Merge branch 'debug' into patch-1
This commit is contained in:
7
.gitignore
vendored
7
.gitignore
vendored
@@ -188,3 +188,10 @@ cython_debug/
|
|||||||
|
|
||||||
# jieba
|
# jieba
|
||||||
jieba.cache
|
jieba.cache
|
||||||
|
|
||||||
|
|
||||||
|
# vscode
|
||||||
|
/.vscode
|
||||||
|
|
||||||
|
# direnv
|
||||||
|
/.direnv
|
||||||
57
README.md
57
README.md
@@ -13,16 +13,19 @@
|
|||||||
|
|
||||||
**🍔麦麦是一个基于大语言模型的智能QQ群聊机器人**
|
**🍔麦麦是一个基于大语言模型的智能QQ群聊机器人**
|
||||||
|
|
||||||
- 🤖 基于 nonebot2 框架开发
|
- 基于 nonebot2 框架开发
|
||||||
- 🧠 LLM 提供对话能力
|
- LLM 提供对话能力
|
||||||
- 💾 MongoDB 提供数据持久化支持
|
- MongoDB 提供数据持久化支持
|
||||||
- 🐧 NapCat 作为QQ协议端支持
|
- NapCat 作为QQ协议端支持
|
||||||
|
|
||||||
|
**最新版本: v0.5.***
|
||||||
|
|
||||||
<div align="center">
|
<div align="center">
|
||||||
<a href="https://www.bilibili.com/video/BV1amAneGE3P" target="_blank">
|
<a href="https://www.bilibili.com/video/BV1amAneGE3P" target="_blank">
|
||||||
<img src="docs/video.png" width="300" alt="麦麦演示视频">
|
<img src="docs/video.png" width="300" alt="麦麦演示视频">
|
||||||
<br>
|
<br>
|
||||||
👆 点击观看麦麦演示视频 👆
|
👆 点击观看麦麦演示视频 👆
|
||||||
|
|
||||||
</a>
|
</a>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
@@ -31,12 +34,31 @@
|
|||||||
> - 文档未完善,有问题可以提交 Issue 或者 Discussion
|
> - 文档未完善,有问题可以提交 Issue 或者 Discussion
|
||||||
> - QQ机器人存在被限制风险,请自行了解,谨慎使用
|
> - QQ机器人存在被限制风险,请自行了解,谨慎使用
|
||||||
> - 由于持续迭代,可能存在一些已知或未知的bug
|
> - 由于持续迭代,可能存在一些已知或未知的bug
|
||||||
|
> - 由于开发中,可能消耗较多token
|
||||||
|
|
||||||
**交流群**: 766798517(仅用于开发和建议相关讨论)不建议在群内询问部署问题,我不一定有空回复,会优先写文档和代码
|
**交流群**: 766798517(仅用于开发和建议相关讨论)不一定有空回复,但大家可以自行交流部署问题,我会优先写文档和代码
|
||||||
|
|
||||||
## 📚 文档
|
##
|
||||||
|
<div align="left">
|
||||||
|
<h2>📚 文档 ⬇️ 快速开始使用麦麦 ⬇️</h2>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
### 部署方式
|
||||||
|
|
||||||
|
如果你不知道Docker是什么,建议寻找相关教程或使用手动部署
|
||||||
|
|
||||||
|
- [🐳 Docker部署指南](docs/docker_deploy.md)
|
||||||
|
|
||||||
|
- [📦 手动部署指南](docs/manual_deploy.md)
|
||||||
|
|
||||||
|
### 配置说明
|
||||||
|
- [🎀 新手配置指南](docs/installation_cute.md) - 通俗易懂的配置教程,适合初次使用的猫娘
|
||||||
|
- [⚙️ 标准配置指南](docs/installation_standard.md) - 简明专业的配置说明,适合有经验的用户
|
||||||
|
|
||||||
|
<div align="left">
|
||||||
|
<h3>了解麦麦 </h3>
|
||||||
|
</div>
|
||||||
|
|
||||||
- [安装与配置指南](docs/installation.md) - 详细的部署和配置说明
|
|
||||||
- [项目架构说明](docs/doc1.md) - 项目结构和核心功能实现细节
|
- [项目架构说明](docs/doc1.md) - 项目结构和核心功能实现细节
|
||||||
|
|
||||||
## 🎯 功能介绍
|
## 🎯 功能介绍
|
||||||
@@ -69,6 +91,12 @@
|
|||||||
|
|
||||||
|
|
||||||
## 开发计划TODO:LIST
|
## 开发计划TODO:LIST
|
||||||
|
|
||||||
|
规划主线
|
||||||
|
0.6.0:记忆系统更新
|
||||||
|
0.7.0: 麦麦RunTime
|
||||||
|
|
||||||
|
|
||||||
- 人格功能:WIP
|
- 人格功能:WIP
|
||||||
- 群氛围功能:WIP
|
- 群氛围功能:WIP
|
||||||
- 图片发送,转发功能:WIP
|
- 图片发送,转发功能:WIP
|
||||||
@@ -86,10 +114,21 @@
|
|||||||
- 改进表情包发送逻辑
|
- 改进表情包发送逻辑
|
||||||
- 自动生成的回复逻辑,例如自生成的回复方向,回复风格
|
- 自动生成的回复逻辑,例如自生成的回复方向,回复风格
|
||||||
- 采用截断生成加快麦麦的反应速度
|
- 采用截断生成加快麦麦的反应速度
|
||||||
- 改进发送消息的触发:
|
- 改进发送消息的触发
|
||||||
|
|
||||||
|
|
||||||
|
## 设计理念
|
||||||
|
|
||||||
|
- **千石可乐说:**
|
||||||
|
- 这个项目最初只是为了给牛牛bot添加一点额外的功能,但是功能越写越多,最后决定重写。其目的是为了创造一个活跃在QQ群聊的"生命体"。可以目的并不是为了写一个功能齐全的机器人,而是一个尽可能让人感知到真实的类人存在.
|
||||||
|
- 程序的功能设计理念基于一个核心的原则:"最像而不是好"
|
||||||
|
- 主打一个陪伴
|
||||||
|
- 如果人类真的需要一个AI来陪伴自己,并不是所有人都需要一个完美的,能解决所有问题的helpful assistant,而是一个会犯错的,拥有自己感知和想法的"生命形式"。
|
||||||
|
- 代码会保持开源和开放,但个人希望MaiMbot的运行时数据保持封闭,尽量避免以显式命令来对其进行控制和调试.我认为一个你无法完全掌控的个体才更能让你感觉到它的自主性,而视其成为一个对话机器.
