正确使用lpmm构建prompt
This commit is contained in:
@@ -12,8 +12,6 @@ import pandas as pd
|
|||||||
# import tqdm
|
# import tqdm
|
||||||
import faiss
|
import faiss
|
||||||
|
|
||||||
# from .llm_client import LLMClient
|
|
||||||
# from .lpmmconfig import global_config
|
|
||||||
from .utils.hash import get_sha256
|
from .utils.hash import get_sha256
|
||||||
from .global_logger import logger
|
from .global_logger import logger
|
||||||
from rich.traceback import install
|
from rich.traceback import install
|
||||||
|
|||||||
@@ -1,45 +0,0 @@
|
|||||||
from openai import OpenAI
|
|
||||||
|
|
||||||
|
|
||||||
class LLMMessage:
|
|
||||||
def __init__(self, role, content):
|
|
||||||
self.role = role
|
|
||||||
self.content = content
|
|
||||||
|
|
||||||
def to_dict(self):
|
|
||||||
return {"role": self.role, "content": self.content}
|
|
||||||
|
|
||||||
|
|
||||||
class LLMClient:
|
|
||||||
"""LLM客户端,对应一个API服务商"""
|
|
||||||
|
|
||||||
def __init__(self, url, api_key):
|
|
||||||
self.client = OpenAI(
|
|
||||||
base_url=url,
|
|
||||||
api_key=api_key,
|
|
||||||
)
|
|
||||||
|
|
||||||
def send_chat_request(self, model, messages):
|
|
||||||
"""发送对话请求,等待返回结果"""
|
|
||||||
response = self.client.chat.completions.create(model=model, messages=messages, stream=False)
|
|
||||||
if hasattr(response.choices[0].message, "reasoning_content"):
|
|
||||||
# 有单独的推理内容块
|
|
||||||
reasoning_content = response.choices[0].message.reasoning_content
|
|
||||||
content = response.choices[0].message.content
|
|
||||||
else:
|
|
||||||
# 无单独的推理内容块
|
|
||||||
response = response.choices[0].message.content.split("<think>")[-1].split("</think>")
|
|
||||||
# 如果有推理内容,则分割推理内容和内容
|
|
||||||
if len(response) == 2:
|
|
||||||
reasoning_content = response[0]
|
|
||||||
content = response[1]
|
|
||||||
else:
|
|
||||||
reasoning_content = None
|
|
||||||
content = response[0]
|
|
||||||
|
|
||||||
return reasoning_content, content
|
|
||||||
|
|
||||||
def send_embedding_request(self, model, text):
|
|
||||||
"""发送嵌入请求,等待返回结果"""
|
|
||||||
text = text.replace("\n", " ")
|
|
||||||
return self.client.embeddings.create(input=[text], model=model).data[0].embedding
|
|
||||||
@@ -2,11 +2,7 @@ import time
|
|||||||
from typing import Tuple, List, Dict, Optional
|
from typing import Tuple, List, Dict, Optional
|
||||||
|
|
||||||
from .global_logger import logger
|
from .global_logger import logger
|
||||||
|
|
||||||
# from . import prompt_template
|
|
||||||
from .embedding_store import EmbeddingManager
|
from .embedding_store import EmbeddingManager
|
||||||
|
|
||||||
# from .llm_client import LLMClient
|
|
||||||
from .kg_manager import KGManager
|
from .kg_manager import KGManager
|
||||||
|
|
||||||
# from .lpmmconfig import global_config
|
# from .lpmmconfig import global_config
|
||||||
|
|||||||
@@ -36,8 +36,6 @@ def init_prompt():
|
|||||||
{chat_context_description},以下是具体的聊天内容
|
{chat_context_description},以下是具体的聊天内容
|
||||||
{chat_content_block}
|
{chat_content_block}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
{moderation_prompt}
|
{moderation_prompt}
|
||||||
|
|
||||||
现在请你根据{by_what}选择合适的action和触发action的消息:
|
现在请你根据{by_what}选择合适的action和触发action的消息:
|
||||||
|
|||||||
@@ -24,13 +24,13 @@ from src.chat.utils.chat_message_builder import (
|
|||||||
replace_user_references_sync,
|
replace_user_references_sync,
|
||||||
)
|
)
|
||||||
from src.chat.express.expression_selector import expression_selector
|
from src.chat.express.expression_selector import expression_selector
|
||||||
from src.chat.knowledge.knowledge_lib import qa_manager
|
|
||||||
from src.chat.memory_system.memory_activator import MemoryActivator
|
from src.chat.memory_system.memory_activator import MemoryActivator
|
||||||
from src.chat.memory_system.instant_memory import InstantMemory
|
from src.chat.memory_system.instant_memory import InstantMemory
|
||||||
from src.mood.mood_manager import mood_manager
|
from src.mood.mood_manager import mood_manager
