Napcat的安装
``` bash
# 该脚本适用于支持Ubuntu 20+/Debian 10+/Centos9
curl -o napcat.sh https://nclatest.znin.net/NapNeko/NapCat-Installer/main/script/install.sh && sudo bash napcat.sh
```
执行后脚本会自动帮你部署好QQ及Napcat
*注如果你已经手动安装了Napcat和QQ可忽略此步*
成功的标志是输入``` napcat ```出来炫酷的彩虹色界面
## 6.Napcat的运行
此时你就可以根据提示在```napcat```里面登录你的QQ号了。
```bash
napcat start <你的QQ号>
napcat status #检查运行状态
```
然后你就可以登录napcat的webui进行设置了
```http://<你服务器的公网IP>:6099/webui?token=napcat```
如果你部署在自己的电脑上:
```http://127.0.0.1:6099/webui?token=napcat```
> [!WARNING]
> 如果你的麦麦部署在公网,请**务必**修改Napcat的默认密码
第一次是这个后续改了密码之后token就会对应修改。你也可以使用```napcat log <你的QQ号>```来查看webui地址。把里面的```127.0.0.1```改成<你服务器的公网IP>即可。
登录上之后在网络配置界面添加websocket客户端名称随便输一个url改成`ws://127.0.0.1:8080/onebot/v11/ws`保存之后点启用,就大功告成了。
## 7.麦麦的安装
### step 1 安装解压软件
```bash
sudo apt-get install unzip
```
### step 2 解压文件
```bash
cd /moi/mai/bot # 注意:要切换到压缩包的目录中去
unzip MaiMBot-0.5.8-alpha.zip
```
### step 3 进入虚拟环境安装库
```bash
cd /moi/mai/bot
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
```
### step 4 试运行
```bash
cd /moi/mai/bot
python -m venv venv
source venv/bin/activate
python bot.py
```
肯定运行不成功,不过你会发现结束之后多了一些文件
```
bot
├─ .env
└─ config
└─ bot_config.toml
```
你可以使用vim、nano等编辑器直接在终端里修改这些配置文件但如果你不熟悉它们的操作也可以使用带图形界面的编辑器。
如果你的麦麦部署在远程服务器,也可以把它们下载到本地改好再传上去
### step 5 文件配置
本项目需要配置两个主要文件:
1. `.env` - 配置API服务和系统环境
2. `bot_config.toml` - 配置机器人行为和模型
#### API
你可以注册一个硅基流动的账号通过邀请码注册有14块钱的免费额度https://cloud.siliconflow.cn/i/7Yld7cfg。
#### 修改配置文件
请参考
- [🎀 新手配置指南](./installation_cute.md) - 通俗易懂的配置教程,适合初次使用的猫娘
- [⚙️ 标准配置指南](./installation_standard.md) - 简明专业的配置说明,适合有经验的用户
### step 6 运行
现在再运行
```bash
cd /moi/mai/bot
python -m venv venv
source venv/bin/activate
python bot.py
```
应该就能运行成功了。
## 8.事后配置
可是现在还有个问题只要你一关闭终端bot.py就会停止运行。那该怎么办呢我们可以把bot.py注册成服务。
重启服务器打开MongoDB和napcat服务。
新建一个文件,名为`bot.service`,内容如下
```
[Unit]
Description=maimai bot
[Service]
WorkingDirectory=/moi/mai/bot
ExecStart=/moi/mai/bot/venv/bin/python /moi/mai/bot/bot.py
Restart=on-failure
User=root
[Install]
WantedBy=multi-user.target
```
里面的路径视自己的情况更改。
把它放到`/etc/systemd/system`里面。
重新加载 `systemd` 配置:
```bash
sudo systemctl daemon-reload
```
启动服务:
```bash
sudo systemctl start bot.service # 启动服务
sudo systemctl restart bot.service # 或者重启服务
```
检查服务状态:
```bash
sudo systemctl status bot.service
```
现在再关闭终端检查麦麦能不能正常回复QQ信息。如果可以的话就大功告成了
## 9.命令速查
```bash
service mongod start # 启动mongod服务
napcat start <你的QQ号> # 登录napcat
cd /moi/mai/bot # 切换路径
python -m venv venv # 创建虚拟环境
source venv/bin/activate # 激活虚拟环境
sudo systemctl daemon-reload # 重新加载systemd配置
sudo systemctl start bot.service # 启动bot服务
sudo systemctl enable bot.service # 启动bot服务
sudo systemctl status bot.service # 检查bot服务状态
```
```bash
python bot.py # 运行麦麦
```