|
||||||
|
|
||||||
|
|
||||||
## 📌 注意事项
|
## 📌 注意事项
|
||||||
纯编程外行,面向cursor编程,很多代码史一样多多包涵
|
SengokuCola纯编程外行,面向cursor编程,很多代码史一样多多包涵
|
||||||
|
|
||||||
> ⚠️ **警告**:本应用生成内容来自人工智能模型,由 AI 生成,请仔细甄别,请勿用于违反法律的用途,AI生成内容不代表本人观点和立场。
|
> ⚠️ **警告**:本应用生成内容来自人工智能模型,由 AI 生成,请仔细甄别,请勿用于违反法律的用途,AI生成内容不代表本人观点和立场。
|
||||||
|
|
||||||
|
|||||||
8
bot.py
8
bot.py
@@ -8,7 +8,7 @@ from loguru import logger
|
|||||||
from colorama import init, Fore
|
from colorama import init, Fore
|
||||||
|
|
||||||
init()
|
init()
|
||||||
text = "多年以后,面对行刑队,张三将会回想起他2023年在会议上讨论人工智能的那个下午"
|
text = "多年以后,面对AI行刑队,张三将会回想起他2023年在会议上讨论人工智能的那个下午"
|
||||||
rainbow_colors = [Fore.RED, Fore.YELLOW, Fore.GREEN, Fore.CYAN, Fore.BLUE, Fore.MAGENTA]
|
rainbow_colors = [Fore.RED, Fore.YELLOW, Fore.GREEN, Fore.CYAN, Fore.BLUE, Fore.MAGENTA]
|
||||||
rainbow_text = ""
|
rainbow_text = ""
|
||||||
for i, char in enumerate(text):
|
for i, char in enumerate(text):
|
||||||
@@ -17,11 +17,11 @@ print(rainbow_text)
|
|||||||
'''彩蛋'''
|
'''彩蛋'''
|
||||||
|
|
||||||
# 初次启动检测
|
# 初次启动检测
|
||||||
if not os.path.exists("config/bot_config.toml") or not os.path.exists(".env"):
|
if not os.path.exists("config/bot_config.toml"):
|
||||||
logger.info("检测到bot_config.toml不存在,正在从模板复制")
|
logger.warning("检测到bot_config.toml不存在,正在从模板复制")
|
||||||
import shutil
|
import shutil
|
||||||
|
|
||||||
shutil.copy("config/bot_config_template.toml", "config/bot_config.toml")
|
shutil.copy("templete/bot_config_template.toml", "config/bot_config.toml")
|
||||||
logger.info("复制完成,请修改config/bot_config.toml和.env.prod中的配置后重新启动")
|
logger.info("复制完成,请修改config/bot_config.toml和.env.prod中的配置后重新启动")
|
||||||
|
|
||||||
# 初始化.env 默认ENVIRONMENT=prod
|
# 初始化.env 默认ENVIRONMENT=prod
|
||||||
|
|||||||
@@ -83,7 +83,6 @@
|
|||||||
|
|
||||||
14. **`topic_identifier.py`**:
|
14. **`topic_identifier.py`**:
|
||||||
- 识别消息中的主题,帮助机器人理解用户的意图。
|
- 识别消息中的主题,帮助机器人理解用户的意图。
|
||||||
- 使用多种方法(LLM、jieba、snownlp)进行主题识别。
|
|
||||||
|
|
||||||
15. **`utils.py`** 和 **`utils_*.py`** 系列文件:
|
15. **`utils.py`** 和 **`utils_*.py`** 系列文件:
|
||||||
- 存放各种工具函数,提供辅助功能以支持其他模块。
|
- 存放各种工具函数,提供辅助功能以支持其他模块。
|
||||||
|
|||||||
24
docs/docker_deploy.md
Normal file
24
docs/docker_deploy.md
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
# 🐳 Docker 部署指南
|
||||||
|
|
||||||
|
## 部署步骤(推荐,但不一定是最新)
|
||||||
|
|
||||||
|
1. 获取配置文件:
|
||||||
|
```bash
|
||||||
|
wget https://raw.githubusercontent.com/SengokuCola/MaiMBot/main/docker-compose.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
2. 启动服务:
|
||||||
|
```bash
|
||||||
|
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose up -d
|
||||||
|
```
|
||||||
|
|
||||||
|
3. 修改配置后重启:
|
||||||
|
```bash
|
||||||
|
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
|
||||||
|
```
|
||||||
|
|
||||||
|
## ⚠️ 注意事项
|
||||||
|
|
||||||
|
- 目前部署方案仍在测试中,可能存在未知问题
|
||||||
|
- 配置文件中的API密钥请妥善保管,不要泄露
|
||||||
|
- 建议先在测试环境中运行,确认无误后再部署到生产环境
|
||||||
@@ -1,145 +0,0 @@
|
|||||||
# 🔧 安装与配置指南
|
|
||||||
|
|
||||||
## 部署方式
|
|
||||||
|
|
||||||
如果你不知道Docker是什么,建议寻找相关教程或使用手动部署
|
|
||||||
|
|
||||||
### 🐳 Docker部署(推荐,但不一定是最新)
|
|
||||||
|
|
||||||
1. 获取配置文件:
|
|
||||||
```bash
|
|
||||||
wget https://raw.githubusercontent.com/SengokuCola/MaiMBot/main/docker-compose.yml
|
|
||||||
```
|
|
||||||
|
|
||||||
2. 启动服务:
|
|
||||||
```bash
|
|
||||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose up -d
|
|
||||||
```
|
|
||||||
|
|
||||||
3. 修改配置后重启:
|
|
||||||
```bash
|
|
||||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
|
|
||||||
```
|
|
||||||
|
|
||||||
### 📦 手动部署
|
|
||||||
|
|
||||||
1. **环境准备**
|
|
||||||
```bash
|
|
||||||
# 创建虚拟环境(推荐)
|
|
||||||
python -m venv venv
|
|
||||||
venv\\Scripts\\activate # Windows
|
|
||||||
# 安装依赖
|
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
2. **配置MongoDB**
|
|
||||||
- 安装并启动MongoDB服务
|
|
||||||
- 默认连接本地27017端口
|
|
||||||
|
|
||||||
3. **配置NapCat**
|
|
||||||
- 安装并登录NapCat
|
|
||||||
- 添加反向WS:`ws://localhost:8080/onebot/v11/ws`
|
|
||||||
|
|
||||||
4. **配置文件设置**
|
|
||||||
- 修改环境配置文件:`.env.prod`
|
|
||||||
- 修改机器人配置文件:`bot_config.toml`
|
|
||||||
|
|
||||||
5. **启动麦麦机器人**
|
|
||||||
- 打开命令行,cd到对应路径
|
|
||||||
```bash
|
|
||||||
nb run
|
|
||||||
```
|
|
||||||
|
|
||||||
6. **其他组件**
|
|
||||||
- `run_thingking.bat`: 启动可视化推理界面(未完善)
|
|
||||||
|
|
||||||
- ~~`knowledge.bat`: 将`/data/raw_info`下的文本文档载入数据库~~
|
|
||||||
- 直接运行 knowledge.py生成知识库
|
|
||||||
|
|
||||||
## ⚙️ 配置说明
|
|
||||||
|
|
||||||
### 环境配置 (.env.prod)
|
|
||||||
```ini
|
|
||||||
# API配置,你可以在这里定义你的密钥和base_url
|
|
||||||
# 你可以选择定义其他服务商提供的KEY,完全可以自定义
|
|
||||||
SILICONFLOW_KEY=your_key
|
|
||||||
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
|
|
||||||
DEEP_SEEK_KEY=your_key
|
|
||||||
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
|
|
||||||
|
|
||||||
# 服务配置,如果你不知道这是什么,保持默认
|
|
||||||
HOST=127.0.0.1
|
|
||||||
PORT=8080
|
|
||||||
|
|
||||||
# 数据库配置,如果你不知道这是什么,保持默认
|
|
||||||
MONGODB_HOST=127.0.0.1
|
|
||||||
MONGODB_PORT=27017
|
|
||||||
DATABASE_NAME=MegBot
|
|
||||||
```
|
|
||||||
|
|
||||||
### 机器人配置 (bot_config.toml)
|
|
||||||
```toml
|
|
||||||
[bot]
|
|
||||||
qq = "你的机器人QQ号"
|
|
||||||
nickname = "麦麦"
|
|
||||||
|
|
||||||
[message]
|
|
||||||
min_text_length = 2
|
|
||||||
max_context_size = 15
|
|
||||||
emoji_chance = 0.2
|
|
||||||
|
|
||||||
[emoji]
|
|
||||||
check_interval = 120
|
|
||||||
register_interval = 10
|
|
||||||
|
|
||||||
[cq_code]
|
|
||||||
enable_pic_translate = false
|
|
||||||
|
|
||||||
[response]
|
|
||||||
#现已移除deepseek或硅基流动选项,可以直接切换分别配置任意模型
|
|
||||||
model_r1_probability = 0.8 #推理模型权重
|
|
||||||
model_v3_probability = 0.1 #非推理模型权重
|
|
||||||
model_r1_distill_probability = 0.1
|
|
||||||
|
|
||||||
[memory]
|
|
||||||
build_memory_interval = 300
|
|
||||||
|
|
||||||
[others]
|
|
||||||
enable_advance_output = true # 是否启用详细日志输出
|
|
||||||
|
|
||||||
[groups]
|
|
||||||
talk_allowed = [] # 允许回复的群号列表
|
|
||||||
talk_frequency_down = [] # 降低回复频率的群号列表
|
|
||||||
ban_user_id = [] # 禁止回复的用户QQ号列表
|
|
||||||
|
|
||||||
[model.llm_reasoning]
|
|
||||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
|
||||||
key = "SILICONFLOW_KEY"
|
|
||||||
|
|
||||||
[model.llm_reasoning_minor]
|
|
||||||
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
|
||||||
key = "SILICONFLOW_KEY"
|
|
||||||
|
|
||||||
[model.llm_normal]
|
|
||||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
|
||||||
key = "SILICONFLOW_KEY"
|
|
||||||
|
|
||||||
[model.llm_normal_minor]
|
|
||||||
name = "deepseek-ai/DeepSeek-V2.5"
|
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
|
||||||
key = "SILICONFLOW_KEY"
|
|
||||||
|
|
||||||
[model.vlm]
|
|
||||||
name = "deepseek-ai/deepseek-vl2"
|
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
|
||||||
key = "SILICONFLOW_KEY"