|
||||||
from src.person_info.relationship_fetcher import relationship_fetcher_manager
|
from src.person_info.relationship_fetcher import relationship_fetcher_manager
|
||||||
from src.person_info.person_info import get_person_info_manager
|
from src.person_info.person_info import get_person_info_manager
|
||||||
from src.plugin_system.base.component_types import ActionInfo
|
from src.plugin_system.base.component_types import ActionInfo
|
||||||
|
from src.plugin_system.apis import llm_api
|
||||||
|
|
||||||
logger = get_logger("replyer")
|
logger = get_logger("replyer")
|
||||||
|
|
||||||
@@ -102,6 +102,22 @@ def init_prompt():
|
|||||||
"s4u_style_prompt",
|
"s4u_style_prompt",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
Prompt(
|
||||||
|
"""
|
||||||
|
你是一个专门获取知识的助手。你的名字是{bot_name}。现在是{time_now}。
|
||||||
|
群里正在进行的聊天内容:
|
||||||
|
{chat_history}
|
||||||
|
|
||||||
|
现在,{sender}发送了内容:{target_message},你想要回复ta。
|
||||||
|
请仔细分析聊天内容,考虑以下几点:
|
||||||
|
1. 内容中是否包含需要查询信息的问题
|
||||||
|
2. 是否有明确的知识获取指令
|
||||||
|
|
||||||
|
If you need to use the search tool, please directly call the function "lpmm_search_knowledge". If you do not need to use any tool, simply output "No tool needed".
|
||||||
|
""",
|
||||||
|
name="lpmm_get_knowledge_prompt",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class DefaultReplyer:
|
class DefaultReplyer:
|
||||||
def __init__(
|
def __init__(
|
||||||
@@ -698,7 +714,7 @@ class DefaultReplyer:
|
|||||||
self._time_and_run_task(
|
self._time_and_run_task(
|
||||||
self.build_tool_info(chat_talking_prompt_short, reply_to, enable_tool=enable_tool), "tool_info"
|
self.build_tool_info(chat_talking_prompt_short, reply_to, enable_tool=enable_tool), "tool_info"
|
||||||
),
|
),
|
||||||
self._time_and_run_task(get_prompt_info(target, threshold=0.38), "prompt_info"),
|
self._time_and_run_task(self.get_prompt_info(chat_talking_prompt_short, reply_to), "prompt_info"),
|
||||||
)
|
)
|
||||||
|
|
||||||
# 任务名称中英文映射
|
# 任务名称中英文映射
|
||||||
@@ -1000,6 +1016,63 @@ class DefaultReplyer:
|
|||||||
logger.debug(f"replyer生成内容: {content}")
|
logger.debug(f"replyer生成内容: {content}")
|
||||||
return content, reasoning_content, model_name, tool_calls
|
return content, reasoning_content, model_name, tool_calls
|
||||||
|
|
||||||
|
async def get_prompt_info(self, message: str, reply_to: str):
|
||||||
|
related_info = ""
|
||||||
|
start_time = time.time()
|
||||||
|
from src.plugins.built_in.knowledge.lpmm_get_knowledge import SearchKnowledgeFromLPMMTool
|
||||||
|
if not reply_to:
|
||||||
|
logger.debug("没有回复对象,跳过获取知识库内容")
|
||||||
|
return ""
|
||||||
|
sender, content = self._parse_reply_target(reply_to)
|
||||||
|
if not content:
|
||||||
|
logger.debug("回复对象内容为空,跳过获取知识库内容")
|
||||||
|
return ""
|
||||||
|
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||||
|
# 从LPMM知识库获取知识
|
||||||
|
try:
|
||||||
|
# 检查LPMM知识库是否启用
|
||||||
|
if not global_config.lpmm_knowledge.enable:
|
||||||
|
logger.debug("LPMM知识库未启用,跳过获取知识库内容")
|
||||||
|
return ""
|
||||||
|
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
||||||
|
|
||||||
|
bot_name = global_config.bot.nickname
|
||||||
|
|
||||||
|
prompt = await global_prompt_manager.format_prompt(
|
||||||
|
"lpmm_get_knowledge_prompt",
|
||||||
|
bot_name=bot_name,
|
||||||
|
time_now=time_now,
|
||||||
|
chat_history=message,
|
||||||
|
sender=sender,
|
||||||
|
target_message=content,
|
||||||
|
)
|
||||||
|
_, _, _, _, tool_calls = await llm_api.generate_with_model_with_tools(
|
||||||
|
prompt,
|
||||||
|
model_config=model_config.model_task_config.tool_use,
|
||||||
|
tool_options=[SearchKnowledgeFromLPMMTool.get_tool_definition()],
|
||||||
|
)
|
||||||
|
if tool_calls:
|
||||||
|
result = await self.tool_executor.execute_tool_call(tool_calls[0], SearchKnowledgeFromLPMMTool())
|
||||||
|
end_time = time.time()
|
||||||
|
if not result or not result.get("content"):
|
||||||
|
logger.debug("从LPMM知识库获取知识失败,返回空知识...")