View File

@@ -1,201 +0,0 @@
# 📦 Linux系统如何手动部署MaiMbot麦麦
## 准备工作
- 一台联网的Linux设备本教程以Ubuntu/Debian系为例
- QQ小号QQ框架的使用可能导致qq被风控严重小概率可能会导致账号封禁强烈不推荐使用大号
- 可用的大模型API
- 一个AI助手网上随便搜一家打开来用都行可以帮你解决一些不懂的问题
- 以下内容假设你对Linux系统有一定的了解如果觉得难以理解请直接用Windows系统部署[Windows系统部署指南](./manual_deploy_windows.md)或[使用Windows一键包部署](https://github.com/MaiM-with-u/MaiBot/releases/tag/EasyInstall-windows)
## 你需要知道什么?
- 如何正确向AI助手提问来学习新知识
- Python是什么
- Python的虚拟环境是什么如何创建虚拟环境
- 命令行是什么
- 数据库是什么如何安装并启动MongoDB
- 如何运行一个QQ机器人以及NapCat框架是什么
---
## 环境配置
### 1⃣ **确认Python版本**
需确保Python版本为3.9及以上
```bash
python --version
# 或
python3 --version
```
如果版本低于3.9请更新Python版本目前建议使用python3.12
```bash
# Debian
sudo apt update
sudo apt install python3.12
# Ubuntu
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt update
sudo apt install python3.12
# 执行完以上命令后建议在执行时将python3指向python3.12
# 更新替代方案,设置 python3.12 为默认的 python3 版本:
sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.12 1
sudo update-alternatives --config python3
```
建议再执行以下命令,使后续运行命令中的`python3`等同于`python`
```bash
sudo apt install python-is-python3
```
### 2⃣ **创建虚拟环境**
```bash
# 方法1使用venv(推荐)
python3 -m venv maimbot
source maimbot/bin/activate # 激活环境
# 方法2使用conda需先安装Miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
conda create -n maimbot python=3.9
conda activate maimbot
# 通过以上方法创建并进入虚拟环境后,再执行以下命令
# 安装依赖(任选一种环境)
pip install -r requirements.txt
```
---
## 数据库配置
### 3⃣ **安装并启动MongoDB**
- 安装与启动:请参考[官方文档](https://www.mongodb.com/zh-cn/docs/manual/administration/install-on-linux/#std-label-install-mdb-community-edition-linux),进入后选择自己的系统版本即可
- 默认连接本地27017端口
---
## NapCat配置
### 4⃣ **安装NapCat框架**
- 执行NapCat的Linux一键使用脚本(支持Ubuntu 20+/Debian 10+/Centos9)
```bash
curl -o napcat.sh https://nclatest.znin.net/NapNeko/NapCat-Installer/main/script/install.sh && sudo bash napcat.sh
```
- 如果你不想使用Napcat的脚本安装可参考[Napcat-Linux手动安装](https://www.napcat.wiki/guide/boot/Shell-Linux-SemiAuto)
- 使用QQ小号登录添加反向WS地址: `ws://127.0.0.1:8080/onebot/v11/ws`
---
## 配置文件设置
### 5⃣ **配置文件设置让麦麦Bot正常工作**
可先运行一次
```bash
# 在项目目录下操作
nb run
# 或
python3 bot.py
```
之后你就可以找到`.env``bot_config.toml`这两个文件了
关于文件内容的配置请参考:
- [🎀 新手配置指南](./installation_cute.md) - 通俗易懂的配置教程,适合初次使用的猫娘
- [⚙️ 标准配置指南](./installation_standard.md) - 简明专业的配置说明,适合有经验的用户
---
## 启动机器人
### 6⃣ **启动麦麦机器人**
```bash
# 在项目目录下操作
nb run
# 或
python3 bot.py
```
---
### 7⃣ **使用systemctl管理maimbot**
使用以下命令添加服务文件:
```bash
sudo nano /etc/systemd/system/maimbot.service
```
输入以下内容:
`<maimbot_directory>`你的maimbot目录
`<venv_directory>`你的venv环境就是上文创建环境后执行的代码`source maimbot/bin/activate`中source后面的路径的绝对路径
```ini
[Unit]
Description=MaiMbot 麦麦
After=network.target mongod.service
[Service]
Type=simple
WorkingDirectory=<maimbot_directory>
ExecStart=<venv_directory>/python3 bot.py
ExecStop=/bin/kill -2 $MAINPID
Restart=always
RestartSec=10s
[Install]
WantedBy=multi-user.target
```
输入以下命令重新加载systemd
```bash
sudo systemctl daemon-reload
```
启动并设置开机自启:
```bash
sudo systemctl start maimbot
sudo systemctl enable maimbot
```
输入以下命令查看日志:
```bash
sudo journalctl -xeu maimbot
```
---
## **其他组件(可选)**
- 直接运行 knowledge.py生成知识库
---
## 常见问题
🔧 权限问题:在命令前加`sudo`
🔌 端口占用:使用`sudo lsof -i :8080`查看端口占用
🛡️ 防火墙确保8080/27017端口开放
```bash
sudo ufw allow 8080/tcp
sudo ufw allow 27017/tcp
```