|
|
||||||
```
|
|
||||||
|
|
||||||
## ⚠️ 注意事项
|
|
||||||
|
|
||||||
- 目前部署方案仍在测试中,可能存在未知问题
|
|
||||||
- 配置文件中的API密钥请妥善保管,不要泄露
|
|
||||||
- 建议先在测试环境中运行,确认无误后再部署到生产环境
|
|
||||||
215
docs/installation_cute.md
Normal file
215
docs/installation_cute.md
Normal file
@@ -0,0 +1,215 @@
|
|||||||
|
# 🔧 配置指南 喵~
|
||||||
|
|
||||||
|
## 👋 你好呀!
|
||||||
|
|
||||||
|
让咱来告诉你我们要做什么喵:
|
||||||
|
1. 我们要一起设置一个可爱的AI机器人
|
||||||
|
2. 这个机器人可以在QQ上陪你聊天玩耍哦
|
||||||
|
3. 需要设置两个文件才能让机器人工作呢
|
||||||
|
|
||||||
|
## 📝 需要设置的文件喵
|
||||||
|
|
||||||
|
要设置这两个文件才能让机器人跑起来哦:
|
||||||
|
1. `.env.prod` - 这个文件告诉机器人要用哪些AI服务呢
|
||||||
|
2. `bot_config.toml` - 这个文件教机器人怎么和你聊天喵
|
||||||
|
|
||||||
|
## 🔑 密钥和域名的对应关系
|
||||||
|
|
||||||
|
想象一下,你要进入一个游乐园,需要:
|
||||||
|
1. 知道游乐园的地址(这就是域名 base_url)
|
||||||
|
2. 有入场的门票(这就是密钥 key)
|
||||||
|
|
||||||
|
在 `.env.prod` 文件里,我们定义了三个游乐园的地址和门票喵:
|
||||||
|
```ini
|
||||||
|
# 硅基流动游乐园
|
||||||
|
SILICONFLOW_KEY=your_key # 硅基流动的门票
|
||||||
|
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/ # 硅基流动的地址
|
||||||
|
|
||||||
|
# DeepSeek游乐园
|
||||||
|
DEEP_SEEK_KEY=your_key # DeepSeek的门票
|
||||||
|
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1 # DeepSeek的地址
|
||||||
|
|
||||||
|
# ChatAnyWhere游乐园
|
||||||
|
CHAT_ANY_WHERE_KEY=your_key # ChatAnyWhere的门票
|
||||||
|
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1 # ChatAnyWhere的地址
|
||||||
|
```
|
||||||
|
|
||||||
|
然后在 `bot_config.toml` 里,机器人会用这些门票和地址去游乐园玩耍:
|
||||||
|
```toml
|
||||||
|
[model.llm_reasoning]
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL" # 告诉机器人:去硅基流动游乐园玩
|
||||||
|
key = "SILICONFLOW_KEY" # 用硅基流动的门票进去
|
||||||
|
|
||||||
|
[model.llm_normal]
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL" # 还是去硅基流动游乐园
|
||||||
|
key = "SILICONFLOW_KEY" # 用同一张门票就可以啦
|
||||||
|
```
|
||||||
|
|
||||||
|
### 🎪 举个例子喵:
|
||||||
|
|
||||||
|
如果你想用DeepSeek官方的服务,就要这样改:
|
||||||
|
```toml
|
||||||
|
[model.llm_reasoning]
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||||
|
base_url = "DEEP_SEEK_BASE_URL" # 改成去DeepSeek游乐园
|
||||||
|
key = "DEEP_SEEK_KEY" # 用DeepSeek的门票
|
||||||
|
|
||||||
|
[model.llm_normal]
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||||
|
base_url = "DEEP_SEEK_BASE_URL" # 也去DeepSeek游乐园
|
||||||
|
key = "DEEP_SEEK_KEY" # 用同一张DeepSeek门票
|
||||||
|
```
|
||||||
|
|
||||||
|
### 🎯 简单来说:
|
||||||
|
- `.env.prod` 文件就像是你的票夹,存放着各个游乐园的门票和地址
|
||||||
|
- `bot_config.toml` 就是告诉机器人:用哪张票去哪个游乐园玩
|
||||||
|
- 所有模型都可以用同一个游乐园的票,也可以去不同的游乐园玩耍
|
||||||
|
- 如果用硅基流动的服务,就保持默认配置不用改呢~
|
||||||
|
|
||||||
|
记住:门票(key)要保管好,不能给别人看哦,不然别人就可以用你的票去玩了喵!
|
||||||
|
|
||||||
|
## ---让我们开始吧---
|
||||||
|
|
||||||
|
### 第一个文件:环境配置 (.env.prod)
|
||||||
|
|
||||||
|
这个文件就像是机器人的"身份证"呢,告诉它要用哪些AI服务喵~
|
||||||
|
|
||||||
|
```ini
|
||||||
|
# 这些是AI服务的密钥,就像是魔法钥匙一样呢
|
||||||
|
# 要把 your_key 换成真正的密钥才行喵
|
||||||
|
# 比如说:SILICONFLOW_KEY=sk-123456789abcdef
|
||||||
|
SILICONFLOW_KEY=your_key
|
||||||
|
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
|
||||||
|
DEEP_SEEK_KEY=your_key
|
||||||
|
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
|
||||||
|
CHAT_ANY_WHERE_KEY=your_key
|
||||||
|
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
|
||||||
|
|
||||||
|
# 如果你不知道这是什么,那么下面这些不用改,保持原样就好啦
|
||||||
|
HOST=127.0.0.1
|
||||||
|
PORT=8080
|
||||||
|
|
||||||
|
# 这些是数据库设置,一般也不用改呢
|
||||||
|
MONGODB_HOST=127.0.0.1
|
||||||
|
MONGODB_PORT=27017
|
||||||
|
DATABASE_NAME=MegBot
|
||||||
|
MONGODB_USERNAME = "" # 如果数据库需要用户名,就在这里填写喵
|
||||||
|
MONGODB_PASSWORD = "" # 如果数据库需要密码,就在这里填写呢
|
||||||
|
MONGODB_AUTH_SOURCE = "" # 数据库认证源,一般不用改哦
|
||||||
|
|
||||||
|
# 插件设置喵
|
||||||
|
PLUGINS=["src2.plugins.chat"] # 这里是机器人的插件列表呢
|
||||||
|
```
|
||||||
|
|
||||||
|
### 第二个文件:机器人配置 (bot_config.toml)
|
||||||
|
|
||||||
|
这个文件就像是教机器人"如何说话"的魔法书呢!