|
||||||
|
return ""
|
||||||
|
found_knowledge_from_lpmm = result.get("content", "")
|
||||||
|
logger.debug(
|
||||||
|
f"从LPMM知识库获取知识,相关信息:{found_knowledge_from_lpmm[:100]}...,信息长度: {len(found_knowledge_from_lpmm)}"
|
||||||
|
)
|
||||||
|
related_info += found_knowledge_from_lpmm
|
||||||
|
logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}秒")
|
||||||
|
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
|
||||||
|
|
||||||
|
return f"你有以下这些**知识**:\n{related_info}\n请你**记住上面的知识**,之后可能会用到。\n"
|
||||||
|
else:
|
||||||
|
logger.debug("从LPMM知识库获取知识失败,可能是从未导入过知识,返回空知识...")
|
||||||
|
return ""
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"获取知识库内容时发生异常: {str(e)}")
|
||||||
|
return ""
|
||||||
|
|
||||||
|
|
||||||
def weighted_sample_no_replacement(items, weights, k) -> list:
|
def weighted_sample_no_replacement(items, weights, k) -> list:
|
||||||
"""
|
"""
|
||||||
@@ -1035,36 +1108,4 @@ def weighted_sample_no_replacement(items, weights, k) -> list:
|
|||||||
return selected
|
return selected
|
||||||
|
|
||||||
|
|
||||||
async def get_prompt_info(message: str, threshold: float):
|
|
||||||
related_info = ""
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
|
||||||
# 从LPMM知识库获取知识
|
|
||||||
try:
|
|
||||||
# 检查LPMM知识库是否启用
|
|
||||||
if qa_manager is None:
|
|
||||||
logger.debug("LPMM知识库已禁用,跳过知识获取")
|
|
||||||
return ""
|
|
||||||
|
|
||||||
found_knowledge_from_lpmm = await qa_manager.get_knowledge(message)
|
|
||||||
|
|
||||||
end_time = time.time()
|
|
||||||
if found_knowledge_from_lpmm is not None:
|
|
||||||
logger.debug(
|
|
||||||
f"从LPMM知识库获取知识,相关信息:{found_knowledge_from_lpmm[:100]}...,信息长度: {len(found_knowledge_from_lpmm)}"
|
|
||||||
)
|
|
||||||
related_info += found_knowledge_from_lpmm
|
|
||||||
logger.debug(f"获取知识库内容耗时: {(end_time - start_time):.3f}秒")
|
|
||||||
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
|
|
||||||
|
|
||||||
return f"你有以下这些**知识**:\n{related_info}\n请你**记住上面的知识**,之后可能会用到。\n"
|
|
||||||
else:
|
|
||||||
logger.debug("从LPMM知识库获取知识失败,可能是从未导入过知识,返回空知识...")
