ref:调整文件位置和命名,结构更清晰

This commit is contained in:
SengokuCola
2025-07-06 18:47:08 +08:00
parent 498d72384f
commit 1de15bcc31
23 changed files with 227 additions and 354 deletions

View File

@@ -0,0 +1,154 @@
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from datetime import datetime
from src.chat.memory_system.Hippocampus import hippocampus_manager
from typing import List, Dict
import difflib
import json
from json_repair import repair_json
logger = get_logger("memory_activator")
def get_keywords_from_json(json_str):
"""
从JSON字符串中提取关键词列表
Args:
json_str: JSON格式的字符串
Returns:
List[str]: 关键词列表
"""
try:
# 使用repair_json修复JSON格式
fixed_json = repair_json(json_str)
# 如果repair_json返回的是字符串需要解析为Python对象
if isinstance(fixed_json, str):
result = json.loads(fixed_json)
else:
# 如果repair_json直接返回了字典对象直接使用
result = fixed_json
# 提取关键词
keywords = result.get("keywords", [])
return keywords
except Exception as e:
logger.error(f"解析关键词JSON失败: {e}")
return []
def init_prompt():
# --- Group Chat Prompt ---
memory_activator_prompt = """
你是一个记忆分析器,你需要根据以下信息来进行回忆
以下是一段聊天记录,请根据这些信息,总结出几个关键词作为记忆回忆的触发词
聊天记录:
{obs_info_text}
你想要回复的消息:
{target_message}
历史关键词(请避免重复提取这些关键词):
{cached_keywords}
请输出一个json格式包含以下字段
{{
"keywords": ["关键词1", "关键词2", "关键词3",......]
}}
不要输出其他多余内容只输出json格式就好
"""
Prompt(memory_activator_prompt, "memory_activator_prompt")
class MemoryActivator:
def __init__(self):
# TODO: API-Adapter修改标记
self.summary_model = LLMRequest(
model=global_config.model.memory_summary,
temperature=0.7,
request_type="memory_activator",
)
self.running_memory = []
self.cached_keywords = set() # 用于缓存历史关键词
async def activate_memory_with_chat_history(self, target_message, chat_history_prompt) -> List[Dict]:
"""
激活记忆
Args:
observations: 现有的进行观察后的 观察列表
Returns:
List[Dict]: 激活的记忆列表
"""
# 如果记忆系统被禁用,直接返回空列表
if not global_config.memory.enable_memory:
return []
# 将缓存的关键词转换为字符串用于prompt
cached_keywords_str = ", ".join(self.cached_keywords) if self.cached_keywords else "暂无历史关键词"
prompt = await global_prompt_manager.format_prompt(
"memory_activator_prompt",
obs_info_text=chat_history_prompt,
target_message=target_message,
cached_keywords=cached_keywords_str,
)
# logger.debug(f"prompt: {prompt}")
response, (reasoning_content, model_name) = await self.summary_model.generate_response_async(prompt)
keywords = list(get_keywords_from_json(response))
# 更新关键词缓存
if keywords:
# 限制缓存大小最多保留10个关键词
if len(self.cached_keywords) > 10:
# 转换为列表,移除最早的关键词
cached_list = list(self.cached_keywords)
self.cached_keywords = set(cached_list[-8:])
# 添加新的关键词到缓存
self.cached_keywords.update(keywords)
# 调用记忆系统获取相关记忆
related_memory = await hippocampus_manager.get_memory_from_topic(
valid_keywords=keywords, max_memory_num=3, max_memory_length=2, max_depth=3
)
logger.info(f"当前记忆关键词: {self.cached_keywords} 。获取到的记忆: {related_memory}")
# 激活时所有已有记忆的duration+1达到3则移除
for m in self.running_memory[:]:
m["duration"] = m.get("duration", 1) + 1
self.running_memory = [m for m in self.running_memory if m["duration"] < 3]
if related_memory:
for topic, memory in related_memory:
# 检查是否已存在相同topic或相似内容相似度>=0.7)的记忆
exists = any(
m["topic"] == topic or difflib.SequenceMatcher(None, m["content"], memory).ratio() >= 0.7
for m in self.running_memory
)
if not exists:
self.running_memory.append(
{"topic": topic, "content": memory, "timestamp": datetime.now().isoformat(), "duration": 1}
)
logger.debug(f"添加新记忆: {topic} - {memory}")
# 限制同时加载的记忆条数最多保留最后3条
if len(self.running_memory) > 3:
self.running_memory = self.running_memory[-3:]
return self.running_memory
init_prompt()