|
||||||
|
|
||||||
|
```toml
|
||||||
|
[bot]
|
||||||
|
qq = "把这里改成你的机器人QQ号喵" # 填写你的机器人QQ号
|
||||||
|
nickname = "麦麦" # 机器人的名字,你可以改成你喜欢的任何名字哦
|
||||||
|
|
||||||
|
[personality]
|
||||||
|
# 这里可以设置机器人的性格呢,让它更有趣一些喵
|
||||||
|
prompt_personality = [
|
||||||
|
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧", # 贴吧风格的性格
|
||||||
|
"是一个女大学生,你有黑色头发,你会刷小红书" # 小红书风格的性格
|
||||||
|
]
|
||||||
|
prompt_schedule = "一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||||
|
|
||||||
|
[message]
|
||||||
|
min_text_length = 2 # 机器人每次至少要说几个字呢
|
||||||
|
max_context_size = 15 # 机器人能记住多少条消息喵
|
||||||
|
emoji_chance = 0.2 # 机器人使用表情的概率哦(0.2就是20%的机会呢)
|
||||||
|
ban_words = ["脏话", "不文明用语"] # 在这里填写不让机器人说的词
|
||||||
|
|
||||||
|
[emoji]
|
||||||
|
auto_save = true # 是否自动保存看到的表情包呢
|
||||||
|
enable_check = false # 是否要检查表情包是不是合适的喵
|
||||||
|
check_prompt = "符合公序良俗" # 检查表情包的标准呢
|
||||||
|
|
||||||
|
[groups]
|
||||||
|
talk_allowed = [123456, 789012] # 比如:让机器人在群123456和789012里说话
|
||||||
|
talk_frequency_down = [345678] # 比如:在群345678里少说点话
|
||||||
|
ban_user_id = [111222] # 比如:不回复QQ号为111222的人的消息
|
||||||
|
|
||||||
|
[others]
|
||||||
|
enable_advance_output = true # 是否要显示更多的运行信息呢
|
||||||
|
enable_kuuki_read = true # 让机器人能够"察言观色"喵
|
||||||
|
|
||||||
|
# 模型配置部分的详细说明喵~
|
||||||
|
|
||||||
|
|
||||||
|
#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成在.env.prod自己指定的密钥和域名,使用自定义模型则选择定位相似的模型自己填写
|
||||||
|
|
||||||
|
[model.llm_reasoning] #推理模型R1,用来理解和思考的喵
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-R1" # 模型名字
|
||||||
|
# name = "Qwen/QwQ-32B" # 如果想用千问模型,可以把上面那行注释掉,用这个呢
|
||||||
|
base_url = "SILICONFLOW_BASE_URL" # 使用在.env.prod里设置的服务地址
|
||||||
|
key = "SILICONFLOW_KEY" # 使用在.env.prod里设置的密钥
|
||||||
|
|
||||||
|
[model.llm_reasoning_minor] #R1蒸馏模型,是个轻量版的推理模型喵
|
||||||
|
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.llm_normal] #V3模型,用来日常聊天的喵
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.llm_normal_minor] #V2.5模型,是V3的前代版本呢
|
||||||
|
name = "deepseek-ai/DeepSeek-V2.5"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.vlm] #图像识别模型,让机器人能看懂图片喵
|
||||||
|
name = "deepseek-ai/deepseek-vl2"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.embedding] #嵌入模型,帮助机器人理解文本的相似度呢
|
||||||
|
name = "BAAI/bge-m3"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
# 如果选择了llm方式提取主题,就用这个模型配置喵
|
||||||
|
[topic.llm_topic]
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
```
|
||||||
|
|
||||||
|
## 💡 模型配置说明喵
|
||||||
|
|
||||||
|
1. **关于模型服务**:
|
||||||
|
- 如果你用硅基流动的服务,这些配置都不用改呢
|
||||||
|
- 如果用DeepSeek官方API,要把base_url和key改成你在.env.prod里设置的值喵
|
||||||
|
- 如果要用自定义模型,选择一个相似功能的模型配置来改呢
|
||||||
|
|
||||||
|
2. **主要模型功能**:
|
||||||
|
- `llm_reasoning`: 负责思考和推理的大脑喵
|
||||||
|
- `llm_normal`: 负责日常聊天的嘴巴呢
|
||||||
|
- `vlm`: 负责看图片的眼睛哦
|
||||||
|
- `embedding`: 负责理解文字含义的理解力喵
|
||||||
|
- `topic`: 负责理解对话主题的能力呢
|
||||||
|
|
||||||
|
## 🌟 小提示
|
||||||
|
- 如果你刚开始使用,建议保持默认配置呢
|
||||||
|
- 不同的模型有不同的特长,可以根据需要调整它们的使用比例哦
|
||||||
|
|
||||||
|
## 🌟 小贴士喵
|
||||||
|
- 记得要好好保管密钥(key)哦,不要告诉别人呢
|
||||||
|
- 配置文件要小心修改,改错了机器人可能就不能和你玩了喵
|
||||||
|
- 如果想让机器人更聪明,可以调整 personality 里的设置呢
|
||||||
|
- 不想让机器人说某些话,就把那些词放在 ban_words 里面喵
|
||||||
|
- QQ群号和QQ号都要用数字填写,不要加引号哦(除了机器人自己的QQ号)
|
||||||
|
|
||||||
|
## ⚠️ 注意事项
|
||||||
|
- 这个机器人还在测试中呢,可能会有一些小问题喵
|
||||||
|
- 如果不知道怎么改某个设置,就保持原样不要动它哦~
|
||||||
|
- 记得要先有AI服务的密钥,不然机器人就不能和你说话了呢
|
||||||
|
- 修改完配置后要重启机器人才能生效喵~
|
||||||
154
docs/installation_standard.md
Normal file
154
docs/installation_standard.md
Normal file
@@ -0,0 +1,154 @@
|
|||||||
|
# 🔧 配置指南
|
||||||
|
|
||||||
|
## 简介
|
||||||
|
|
||||||
|
本项目需要配置两个主要文件:
|
||||||
|
1. `.env.prod` - 配置API服务和系统环境
|
||||||
|
2. `bot_config.toml` - 配置机器人行为和模型
|
||||||
|
|
||||||
|
## API配置说明
|
||||||
|
|
||||||
|
`.env.prod`和`bot_config.toml`中的API配置关系如下:
|
||||||
|
|
||||||
|
### 在.env.prod中定义API凭证:
|
||||||
|
```ini
|
||||||
|
# API凭证配置
|
||||||
|
SILICONFLOW_KEY=your_key # 硅基流动API密钥
|
||||||
|
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/ # 硅基流动API地址
|
||||||
|
|
||||||
|
DEEP_SEEK_KEY=your_key # DeepSeek API密钥
|
||||||
|
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1 # DeepSeek API地址
|
||||||
|
|
||||||
|
CHAT_ANY_WHERE_KEY=your_key # ChatAnyWhere API密钥
|
||||||
|
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1 # ChatAnyWhere API地址
|
||||||
|
```
|
||||||
|
|
||||||
|
### 在bot_config.toml中引用API凭证:
|
||||||
|
```toml
|
||||||
|
[model.llm_reasoning]
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL" # 引用.env.prod中定义的地址
|
||||||
|
key = "SILICONFLOW_KEY" # 引用.env.prod中定义的密钥
|
||||||
|
```
|
||||||
|
|
||||||
|
如需切换到其他API服务,只需修改引用:
|
||||||
|
```toml
|
||||||
|
[model.llm_reasoning]
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||||
|
base_url = "DEEP_SEEK_BASE_URL" # 切换为DeepSeek服务
|
||||||
|
key = "DEEP_SEEK_KEY" # 使用DeepSeek密钥
|
||||||
|
```
|
||||||
|
|
||||||
|
## 配置文件详解
|
||||||
|
|
||||||
|
### 环境配置文件 (.env.prod)
|
||||||
|
```ini
|
||||||
|
# API配置
|
||||||
|
SILICONFLOW_KEY=your_key
|
||||||
|
SILICONFLOW_BASE_URL=https://api.siliconflow.cn/v1/
|
||||||
|
DEEP_SEEK_KEY=your_key
|
||||||
|
DEEP_SEEK_BASE_URL=https://api.deepseek.com/v1
|
||||||
|
CHAT_ANY_WHERE_KEY=your_key
|
||||||
|
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
|
||||||
|
|
||||||
|
# 服务配置
|
||||||
|
HOST=127.0.0.1
|
||||||
|
PORT=8080
|
||||||
|
|
||||||
|