|
|
||||||
return ""
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"获取知识库内容时发生异常: {str(e)}")
|
|
||||||
return ""
|
|
||||||
|
|
||||||
|
|
||||||
init_prompt()
|
init_prompt()
|
||||||
|
|||||||
@@ -281,20 +281,6 @@ class Memory(BaseModel):
|
|||||||
table_name = "memory"
|
table_name = "memory"
|
||||||
|
|
||||||
|
|
||||||
class Knowledges(BaseModel):
|
|
||||||
"""
|
|
||||||
用于存储知识库条目的模型。
|
|
||||||
"""
|
|
||||||
|
|
||||||
content = TextField() # 知识内容的文本
|
|
||||||
embedding = TextField() # 知识内容的嵌入向量,存储为 JSON 字符串的浮点数列表
|
|
||||||
# 可以添加其他元数据字段,如 source, create_time 等
|
|
||||||
|
|
||||||
class Meta:
|
|
||||||
# database = db # 继承自 BaseModel
|
|
||||||
table_name = "knowledges"
|
|
||||||
|
|
||||||
|
|
||||||
class Expression(BaseModel):
|
class Expression(BaseModel):
|
||||||
"""
|
"""
|
||||||
用于存储表达风格的模型。
|
用于存储表达风格的模型。
|
||||||
@@ -382,7 +368,6 @@ def create_tables():
|
|||||||
ImageDescriptions,
|
ImageDescriptions,
|
||||||
OnlineTime,
|
OnlineTime,
|
||||||
PersonInfo,
|
PersonInfo,
|
||||||
Knowledges,
|
|
||||||
Expression,
|
Expression,
|
||||||
ThinkingLog,
|
ThinkingLog,
|
||||||
GraphNodes, # 添加图节点表
|
GraphNodes, # 添加图节点表
|
||||||
@@ -408,7 +393,6 @@ def initialize_database():
|
|||||||
ImageDescriptions,
|
ImageDescriptions,
|
||||||
OnlineTime,
|
OnlineTime,
|
||||||
PersonInfo,
|
PersonInfo,
|
||||||
Knowledges,
|
|
||||||
Expression,
|
Expression,
|
||||||
Memory,
|
Memory,
|
||||||
ThinkingLog,
|
ThinkingLog,
|
||||||
|
|||||||
@@ -181,7 +181,8 @@ class LLMRequest:
|
|||||||
endpoint="/chat/completions",
|
endpoint="/chat/completions",
|
||||||
)
|
)
|
||||||
if not content:
|
if not content:
|
||||||
raise RuntimeError("获取LLM生成内容失败")
|
logger.warning("生成的响应为空")
|
||||||
|
content = "生成的响应为空,请检查模型配置或输入内容是否正确"
|
||||||
|
|
||||||
return content, (reasoning_content, model_info.name, tool_calls)
|
return content, (reasoning_content, model_info.name, tool_calls)
|
||||||
|
|
||||||
|
|||||||
@@ -7,8 +7,9 @@
|
|||||||
success, response, reasoning, model_name = await llm_api.generate_with_model(prompt, model_config)
|
success, response, reasoning, model_name = await llm_api.generate_with_model(prompt, model_config)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from typing import Tuple, Dict
|
from typing import Tuple, Dict, List, Any, Optional
|
||||||
from src.common.logger import get_logger
|
from src.common.logger import get_logger
|
||||||
|
from src.llm_models.payload_content.tool_option import ToolCall
|
||||||
from src.llm_models.utils_model import LLMRequest
|
from src.llm_models.utils_model import LLMRequest
|
||||||
from src.config.config import global_config, model_config
|
from src.config.config import global_config, model_config
|
||||||
from src.config.api_ada_configs import TaskConfig
|
from src.config.api_ada_configs import TaskConfig
|
||||||
@@ -52,7 +53,11 @@ def get_available_models() -> Dict[str, TaskConfig]:
|
|||||||
|
|
||||||
|
|
||||||
async def generate_with_model(
|
async def generate_with_model(
|
||||||
prompt: str, model_config: TaskConfig, request_type: str = "plugin.generate", **kwargs
|
prompt: str,
|
||||||
|
model_config: TaskConfig,
|
||||||
|
request_type: str = "plugin.generate",
|
||||||
|
temperature: Optional[float] = None,
|
||||||
|
max_tokens: Optional[int] = None,
|
||||||
) -> Tuple[bool, str, str, str]:
|
) -> Tuple[bool, str, str, str]:
|
||||||
"""使用指定模型生成内容
|
"""使用指定模型生成内容
|
||||||
|
|
||||||
@@ -60,7 +65,6 @@ async def generate_with_model(
|
|||||||
prompt: 提示词
|
prompt: 提示词
|
||||||
model_config: 模型配置(从 get_available_models 获取的模型配置)
|
model_config: 模型配置(从 get_available_models 获取的模型配置)
|
||||||
request_type: 请求类型标识
|
request_type: 请求类型标识
|
||||||
**kwargs: 其他模型特定参数,如temperature、max_tokens等
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Tuple[bool, str, str, str]: (是否成功, 生成的内容, 推理过程, 模型名称)
|
Tuple[bool, str, str, str]: (是否成功, 生成的内容, 推理过程, 模型名称)
|
||||||
@@ -70,12 +74,53 @@ async def generate_with_model(
|
|||||||
logger.info(f"[LLMAPI] 使用模型集合 {model_name_list} 生成内容")
|
