正确使用lpmm构建prompt

This commit is contained in:
UnCLAS-Prommer
2025-08-03 19:52:31 +08:00
parent 9a63a8030e
commit 1e5db5d7e1
12 changed files with 141 additions and 249 deletions

View File

@@ -7,8 +7,9 @@
success, response, reasoning, model_name = await llm_api.generate_with_model(prompt, model_config)
"""
from typing import Tuple, Dict
from typing import Tuple, Dict, List, Any, Optional
from src.common.logger import get_logger
from src.llm_models.payload_content.tool_option import ToolCall
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config, model_config
from src.config.api_ada_configs import TaskConfig
@@ -52,7 +53,11 @@ def get_available_models() -> Dict[str, TaskConfig]:
async def generate_with_model(
prompt: str, model_config: TaskConfig, request_type: str = "plugin.generate", **kwargs
prompt: str,
model_config: TaskConfig,
request_type: str = "plugin.generate",
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> Tuple[bool, str, str, str]:
"""使用指定模型生成内容
@@ -60,7 +65,6 @@ async def generate_with_model(
prompt: 提示词
model_config: 模型配置(从 get_available_models 获取的模型配置)
request_type: 请求类型标识
**kwargs: 其他模型特定参数如temperature、max_tokens等
Returns:
Tuple[bool, str, str, str]: (是否成功, 生成的内容, 推理过程, 模型名称)
@@ -70,12 +74,53 @@ async def generate_with_model(
logger.info(f"[LLMAPI] 使用模型集合 {model_name_list} 生成内容")
logger.debug(f"[LLMAPI] 完整提示词: {prompt}")
llm_request = LLMRequest(model_set=model_config, request_type=request_type, **kwargs)
llm_request = LLMRequest(model_set=model_config, request_type=request_type)
response, (reasoning_content, model_name, _) = await llm_request.generate_response_async(prompt)
response, (reasoning_content, model_name, _) = await llm_request.generate_response_async(prompt, temperature=temperature, max_tokens=max_tokens)
return True, response, reasoning_content, model_name
except Exception as e:
error_msg = f"生成内容时出错: {str(e)}"
logger.error(f"[LLMAPI] {error_msg}")
return False, error_msg, "", ""
async def generate_with_model_with_tools(
prompt: str,
model_config: TaskConfig,
tool_options: List[Dict[str, Any]] | None = None,
request_type: str = "plugin.generate",
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> Tuple[bool, str, str, str, List[ToolCall] | None]:
"""使用指定模型和工具生成内容
Args:
prompt: 提示词
model_config: 模型配置(从 get_available_models 获取的模型配置)
tool_options: 工具选项列表
request_type: 请求类型标识
temperature: 温度参数
max_tokens: 最大token数
Returns:
Tuple[bool, str, str, str]: (是否成功, 生成的内容, 推理过程, 模型名称)
"""
try:
model_name_list = model_config.model_list
logger.info(f"[LLMAPI] 使用模型集合 {model_name_list} 生成内容")
logger.debug(f"[LLMAPI] 完整提示词: {prompt}")
llm_request = LLMRequest(model_set=model_config, request_type=request_type)
response, (reasoning_content, model_name, tool_call) = await llm_request.generate_response_async(
prompt,
tools=tool_options,
temperature=temperature,
max_tokens=max_tokens
)
return True, response, reasoning_content, model_name, tool_call
except Exception as e:
error_msg = f"生成内容时出错: {str(e)}"
logger.error(f"[LLMAPI] {error_msg}")
return False, error_msg, "", "", None