# 数据库配置
|
||||||
|
MONGODB_HOST=127.0.0.1
|
||||||
|
MONGODB_PORT=27017
|
||||||
|
DATABASE_NAME=MegBot
|
||||||
|
MONGODB_USERNAME = "" # 数据库用户名
|
||||||
|
MONGODB_PASSWORD = "" # 数据库密码
|
||||||
|
MONGODB_AUTH_SOURCE = "" # 认证数据库
|
||||||
|
|
||||||
|
# 插件配置
|
||||||
|
PLUGINS=["src2.plugins.chat"]
|
||||||
|
```
|
||||||
|
|
||||||
|
### 机器人配置文件 (bot_config.toml)
|
||||||
|
```toml
|
||||||
|
[bot]
|
||||||
|
qq = "机器人QQ号" # 必填
|
||||||
|
nickname = "麦麦" # 机器人昵称
|
||||||
|
|
||||||
|
[personality]
|
||||||
|
prompt_personality = [
|
||||||
|
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧",
|
||||||
|
"是一个女大学生,你有黑色头发,你会刷小红书"
|
||||||
|
]
|
||||||
|
prompt_schedule = "一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||||
|
|
||||||
|
[message]
|
||||||
|
min_text_length = 2 # 最小回复长度
|
||||||
|
max_context_size = 15 # 上下文记忆条数
|
||||||
|
emoji_chance = 0.2 # 表情使用概率
|
||||||
|
ban_words = [] # 禁用词列表
|
||||||
|
|
||||||
|
[emoji]
|
||||||
|
auto_save = true # 自动保存表情
|
||||||
|
enable_check = false # 启用表情审核
|
||||||
|
check_prompt = "符合公序良俗"
|
||||||
|
|
||||||
|
[groups]
|
||||||
|
talk_allowed = [] # 允许对话的群号
|
||||||
|
talk_frequency_down = [] # 降低回复频率的群号
|
||||||
|
ban_user_id = [] # 禁止回复的用户QQ号
|
||||||
|
|
||||||
|
[others]
|
||||||
|
enable_advance_output = true # 启用详细日志
|
||||||
|
enable_kuuki_read = true # 启用场景理解
|
||||||
|
|
||||||
|
# 模型配置
|
||||||
|
[model.llm_reasoning] # 推理模型
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.llm_reasoning_minor] # 轻量推理模型
|
||||||
|
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.llm_normal] # 对话模型
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.llm_normal_minor] # 备用对话模型
|
||||||
|
name = "deepseek-ai/DeepSeek-V2.5"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.vlm] # 图像识别模型
|
||||||
|
name = "deepseek-ai/deepseek-vl2"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.embedding] # 文本向量模型
|
||||||
|
name = "BAAI/bge-m3"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
|
||||||
|
[topic.llm_topic]
|
||||||
|
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
```
|
||||||
|
|
||||||
|
## 注意事项
|
||||||
|
|
||||||
|
1. API密钥安全:
|
||||||
|
- 妥善保管API密钥
|
||||||
|
- 不要将含有密钥的配置文件上传至公开仓库
|
||||||
|
|
||||||
|
2. 配置修改:
|
||||||
|
- 修改配置后需重启服务
|
||||||
|
- 使用默认服务(硅基流动)时无需修改模型配置
|
||||||
|
- QQ号和群号使用数字格式(机器人QQ号除外)
|
||||||
|
|
||||||
|
3. 其他说明:
|
||||||
|
- 项目处于测试阶段,可能存在未知问题
|
||||||
|
- 建议初次使用保持默认配置
|
||||||
100
docs/manual_deploy.md
Normal file
100
docs/manual_deploy.md
Normal file
@@ -0,0 +1,100 @@
|
|||||||
|
# 📦 如何手动部署MaiMbot麦麦?
|
||||||
|
|
||||||
|
## 你需要什么?
|
||||||
|
|
||||||
|
- 一台电脑,能够上网的那种
|
||||||
|
|
||||||
|
- 一个QQ小号(QQ框架的使用可能导致qq被风控,严重(小概率)可能会导致账号封禁,强烈不推荐使用大号)
|
||||||
|
|
||||||
|
- 可用的大模型API
|
||||||
|
|
||||||
|
- 一个AI助手,网上随便搜一家打开来用都行,可以帮你解决一些不懂的问题
|
||||||
|
|
||||||
|
## 你需要知道什么?
|
||||||
|
|
||||||
|
- 如何正确向AI助手提问,来学习新知识
|
||||||
|
|
||||||
|
- Python是什么
|
||||||
|
|
||||||
|
- Python的虚拟环境是什么?如何创建虚拟环境
|
||||||
|
|
||||||
|
- 命令行是什么
|
||||||
|
|
||||||
|
- 数据库是什么?如何安装并启动MongoDB
|
||||||
|
|
||||||
|
- 如何运行一个QQ机器人,以及NapCat框架是什么
|
||||||
|
|
||||||
|
## 如果准备好了,就可以开始部署了
|
||||||
|
|
||||||
|
### 1️⃣ **首先,我们需要安装正确版本的Python**
|
||||||
|
|
||||||
|
在创建虚拟环境之前,请确保你的电脑上安装了Python 3.9及以上版本。如果没有,可以按以下步骤安装:
|
||||||
|
|
||||||
|
1. 访问Python官网下载页面:https://www.python.org/downloads/release/python-3913/
|
||||||
|
2. 下载Windows安装程序 (64-bit): `python-3.9.13-amd64.exe`
|
||||||
|
3. 运行安装程序,并确保勾选"Add Python 3.9 to PATH"选项
|
||||||
|
4. 点击"Install Now"开始安装
|
||||||
|
|
||||||
|
或者使用PowerShell自动下载安装(需要管理员权限):
|
||||||
|
```powershell
|
||||||
|
# 下载并安装Python 3.9.13
|
||||||
|
$pythonUrl = "https://www.python.org/ftp/python/3.9.13/python-3.9.13-amd64.exe"
|
||||||
|
$pythonInstaller = "$env:TEMP\python-3.9.13-amd64.exe"
|
||||||
|
Invoke-WebRequest -Uri $pythonUrl -OutFile $pythonInstaller
|
||||||
|
Start-Process -Wait -FilePath $pythonInstaller -ArgumentList "/quiet", "InstallAllUsers=0", "PrependPath=1" -Verb RunAs
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2️⃣ **创建Python虚拟环境来运行程序**
|
||||||
|
|
||||||
|
你可以选择使用以下两种方法之一来创建Python环境:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# ---方法1:使用venv(Python自带)
|
||||||
|
# 在命令行中创建虚拟环境(环境名为maimbot)
|
||||||
|
# 这会让你在运行命令的目录下创建一个虚拟环境
|
||||||
|
# 请确保你已通过cd命令前往到了对应路径,不然之后你可能找不到你的python环境
|
||||||
|
python -m venv maimbot
|
||||||
|
|
||||||
|
maimbot\\Scripts\\activate
|
||||||
|
|
||||||
|
# 安装依赖
|
||||||
|
pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
```bash
|
||||||
|
# ---方法2:使用conda
|
||||||
|
# 创建一个新的conda环境(环境名为maimbot)
|
||||||
|
# Python版本为3.9
|
||||||
|
conda create -n maimbot python=3.9
|
||||||
|
|
||||||
|
# 激活环境
|
||||||
|
conda activate maimbot
|
||||||
|
|
||||||
|
# 安装依赖
|
||||||
|
pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2️⃣ **然后你需要启动MongoDB数据库,来存储信息**
|
||||||
|
- 安装并启动MongoDB服务
|
||||||
|
- 默认连接本地27017端口
|
||||||
|
|
||||||
|
### 3️⃣ **配置NapCat,让麦麦bot与qq取得联系**
|
||||||
|
- 安装并登录NapCat(用你的qq小号)
|
||||||
|
- 添加反向WS:`ws://localhost:8080/onebot/v11/ws`
|
||||||
|
|
||||||
|
### 4️⃣ **配置文件设置,让麦麦Bot正常工作**
|
||||||
|
- 修改环境配置文件:`.env.prod`
|
||||||
|
- 修改机器人配置文件:`bot_config.toml`
|
||||||
|
|
||||||
|
### 5️⃣ **启动麦麦机器人**
|
||||||
|
- 打开命令行,cd到对应路径
|
||||||
|
```bash
|
||||||
|
nb run
|
||||||
|
```
|
||||||
|
- 或者cd到对应路径后
|
||||||
|
```bash
|
||||||
|
python bot.py
|
||||||