logger.info(f"[LLMAPI] 使用模型集合 {model_name_list} 生成内容")
|
||||||
logger.debug(f"[LLMAPI] 完整提示词: {prompt}")
|
logger.debug(f"[LLMAPI] 完整提示词: {prompt}")
|
||||||
|
|
||||||
llm_request = LLMRequest(model_set=model_config, request_type=request_type, **kwargs)
|
llm_request = LLMRequest(model_set=model_config, request_type=request_type)
|
||||||
|
|
||||||
response, (reasoning_content, model_name, _) = await llm_request.generate_response_async(prompt)
|
response, (reasoning_content, model_name, _) = await llm_request.generate_response_async(prompt, temperature=temperature, max_tokens=max_tokens)
|
||||||
return True, response, reasoning_content, model_name
|
return True, response, reasoning_content, model_name
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
error_msg = f"生成内容时出错: {str(e)}"
|
error_msg = f"生成内容时出错: {str(e)}"
|
||||||
logger.error(f"[LLMAPI] {error_msg}")
|
logger.error(f"[LLMAPI] {error_msg}")
|
||||||
return False, error_msg, "", ""
|
return False, error_msg, "", ""
|
||||||
|
|
||||||
|
async def generate_with_model_with_tools(
|
||||||
|
prompt: str,
|
||||||
|
model_config: TaskConfig,
|
||||||
|
tool_options: List[Dict[str, Any]] | None = None,
|
||||||
|
request_type: str = "plugin.generate",
|
||||||
|
temperature: Optional[float] = None,
|
||||||
|
max_tokens: Optional[int] = None,
|
||||||
|
) -> Tuple[bool, str, str, str, List[ToolCall] | None]:
|
||||||
|
"""使用指定模型和工具生成内容
|
||||||
|
|
||||||
|
Args:
|
||||||
|
prompt: 提示词
|
||||||
|
model_config: 模型配置(从 get_available_models 获取的模型配置)
|
||||||
|
tool_options: 工具选项列表
|
||||||
|
request_type: 请求类型标识
|
||||||
|
temperature: 温度参数
|
||||||
|
max_tokens: 最大token数
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple[bool, str, str, str]: (是否成功, 生成的内容, 推理过程, 模型名称)
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
model_name_list = model_config.model_list
|
||||||
|
logger.info(f"[LLMAPI] 使用模型集合 {model_name_list} 生成内容")
|
||||||
|
logger.debug(f"[LLMAPI] 完整提示词: {prompt}")
|
||||||
|
|
||||||
|
llm_request = LLMRequest(model_set=model_config, request_type=request_type)
|
||||||
|
|
||||||
|
response, (reasoning_content, model_name, tool_call) = await llm_request.generate_response_async(
|
||||||
|
prompt,
|
||||||
|
tools=tool_options,
|
||||||
|
temperature=temperature,
|
||||||
|
max_tokens=max_tokens
|
||||||
|
)
|
||||||
|
return True, response, reasoning_content, model_name, tool_call
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
error_msg = f"生成内容时出错: {str(e)}"
|
||||||
|
logger.error(f"[LLMAPI] {error_msg}")
|
||||||
|
return False, error_msg, "", "", None
|
||||||
|
|||||||
@@ -3,10 +3,11 @@ from typing import List, Type, Tuple, Union
|
|||||||
from .plugin_base import PluginBase
|
from .plugin_base import PluginBase
|
||||||
|
|
||||||
from src.common.logger import get_logger
|
from src.common.logger import get_logger
|
||||||
from src.plugin_system.base.component_types import ActionInfo, CommandInfo, EventHandlerInfo
|
from src.plugin_system.base.component_types import ActionInfo, CommandInfo, EventHandlerInfo, ToolInfo
|
||||||
from .base_action import BaseAction
|
from .base_action import BaseAction
|
||||||
from .base_command import BaseCommand
|
from .base_command import BaseCommand
|
||||||
from .base_events_handler import BaseEventHandler
|
from .base_events_handler import BaseEventHandler
|
||||||
|
from .base_tool import BaseTool
|
||||||
|
|
||||||
logger = get_logger("base_plugin")
|
logger = get_logger("base_plugin")
|
||||||
|
|
||||||
@@ -31,6 +32,7 @@ class BasePlugin(PluginBase):
|
|||||||
Tuple[ActionInfo, Type[BaseAction]],
|
Tuple[ActionInfo, Type[BaseAction]],
|
||||||
Tuple[CommandInfo, Type[BaseCommand]],
|
Tuple[CommandInfo, Type[BaseCommand]],
|
||||||
Tuple[EventHandlerInfo, Type[BaseEventHandler]],
|
Tuple[EventHandlerInfo, Type[BaseEventHandler]],
|
||||||
|
Tuple[ToolInfo, Type[BaseTool]],
|
||||||
]
|
]
|
||||||
]:
|
]:
|
||||||
"""获取插件包含的组件列表
|
"""获取插件包含的组件列表
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import time
|
import time
|
||||||