View File

@@ -1,201 +0,0 @@
# 📦 macOS系统手动部署MaiMbot麦麦指南
## 准备工作
- 一台搭载了macOS系统的设备macOS 12.0 或以上)
- QQ小号QQ框架的使用可能导致qq被风控严重小概率可能会导致账号封禁强烈不推荐使用大号
- Homebrew包管理器
- 如未安装你可以在https://github.com/Homebrew/brew/releases/latest 找到.pkg格式的安装包
- 可用的大模型API
- 一个AI助手网上随便搜一家打开来用都行可以帮你解决一些不懂的问题
- 以下内容假设你对macOS系统有一定的了解如果觉得难以理解请直接用Windows系统部署[Windows系统部署指南](./manual_deploy_windows.md)或[使用Windows一键包部署](https://github.com/MaiM-with-u/MaiBot/releases/tag/EasyInstall-windows)
- 终端应用iTerm2等
---
## 环境配置
### 1⃣ **Python环境配置**
```bash
# 检查Python版本macOS自带python可能为2.7
python3 --version
# 通过Homebrew安装Python
brew install python@3.12
# 设置环境变量如使用zsh
echo 'export PATH="/usr/local/opt/python@3.12/bin:$PATH"' >> ~/.zshrc
source ~/.zshrc
# 验证安装
python3 --version # 应显示3.12.x
pip3 --version # 应关联3.12版本
```
### 2⃣ **创建虚拟环境**
```bash
# 方法1使用venv推荐
python3 -m venv maimbot-venv
source maimbot-venv/bin/activate # 激活虚拟环境
# 方法2使用conda
brew install --cask miniconda
conda create -n maimbot python=3.9
conda activate maimbot # 激活虚拟环境
# 安装项目依赖
# 请确保已经进入虚拟环境再执行
pip install -r requirements.txt
```
---
## 数据库配置
### 3⃣ **安装MongoDB**
请参考[官方文档](https://www.mongodb.com/zh-cn/docs/manual/tutorial/install-mongodb-on-os-x/#install-mongodb-community-edition)
---
## NapCat
### 4⃣ **安装与配置Napcat**
- 安装
可以使用Napcat官方提供的[macOS安装工具](https://github.com/NapNeko/NapCat-Mac-Installer/releases/)
由于权限问题,补丁过程需要手动替换 package.json请注意备份原文件
- 配置
使用QQ小号登录添加反向WS地址: `ws://127.0.0.1:8080/onebot/v11/ws`
---
## 配置文件设置
### 5⃣ **生成配置文件**
可先运行一次
```bash
# 在项目目录下操作
nb run
# 或
python3 bot.py
```
之后你就可以找到`.env``bot_config.toml`这两个文件了
关于文件内容的配置请参考:
- [🎀 新手配置指南](./installation_cute.md) - 通俗易懂的配置教程,适合初次使用的猫娘
- [⚙️ 标准配置指南](./installation_standard.md) - 简明专业的配置说明,适合有经验的用户
---
## 启动机器人
### 6⃣ **启动麦麦机器人**
```bash
# 在项目目录下操作
nb run
# 或
python3 bot.py
```
## 启动管理
### 7⃣ **通过launchd管理服务**
创建plist文件
```bash
nano ~/Library/LaunchAgents/com.maimbot.plist
```
内容示例(需替换实际路径):
```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.maimbot</string>
<key>ProgramArguments</key>
<array>
<string>/path/to/maimbot-venv/bin/python</string>
<string>/path/to/MaiMbot/bot.py</string>
</array>
<key>WorkingDirectory</key>
<string>/path/to/MaiMbot</string>
<key>StandardOutPath</key>
<string>/tmp/maimbot.log</string>
<key>StandardErrorPath</key>
<string>/tmp/maimbot.err</string>
<key>RunAtLoad</key>
<true/>
<key>KeepAlive</key>
<true/>
</dict>
</plist>
```
加载服务:
```bash
launchctl load ~/Library/LaunchAgents/com.maimbot.plist
launchctl start com.maimbot
```
查看日志:
```bash
tail -f /tmp/maimbot.log
```
---
## 常见问题处理
1. **权限问题**
```bash
# 遇到文件权限错误时
chmod -R 755 ~/Documents/MaiMbot
```
2. **Python模块缺失**
```bash
# 确保在虚拟环境中
source maimbot-venv/bin/activate # 或 conda 激活
pip install --force-reinstall -r requirements.txt
```
3. **MongoDB连接失败**
```bash
# 检查服务状态
brew services list
# 重置数据库权限
mongosh --eval "db.adminCommand({setFeatureCompatibilityVersion: '5.0'})"
```
---
## 系统优化建议
1. **关闭App Nap**
```bash
# 防止系统休眠NapCat进程
defaults write NSGlobalDomain NSAppSleepDisabled -bool YES
```
2. **电源管理设置**
```bash
# 防止睡眠影响机器人运行
sudo systemsetup -setcomputersleep Never
```
---