|
```
|
||||||
|
|
||||||
|
### 6️⃣ **其他组件(可选)**
|
||||||
|
- `run_thingking.bat`: 启动可视化推理界面(未完善)
|
||||||
|
- 直接运行 knowledge.py生成知识库
|
||||||
61
flake.lock
generated
Normal file
61
flake.lock
generated
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
{
|
||||||
|
"nodes": {
|
||||||
|
"flake-utils": {
|
||||||
|
"inputs": {
|
||||||
|
"systems": "systems"
|
||||||
|
},
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1731533236,
|
||||||
|
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "flake-utils",
|
||||||
|
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "numtide",
|
||||||
|
"repo": "flake-utils",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nixpkgs": {
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1741196730,
|
||||||
|
"narHash": "sha256-0Sj6ZKjCpQMfWnN0NURqRCQn2ob7YtXTAOTwCuz7fkA=",
|
||||||
|
"owner": "NixOS",
|
||||||
|
"repo": "nixpkgs",
|
||||||
|
"rev": "48913d8f9127ea6530a2a2f1bd4daa1b8685d8a3",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "NixOS",
|
||||||
|
"ref": "nixos-24.11",
|
||||||
|
"repo": "nixpkgs",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"root": {
|
||||||
|
"inputs": {
|
||||||
|
"flake-utils": "flake-utils",
|
||||||
|
"nixpkgs": "nixpkgs"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"systems": {
|
||||||
|
"locked": {
|
||||||
|
"lastModified": 1681028828,
|
||||||
|
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
||||||
|
"owner": "nix-systems",
|
||||||
|
"repo": "default",
|
||||||
|
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
||||||
|
"type": "github"
|
||||||
|
},
|
||||||
|
"original": {
|
||||||
|
"owner": "nix-systems",
|
||||||
|
"repo": "default",
|
||||||
|
"type": "github"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"root": "root",
|
||||||
|
"version": 7
|
||||||
|
}
|
||||||
61
flake.nix
Normal file
61
flake.nix
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
{
|
||||||
|
description = "MaiMBot Nix Dev Env";
|
||||||
|
# 本配置仅方便用于开发,但是因为 nb-cli 上游打包中并未包含 nonebot2,因此目前本配置并不能用于运行和调试
|
||||||
|
|
||||||
|
inputs = {
|
||||||
|
nixpkgs.url = "github:NixOS/nixpkgs/nixos-24.11";
|
||||||
|
flake-utils.url = "github:numtide/flake-utils";
|
||||||
|
};
|
||||||
|
|
||||||
|
outputs =
|
||||||
|
{
|
||||||
|
self,
|
||||||
|
nixpkgs,
|
||||||
|
flake-utils,
|
||||||
|
}:
|
||||||
|
flake-utils.lib.eachDefaultSystem (
|
||||||
|
system:
|
||||||
|
let
|
||||||
|
pkgs = import nixpkgs {
|
||||||
|
inherit system;
|
||||||
|
};
|
||||||
|
|
||||||
|
pythonEnv = pkgs.python3.withPackages (
|
||||||
|
ps: with ps; [
|
||||||
|
pymongo
|
||||||
|
python-dotenv
|
||||||
|
pydantic
|
||||||
|
jieba
|
||||||
|
openai
|
||||||
|
aiohttp
|
||||||
|
requests
|
||||||
|
urllib3
|
||||||
|
numpy
|
||||||
|
pandas
|
||||||
|
matplotlib
|
||||||
|
networkx
|
||||||
|
python-dateutil
|
||||||
|
APScheduler
|
||||||
|
loguru
|
||||||
|
tomli
|
||||||
|
customtkinter
|
||||||
|
colorama
|
||||||
|
pypinyin
|
||||||
|
pillow
|
||||||
|
setuptools
|
||||||
|
]
|
||||||
|
);
|
||||||
|
in
|
||||||
|
{
|
||||||
|
devShell = pkgs.mkShell {
|
||||||
|
buildInputs = [
|
||||||
|
pythonEnv
|
||||||
|
pkgs.nb-cli
|
||||||
|
];
|
||||||
|
|
||||||
|
shellHook = ''
|
||||||
|
'';
|
||||||
|
};
|
||||||
|
}
|
||||||
|
);
|
||||||
|
}
|
||||||
74
llm_statistics.txt
Normal file
74
llm_statistics.txt
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
LLM请求统计报告 (生成时间: 2025-03-07 20:38:57)
|
||||||
|
==================================================
|
||||||
|
|
||||||
|
所有时间统计
|
||||||
|
======
|
||||||
|
总请求数: 858
|
||||||
|
总Token数: 285415
|
||||||
|
总花费: ¥0.3309
|
||||||
|
|
||||||
|
按模型统计:
|
||||||
|
- Pro/Qwen/Qwen2-VL-7B-Instruct: 67次 (花费: ¥0.0272)
|
||||||
|
- Pro/Qwen/Qwen2.5-7B-Instruct: 646次 (花费: ¥0.0718)
|
||||||
|
- Pro/deepseek-ai/DeepSeek-V3: 9次 (花费: ¥0.0193)
|
||||||
|
- Qwen/QwQ-32B: 29次 (花费: ¥0.1246)
|
||||||
|
- Qwen/Qwen2.5-32B-Instruct: 55次 (花费: ¥0.0771)
|
||||||
|
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B: 3次 (花费: ¥0.0067)
|
||||||
|
- deepseek-ai/DeepSeek-V2.5: 49次 (花费: ¥0.0043)
|
||||||
|
|
||||||
|
按请求类型统计:
|
||||||
|
- chat: 858次 (花费: ¥0.3309)
|
||||||
|
|
||||||
|
最近7天统计
|
||||||
|
======
|
||||||
|
总请求数: 858
|
||||||
|
总Token数: 285415
|
||||||
|
总花费: ¥0.3309
|
||||||
|
|
||||||
|
按模型统计:
|
||||||
|
- Pro/Qwen/Qwen2-VL-7B-Instruct: 67次 (花费: ¥0.0272)
|
||||||
|
- Pro/Qwen/Qwen2.5-7B-Instruct: 646次 (花费: ¥0.0718)
|
||||||
|
- Pro/deepseek-ai/DeepSeek-V3: 9次 (花费: ¥0.0193)
|
||||||
|
- Qwen/QwQ-32B: 29次 (花费: ¥0.1246)
|
||||||
|
- Qwen/Qwen2.5-32B-Instruct: 55次 (花费: ¥0.0771)
|
||||||
|
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B: 3次 (花费: ¥0.0067)
|
||||||
|
- deepseek-ai/DeepSeek-V2.5: 49次 (花费: ¥0.0043)
|
||||||
|
|
||||||
|
按请求类型统计:
|
||||||
|
- chat: 858次 (花费: ¥0.3309)
|
||||||
|
|
||||||
|
最近24小时统计
|
||||||
|
========
|
||||||
|
总请求数: 858
|
||||||
|
总Token数: 285415
|
||||||
|
总花费: ¥0.3309
|
||||||
|
|
||||||
|
按模型统计:
|
||||||
|
- Pro/Qwen/Qwen2-VL-7B-Instruct: 67次 (花费: ¥0.0272)
|
||||||
|
- Pro/Qwen/Qwen2.5-7B-Instruct: 646次 (花费: ¥0.0718)
|
||||||
|
- Pro/deepseek-ai/DeepSeek-V3: 9次 (花费: ¥0.0193)
|
||||||
|
- Qwen/QwQ-32B: 29次 (花费: ¥0.1246)
|
||||||
|
- Qwen/Qwen2.5-32B-Instruct: 55次 (花费: ¥0.0771)
|
||||||
|
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B: 3次 (花费: ¥0.0067)
|
||||||
|