from typing import List, Dict, Tuple, Optional, Any
|
from typing import List, Dict, Tuple, Optional, Any
|
||||||
from src.plugin_system.apis.tool_api import get_llm_available_tool_definitions, get_tool_instance
|
from src.plugin_system.apis.tool_api import get_llm_available_tool_definitions, get_tool_instance
|
||||||
|
from src.plugin_system.base.base_tool import BaseTool
|
||||||
from src.plugin_system.core.global_announcement_manager import global_announcement_manager
|
from src.plugin_system.core.global_announcement_manager import global_announcement_manager
|
||||||
from src.llm_models.utils_model import LLMRequest
|
from src.llm_models.utils_model import LLMRequest
|
||||||
from src.llm_models.payload_content import ToolCall
|
from src.llm_models.payload_content import ToolCall
|
||||||
@@ -114,7 +115,7 @@ class ToolExecutor:
|
|||||||
)
|
)
|
||||||
|
|
||||||
# 执行工具调用
|
# 执行工具调用
|
||||||
tool_results, used_tools = await self._execute_tool_calls(tool_calls)
|
tool_results, used_tools = await self.execute_tool_calls(tool_calls)
|
||||||
|
|
||||||
# 缓存结果
|
# 缓存结果
|
||||||
if tool_results:
|
if tool_results:
|
||||||
@@ -133,7 +134,7 @@ class ToolExecutor:
|
|||||||
user_disabled_tools = global_announcement_manager.get_disabled_chat_tools(self.chat_id)
|
user_disabled_tools = global_announcement_manager.get_disabled_chat_tools(self.chat_id)
|
||||||
return [definition for name, definition in all_tools if name not in user_disabled_tools]
|
return [definition for name, definition in all_tools if name not in user_disabled_tools]
|
||||||
|
|
||||||
async def _execute_tool_calls(self, tool_calls: Optional[List[ToolCall]]) -> Tuple[List[Dict[str, Any]], List[str]]:
|
async def execute_tool_calls(self, tool_calls: Optional[List[ToolCall]]) -> Tuple[List[Dict[str, Any]], List[str]]:
|
||||||
"""执行工具调用
|
"""执行工具调用
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -158,7 +159,7 @@ class ToolExecutor:
|
|||||||
logger.debug(f"{self.log_prefix}执行工具: {tool_name}")
|
logger.debug(f"{self.log_prefix}执行工具: {tool_name}")
|
||||||
|
|
||||||
# 执行工具
|
# 执行工具
|
||||||
result = await self._execute_tool_call(tool_call)
|
result = await self.execute_tool_call(tool_call)
|
||||||
|
|
||||||
if result:
|
if result:
|
||||||
tool_info = {
|
tool_info = {
|
||||||
@@ -191,7 +192,7 @@ class ToolExecutor:
|
|||||||
|
|
||||||
return tool_results, used_tools
|
return tool_results, used_tools
|
||||||
|
|
||||||
async def _execute_tool_call(self, tool_call: ToolCall) -> Optional[Dict[str, Any]]:
|
async def execute_tool_call(self, tool_call: ToolCall, tool_instance: Optional[BaseTool] = None) -> Optional[Dict[str, Any]]:
|
||||||
# sourcery skip: use-assigned-variable
|
# sourcery skip: use-assigned-variable
|
||||||
"""执行单个工具调用
|
"""执行单个工具调用
|
||||||
|
|
||||||
@@ -207,7 +208,7 @@ class ToolExecutor:
|
|||||||
function_args["llm_called"] = True # 标记为LLM调用
|
function_args["llm_called"] = True # 标记为LLM调用
|
||||||
|
|
||||||
# 获取对应工具实例
|
# 获取对应工具实例
|
||||||
tool_instance = get_tool_instance(function_name)
|
tool_instance = tool_instance or get_tool_instance(function_name)
|
||||||
if not tool_instance:
|
if not tool_instance:
|
||||||
logger.warning(f"未知工具名称: {function_name}")
|
logger.warning(f"未知工具名称: {function_name}")
|
||||||
return None
|
return None
|
||||||
@@ -294,7 +295,7 @@ class ToolExecutor:
|
|||||||
if expired_keys:
|
if expired_keys:
|
||||||
logger.debug(f"{self.log_prefix}清理了{len(expired_keys)}个过期缓存")
|
logger.debug(f"{self.log_prefix}清理了{len(expired_keys)}个过期缓存")
|
||||||
|
|
||||||
async def execute_specific_tool(self, tool_name: str, tool_args: Dict) -> Optional[Dict]:
|
async def execute_specific_tool_simple(self, tool_name: str, tool_args: Dict) -> Optional[Dict]:
|
||||||
"""直接执行指定工具
|
"""直接执行指定工具
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -314,7 +315,7 @@ class ToolExecutor:
|
|||||||
|
|
||||||
logger.info(f"{self.log_prefix}直接执行工具: {tool_name}")
|
logger.info(f"{self.log_prefix}直接执行工具: {tool_name}")
|
||||||
|
|
||||||
result = await self._execute_tool_call(tool_call)