View File

@@ -1,110 +0,0 @@
# 📦 Windows系统如何手动部署MaiMbot麦麦
## 你需要什么?
- 一台电脑,能够上网的那种
- 一个QQ小号QQ框架的使用可能导致qq被风控严重小概率可能会导致账号封禁强烈不推荐使用大号
- 可用的大模型API
- 一个AI助手网上随便搜一家打开来用都行可以帮你解决一些不懂的问题
## 你需要知道什么?
- 如何正确向AI助手提问来学习新知识
- Python是什么
- Python的虚拟环境是什么如何创建虚拟环境
- 命令行是什么
- 数据库是什么如何安装并启动MongoDB
- 如何运行一个QQ机器人以及NapCat框架是什么
## 如果准备好了,就可以开始部署了
### 1⃣ **首先我们需要安装正确版本的Python**
在创建虚拟环境之前请确保你的电脑上安装了Python 3.9及以上版本。如果没有,可以按以下步骤安装:
1. 访问Python官网下载页面<https://www.python.org/downloads/release/python-3913/>
2. 下载Windows安装程序 (64-bit): `python-3.9.13-amd64.exe`
3. 运行安装程序,并确保勾选"Add Python 3.9 to PATH"选项
4. 点击"Install Now"开始安装
或者使用PowerShell自动下载安装需要管理员权限
```powershell
# 下载并安装Python 3.9.13
$pythonUrl = "https://www.python.org/ftp/python/3.9.13/python-3.9.13-amd64.exe"
$pythonInstaller = "$env:TEMP\python-3.9.13-amd64.exe"
Invoke-WebRequest -Uri $pythonUrl -OutFile $pythonInstaller
Start-Process -Wait -FilePath $pythonInstaller -ArgumentList "/quiet", "InstallAllUsers=0", "PrependPath=1" -Verb RunAs
```
### 2⃣ **创建Python虚拟环境来运行程序**
> 你可以选择使用以下两种方法之一来创建Python环境
```bash
# ---方法1使用venvPython自带
# 在命令行中创建虚拟环境环境名为maimbot
# 这会让你在运行命令的目录下创建一个虚拟环境
# 请确保你已通过cd命令前往到了对应路径不然之后你可能找不到你的python环境
python -m venv maimbot
maimbot\\Scripts\\activate
# 安装依赖
pip install -r requirements.txt
```
```bash
# ---方法2使用conda
# 创建一个新的conda环境环境名为maimbot
# Python版本为3.9
conda create -n maimbot python=3.9
# 激活环境
conda activate maimbot
# 安装依赖
pip install -r requirements.txt
```
### 3⃣ **然后你需要启动MongoDB数据库来存储信息**
- 安装并启动MongoDB服务
- 默认连接本地27017端口
### 4⃣ **配置NapCat让麦麦bot与qq取得联系**
- 安装并登录NapCat用你的qq小号
- 添加反向WS: `ws://127.0.0.1:8080/onebot/v11/ws`
### 5⃣ **配置文件设置让麦麦Bot正常工作**
- 修改环境配置文件:`.env`
- 修改机器人配置文件:`bot_config.toml`
### 6⃣ **启动麦麦机器人**
- 打开命令行cd到对应路径
```bash
nb run
```
- 或者cd到对应路径后
```bash
python bot.py
```
### 7⃣ **其他组件(可选)**
- `run_thingking.bat`: 启动可视化推理界面(未完善)
- 直接运行 knowledge.py生成知识库