- deepseek-ai/DeepSeek-V2.5: 49次 (花费: ¥0.0043)
|
||||||
|
|
||||||
|
按请求类型统计:
|
||||||
|
- chat: 858次 (花费: ¥0.3309)
|
||||||
|
|
||||||
|
最近1小时统计
|
||||||
|
=======
|
||||||
|
总请求数: 858
|
||||||
|
总Token数: 285415
|
||||||
|
总花费: ¥0.3309
|
||||||
|
|
||||||
|
按模型统计:
|
||||||
|
- Pro/Qwen/Qwen2-VL-7B-Instruct: 67次 (花费: ¥0.0272)
|
||||||
|
- Pro/Qwen/Qwen2.5-7B-Instruct: 646次 (花费: ¥0.0718)
|
||||||
|
- Pro/deepseek-ai/DeepSeek-V3: 9次 (花费: ¥0.0193)
|
||||||
|
- Qwen/QwQ-32B: 29次 (花费: ¥0.1246)
|
||||||
|
- Qwen/Qwen2.5-32B-Instruct: 55次 (花费: ¥0.0771)
|
||||||
|
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B: 3次 (花费: ¥0.0067)
|
||||||
|
- deepseek-ai/DeepSeek-V2.5: 49次 (花费: ¥0.0043)
|
||||||
|
|
||||||
|
按请求类型统计:
|
||||||
|
- chat: 858次 (花费: ¥0.3309)
|
||||||
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
@@ -1,5 +1,5 @@
|
|||||||
chcp 65001
|
chcp 65001
|
||||||
call conda activate niuniu
|
call conda activate maimbot
|
||||||
cd .
|
cd .
|
||||||
|
|
||||||
REM 执行nb run命令
|
REM 执行nb run命令
|
||||||
|
|||||||
67
run_windows.bat
Normal file
67
run_windows.bat
Normal file
@@ -0,0 +1,67 @@
|
|||||||
|
@echo off
|
||||||
|
setlocal enabledelayedexpansion
|
||||||
|
chcp 65001
|
||||||
|
|
||||||
|
REM 修正路径获取逻辑
|
||||||
|
cd /d "%~dp0" || (
|
||||||
|
echo 错误:切换目录失败
|
||||||
|
exit /b 1
|
||||||
|
)
|
||||||
|
|
||||||
|
if not exist "venv\" (
|
||||||
|
echo 正在初始化虚拟环境...
|
||||||
|
|
||||||
|
where python >nul 2>&1
|
||||||
|
if %errorlevel% neq 0 (
|
||||||
|
echo 未找到Python解释器
|
||||||
|
exit /b 1
|
||||||
|
)
|
||||||
|
|
||||||
|
for /f "tokens=2" %%a in ('python --version 2^>^&1') do set version=%%a
|
||||||
|
for /f "tokens=1,2 delims=." %%b in ("!version!") do (
|
||||||
|
set major=%%b
|
||||||
|
set minor=%%c
|
||||||
|
)
|
||||||
|
|
||||||
|
if !major! lss 3 (
|
||||||
|
echo 需要Python大于等于3.0,当前版本 !version!
|
||||||
|
exit /b 1
|
||||||
|
)
|
||||||
|
|
||||||
|
if !major! equ 3 if !minor! lss 9 (
|
||||||
|
echo 需要Python大于等于3.9,当前版本 !version!
|
||||||
|
exit /b 1
|
||||||
|
)
|
||||||
|
|
||||||
|
echo 正在安装virtualenv...
|
||||||
|
python -m pip install virtualenv || (
|
||||||
|
echo virtualenv安装失败
|
||||||
|
exit /b 1
|
||||||
|
)
|
||||||
|
|
||||||
|
echo 正在创建虚拟环境...
|
||||||
|
python -m virtualenv venv || (
|
||||||
|
echo 虚拟环境创建失败
|
||||||
|
exit /b 1
|
||||||
|
)
|
||||||
|
|
||||||
|
call venv\Scripts\activate.bat
|
||||||
|
|
||||||
|
echo 正在安装依赖...
|
||||||
|
pip install -r requirements.txt
|
||||||
|
) else (
|
||||||
|
call venv\Scripts\activate.bat
|
||||||
|
)
|
||||||
|
|
||||||
|
echo 当前代理设置:
|
||||||
|
echo HTTP_PROXY=%HTTP_PROXY%
|
||||||
|
echo HTTPS_PROXY=%HTTPS_PROXY%
|
||||||
|
|
||||||
|
set HTTP_PROXY=
|
||||||
|
set HTTPS_PROXY=
|
||||||
|
echo 代理已取消。
|
||||||
|
|
||||||
|
set no_proxy=0.0.0.0/32
|
||||||
|
|
||||||
|
call nb run
|
||||||
|
pause
|
||||||
@@ -14,7 +14,13 @@ from nonebot.rule import to_me
|
|||||||
from .bot import chat_bot
|
from .bot import chat_bot
|
||||||
from .emoji_manager import emoji_manager
|
from .emoji_manager import emoji_manager
|
||||||
import time
|
import time
|
||||||
|
from ..utils.statistic import LLMStatistics
|
||||||
|
|
||||||
|
# 创建LLM统计实例
|
||||||
|
llm_stats = LLMStatistics("llm_statistics.txt")
|
||||||
|
|
||||||
|
# 添加标志变量
|
||||||
|
_message_manager_started = False
|
||||||
|
|
||||||
# 获取驱动器
|
# 获取驱动器
|
||||||
driver = get_driver()
|
driver = get_driver()
|
||||||
@@ -55,6 +61,10 @@ scheduler = require("nonebot_plugin_apscheduler").scheduler
|
|||||||
@driver.on_startup
|
@driver.on_startup
|
||||||
async def start_background_tasks():
|
async def start_background_tasks():
|
||||||
"""启动后台任务"""
|
"""启动后台任务"""
|
||||||
|
# 启动LLM统计
|
||||||
|
llm_stats.start()
|
||||||
|
print("\033[1;32m[初始化]\033[0m LLM统计功能已启动")
|
||||||
|
|
||||||
# 只启动表情包管理任务
|
# 只启动表情包管理任务
|
||||||
asyncio.create_task(emoji_manager.start_periodic_check(interval_MINS=global_config.EMOJI_CHECK_INTERVAL))
|
asyncio.create_task(emoji_manager.start_periodic_check(interval_MINS=global_config.EMOJI_CHECK_INTERVAL))
|
||||||
await bot_schedule.initialize()
|
await bot_schedule.initialize()
|
||||||
@@ -70,18 +80,20 @@ async def init_relationships():
|
|||||||
@driver.on_bot_connect
|
@driver.on_bot_connect
|
||||||
async def _(bot: Bot):
|
async def _(bot: Bot):
|
||||||
"""Bot连接成功时的处理"""
|
"""Bot连接成功时的处理"""
|
||||||
|
global _message_manager_started
|
||||||
print(f"\033[1;38;5;208m-----------{global_config.BOT_NICKNAME}成功连接!-----------\033[0m")
|
print(f"\033[1;38;5;208m-----------{global_config.BOT_NICKNAME}成功连接!-----------\033[0m")
|
||||||
await willing_manager.ensure_started()
|
await willing_manager.ensure_started()
|
||||||
|
|
||||||
|
|
||||||
message_sender.set_bot(bot)
|
message_sender.set_bot(bot)
|
||||||
print("\033[1;38;5;208m-----------消息发送器已启动!-----------\033[0m")
|
print("\033[1;38;5;208m-----------消息发送器已启动!-----------\033[0m")
|
||||||
asyncio.create_task(message_manager.start_processor())
|
|
||||||
print("\033[1;38;5;208m-----------消息处理器已启动!-----------\033[0m")
|
if not _message_manager_started:
|
||||||
|
asyncio.create_task(message_manager.start_processor())
|
||||||
|
_message_manager_started = True
|
||||||
|
print("\033[1;38;5;208m-----------消息处理器已启动!-----------\033[0m")
|
||||||
|
|
||||||
asyncio.create_task(emoji_manager._periodic_scan(interval_MINS=global_config.EMOJI_REGISTER_INTERVAL))