|
result = await self.execute_tool_call(tool_call)
|
||||||
|
|
||||||
if result:
|
if result:
|
||||||
tool_info = {
|
tool_info = {
|
||||||
@@ -405,7 +406,7 @@ results, used_tools, prompt = await executor.execute_from_chat_message(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# 5. 直接执行特定工具
|
# 5. 直接执行特定工具
|
||||||
result = await executor.execute_specific_tool(
|
result = await executor.execute_specific_tool_simple(
|
||||||
tool_name="get_knowledge",
|
tool_name="get_knowledge",
|
||||||
tool_args={"query": "机器学习"}
|
tool_args={"query": "机器学习"}
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -1,131 +0,0 @@
|
|||||||
import json # Added for parsing embedding
|
|
||||||
import math # Added for cosine similarity
|
|
||||||
from typing import Any, Union, List # Added List
|
|
||||||
|
|
||||||
from src.chat.utils.utils import get_embedding
|
|
||||||
from src.common.database.database_model import Knowledges # Updated import
|
|
||||||
from src.common.logger import get_logger
|
|
||||||
from src.plugin_system import BaseTool, ToolParamType
|
|
||||||
|
|
||||||
|
|
||||||
logger = get_logger("get_knowledge_tool")
|
|
||||||
|
|
||||||
|
|
||||||
class SearchKnowledgeTool(BaseTool):
|
|
||||||
"""从知识库中搜索相关信息的工具"""
|
|
||||||
|
|
||||||
name = "search_knowledge"
|
|
||||||
description = "使用工具从知识库中搜索相关信息"
|
|
||||||
parameters = [
|
|
||||||
("query", ToolParamType.STRING, "搜索查询关键词", True, None),
|
|
||||||
("threshold", ToolParamType.FLOAT, "相似度阈值,0.0到1.0之间", False, None),
|
|
||||||
]
|
|
||||||
|
|
||||||
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
|
|
||||||
"""执行知识库搜索
|
|
||||||
|
|
||||||
Args:
|
|
||||||
function_args: 工具参数
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: 工具执行结果
|
|
||||||
"""
|
|
||||||
query = "" # Initialize query to ensure it's defined in except block
|
|
||||||
try:
|
|
||||||
query = function_args.get("query")
|
|
||||||
threshold = function_args.get("threshold", 0.4)
|
|
||||||
|
|
||||||
# 调用知识库搜索
|
|
||||||
embedding = await get_embedding(query, request_type="info_retrieval")
|
|
||||||
if embedding:
|
|
||||||
knowledge_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
|
|
||||||
if knowledge_info:
|
|
||||||
content = f"你知道这些知识: {knowledge_info}"
|
|
||||||
else:
|
|
||||||
content = f"你不太了解有关{query}的知识"
|
|
||||||
return {"type": "knowledge", "id": query, "content": content}
|
|
||||||
return {"type": "info", "id": query, "content": f"无法获取关于'{query}'的嵌入向量,你知识库炸了"}
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"知识库搜索工具执行失败: {str(e)}")
|
|
||||||
return {"type": "info", "id": query, "content": f"知识库搜索失败,炸了: {str(e)}"}
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _cosine_similarity(vec1: List[float], vec2: List[float]) -> float:
|
|
||||||
"""计算两个向量之间的余弦相似度"""
|
|
||||||
dot_product = sum(p * q for p, q in zip(vec1, vec2, strict=False))
|
|
||||||
magnitude1 = math.sqrt(sum(p * p for p in vec1))
|
|
||||||
magnitude2 = math.sqrt(sum(q * q for q in vec2))
|
|
||||||
if magnitude1 == 0 or magnitude2 == 0:
|
|
||||||
return 0.0
|
|
||||||
return dot_product / (magnitude1 * magnitude2)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def get_info_from_db(
|
|
||||||
query_embedding: list[float], limit: int = 1, threshold: float = 0.5, return_raw: bool = False
|
|
||||||
) -> Union[str, list]:
|
|
||||||
"""从数据库中获取相关信息
|
|
||||||
|
|
||||||
Args:
|
|
||||||
query_embedding: 查询的嵌入向量
|
|
||||||
limit: 最大返回结果数
|
|
||||||
threshold: 相似度阈值
|
|
||||||
return_raw: 是否返回原始结果
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Union[str, list]: 格式化的信息字符串或原始结果列表
|
|
||||||
"""
|
|
||||||
if not query_embedding:
|
|
||||||
return [] if return_raw else ""
|
|
||||||
|
|
||||||
similar_items = []
|
|
||||||
try:
|
|
||||||
all_knowledges = Knowledges.select()
|
|
||||||
for item in all_knowledges:
|
|
||||||
try:
|
|
||||||
item_embedding_str = item.embedding
|
|
||||||
if not item_embedding_str:
|
|
||||||
logger.warning(f"Knowledge item ID {item.id} has empty embedding string.")