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 208 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 170 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 133 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

View File

@@ -1,68 +0,0 @@
# 群晖 NAS 部署指南
**笔者使用的是 DSM 7.2.2,其他 DSM 版本的操作可能不完全一样**
**需要使用 Container Manager群晖的部分部分入门级 NAS 可能不支持**
## 部署步骤
### 创建配置文件目录
打开 `DSM ➡️ 控制面板 ➡️ 共享文件夹`,点击 `新增` ,创建一个共享文件夹
只需要设置名称,其他设置均保持默认即可。如果你已经有 docker 专用的共享文件夹了,就跳过这一步
打开 `DSM ➡️ FileStation` 在共享文件夹中创建一个 `MaiMBot` 文件夹
### 准备配置文件
docker-compose.yml: https://github.com/SengokuCola/MaiMBot/blob/main/docker-compose.yml
下载后打开,将 `services-mongodb-image` 修改为 `mongo:4.4.24`。这是因为最新的 MongoDB 强制要求 AVX 指令集,而群晖似乎不支持这个指令集
![](./pic/synology_docker-compose.png)
bot_config.toml: https://github.com/SengokuCola/MaiMBot/blob/main/template/bot_config_template.toml
下载后,重命名为 `bot_config.toml`
打开它,按自己的需求填写配置文件
.env: https://github.com/SengokuCola/MaiMBot/blob/main/template.env
下载后,重命名为 `.env`
`HOST` 修改为 `0.0.0.0`,确保 maimbot 能被 napcat 访问
按下图修改 mongodb 设置,使用 `MONGODB_URI`
![](./pic/synology_.env.png)
`bot_config.toml``.env` 放入之前创建的 `MaiMBot`文件夹
#### 如何下载?
点这里!![](./pic/synology_how_to_download.png)
### 创建项目
打开 `DSM ➡️ ContainerManager ➡️ 项目`,点击 `新增` 创建项目,填写以下内容:
- 项目名称: `maimbot`
- 路径:之前创建的 `MaiMBot` 文件夹
- 来源: `上传 docker-compose.yml`
- 文件:之前下载的 `docker-compose.yml` 文件
图例:
![](./pic/synology_create_project.png)
一路点下一步,等待项目创建完成
### 设置 Napcat
1. 登陆 napcat
打开 napcat `http://<你的nas地址>:6099` 输入token登陆
token可以打开 `DSM ➡️ ContainerManager ➡️ 项目 ➡️ MaiMBot ➡️ 容器 ➡️ Napcat ➡️ 日志`,找到类似 `[WebUi] WebUi Local Panel Url: http://127.0.0.1:6099/webui?token=xxxx` 的日志
这个 `token=` 后面的就是你的 napcat token
2. 按提示登陆你给麦麦准备的QQ小号
3. 设置 websocket 客户端
`网络配置 -> 新建 -> Websocket客户端`名称自定URL栏填入 `ws://maimbot:8080/onebot/v11/ws`,启用并保存即可。
若修改过容器名称,则替换 `maimbot` 为你自定的名称
### 部署完成
找个群,发送 `麦麦,你在吗` 之类的
如果一切正常,应该能正常回复了