|
|
||||||
continue
|
|
||||||
item_embedding = json.loads(item_embedding_str)
|
|
||||||
if not isinstance(item_embedding, list) or not all(
|
|
||||||
isinstance(x, (int, float)) for x in item_embedding
|
|
||||||
):
|
|
||||||
logger.warning(f"Knowledge item ID {item.id} has invalid embedding format after JSON parsing.")
|
|
||||||
continue
|
|
||||||
except json.JSONDecodeError:
|
|
||||||
logger.warning(f"Failed to parse embedding for knowledge item ID {item.id}")
|
|
||||||
continue
|
|
||||||
except AttributeError:
|
|
||||||
logger.warning(f"Knowledge item ID {item.id} missing 'embedding' attribute or it's not a string.")
|
|
||||||
continue
|
|
||||||
|
|
||||||
similarity = SearchKnowledgeTool._cosine_similarity(query_embedding, item_embedding)
|
|
||||||
|
|
||||||
if similarity >= threshold:
|
|
||||||
similar_items.append({"content": item.content, "similarity": similarity, "raw_item": item})
|
|
||||||
|
|
||||||
# 按相似度降序排序
|
|
||||||
similar_items.sort(key=lambda x: x["similarity"], reverse=True)
|
|
||||||
|
|
||||||
# 应用限制
|
|
||||||
results = similar_items[:limit]
|
|
||||||
logger.debug(f"知识库查询后,符合条件的结果数量: {len(results)}")
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"从 Peewee 数据库获取知识信息失败: {str(e)}")
|
|
||||||
return [] if return_raw else ""
|
|
||||||
|
|
||||||
if not results:
|
|
||||||
return [] if return_raw else ""
|
|
||||||
|
|
||||||
if return_raw:
|
|
||||||
# Peewee 模型实例不能直接序列化为 JSON,如果需要原始模型,调用者需要处理
|
|
||||||
# 这里返回包含内容和相似度的字典列表
|
|
||||||
return [{"content": r["content"], "similarity": r["similarity"]} for r in results]
|
|
||||||
else:
|
|
||||||
# 返回所有找到的内容,用换行分隔
|
|
||||||
return "\n".join(str(result["content"]) for result in results)
|
|
||||||
|
|
||||||
|
|
||||||
# 注册工具
|
|
||||||
# register_tool(SearchKnowledgeTool)
|
|
||||||
@@ -1,6 +1,7 @@
|
|||||||
from typing import Dict, Any
|
from typing import Dict, Any
|
||||||
|
|
||||||
from src.common.logger import get_logger
|
from src.common.logger import get_logger
|
||||||
|
from src.config.config import global_config
|
||||||
from src.chat.knowledge.knowledge_lib import qa_manager
|
from src.chat.knowledge.knowledge_lib import qa_manager
|
||||||
from src.plugin_system import BaseTool, ToolParamType
|
from src.plugin_system import BaseTool, ToolParamType
|
||||||
|
|
||||||
@@ -16,6 +17,7 @@ class SearchKnowledgeFromLPMMTool(BaseTool):
|
|||||||
("query", ToolParamType.STRING, "搜索查询关键词", True, None),
|
("query", ToolParamType.STRING, "搜索查询关键词", True, None),
|
||||||
("threshold", ToolParamType.FLOAT, "相似度阈值,0.0到1.0之间", False, None),
|
("threshold", ToolParamType.FLOAT, "相似度阈值,0.0到1.0之间", False, None),
|
||||||
]
|
]
|
||||||
|
available_for_llm = global_config.lpmm_knowledge.enable
|
||||||
|
|
||||||
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
|
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
|
||||||
"""执行知识库搜索
|
"""执行知识库搜索
|
||||||
|
|||||||
Reference in New Issue
Block a user