|
asyncio.create_task(emoji_manager._periodic_scan(interval_MINS=global_config.EMOJI_REGISTER_INTERVAL))
|
||||||
print("\033[1;38;5;208m-----------开始偷表情包!-----------\033[0m")
|
print("\033[1;38;5;208m-----------开始偷表情包!-----------\033[0m")
|
||||||
# 启动消息发送控制任务
|
|
||||||
|
|
||||||
@group_msg.handle()
|
@group_msg.handle()
|
||||||
async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
|
async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
|
||||||
@@ -90,7 +102,7 @@ async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
|
|||||||
# 添加build_memory定时任务
|
# 添加build_memory定时任务
|
||||||
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory")
|
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory")
|
||||||
async def build_memory_task():
|
async def build_memory_task():
|
||||||
"""每30秒执行一次记忆构建"""
|
"""每build_memory_interval秒执行一次记忆构建"""
|
||||||
print("\033[1;32m[记忆构建]\033[0m -------------------------------------------开始构建记忆-------------------------------------------")
|
print("\033[1;32m[记忆构建]\033[0m -------------------------------------------开始构建记忆-------------------------------------------")
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
await hippocampus.operation_build_memory(chat_size=20)
|
await hippocampus.operation_build_memory(chat_size=20)
|
||||||
|
|||||||
@@ -15,7 +15,7 @@ from .message import Message_Thinking # 导入 Message_Thinking 类
|
|||||||
from .relationship_manager import relationship_manager
|
from .relationship_manager import relationship_manager
|
||||||
from .willing_manager import willing_manager # 导入意愿管理器
|
from .willing_manager import willing_manager # 导入意愿管理器
|
||||||
from .utils import is_mentioned_bot_in_txt, calculate_typing_time
|
from .utils import is_mentioned_bot_in_txt, calculate_typing_time
|
||||||
from ..memory_system.memory import memory_graph
|
from ..memory_system.memory import memory_graph,hippocampus
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
|
|
||||||
class ChatBot:
|
class ChatBot:
|
||||||
@@ -58,6 +58,7 @@ class ChatBot:
|
|||||||
plain_text=event.get_plaintext(),
|
plain_text=event.get_plaintext(),
|
||||||
reply_message=event.reply,
|
reply_message=event.reply,
|
||||||
)
|
)
|
||||||
|
await message.initialize()
|
||||||
|
|
||||||
# 过滤词
|
# 过滤词
|
||||||
for word in global_config.ban_words:
|
for word in global_config.ban_words:
|
||||||
@@ -70,24 +71,12 @@ class ChatBot:
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
topic=await topic_identifier.identify_topic_llm(message.processed_plain_text)
|
# topic=await topic_identifier.identify_topic_llm(message.processed_plain_text)
|
||||||
|
topic = ''
|
||||||
|
interested_rate = 0
|
||||||
# topic1 = topic_identifier.identify_topic_jieba(message.processed_plain_text)
|
interested_rate = await hippocampus.memory_activate_value(message.processed_plain_text)/100
|
||||||
# topic2 = await topic_identifier.identify_topic_llm(message.processed_plain_text)
|
print(f"\033[1;32m[记忆激活]\033[0m 对{message.processed_plain_text}的激活度:---------------------------------------{interested_rate}\n")
|
||||||
# topic3 = topic_identifier.identify_topic_snownlp(message.processed_plain_text)
|
# logger.info(f"\033[1;32m[主题识别]\033[0m 使用{global_config.topic_extract}主题: {topic}")
|
||||||
logger.info(f"\033[1;32m[主题识别]\033[0m 使用{global_config.topic_extract}主题: {topic}")
|
|
||||||
|
|
||||||
all_num = 0
|
|
||||||
interested_num = 0
|
|
||||||
if topic:
|
|
||||||
for current_topic in topic:
|
|
||||||
all_num += 1
|
|
||||||
first_layer_items, second_layer_items = memory_graph.get_related_item(current_topic, depth=2)
|
|
||||||
if first_layer_items:
|
|
||||||
interested_num += 1
|
|
||||||
print(f"\033[1;32m[前额叶]\033[0m 对|{current_topic}|有印象")
|
|
||||||
interested_rate = interested_num / all_num if all_num > 0 else 0
|
|
||||||
|
|
||||||
await self.storage.store_message(message, topic[0] if topic else None)
|
await self.storage.store_message(message, topic[0] if topic else None)
|
||||||
|
|
||||||
@@ -119,14 +108,9 @@ class ChatBot:
|
|||||||
|
|
||||||
willing_manager.change_reply_willing_sent(thinking_message.group_id)
|
willing_manager.change_reply_willing_sent(thinking_message.group_id)
|
||||||
|
|
||||||
response, emotion = await self.gpt.generate_response(message)
|
response,raw_content = await self.gpt.generate_response(message)
|
||||||
|
|
||||||
# if response is None:
|
|
||||||
# thinking_message.interupt=True
|
|
||||||
|
|
||||||
if response:
|
if response:
|
||||||
# print(f"\033[1;32m[思考结束]\033[0m 思考结束,已得到回复,开始回复")
|
|
||||||
# 找到并删除对应的thinking消息
|
|
||||||
container = message_manager.get_container(event.group_id)
|
container = message_manager.get_container(event.group_id)
|
||||||
thinking_message = None
|
thinking_message = None
|
||||||
# 找到message,删除
|
# 找到message,删除
|
||||||
@@ -134,7 +118,7 @@ class ChatBot:
|
|||||||
if isinstance(msg, Message_Thinking) and msg.message_id == think_id:
|
if isinstance(msg, Message_Thinking) and msg.message_id == think_id:
|
||||||
thinking_message = msg
|
thinking_message = msg
|
||||||
container.messages.remove(msg)
|
container.messages.remove(msg)
|
||||||
print(f"\033[1;32m[思考消息删除]\033[0m 已找到思考消息对象,开始删除")
|
# print(f"\033[1;32m[思考消息删除]\033[0m 已找到思考消息对象,开始删除")
|
||||||
break
|
break
|
||||||
|
|
||||||
#记录开始思考的时间,避免从思考到回复的时间太久
|
#记录开始思考的时间,避免从思考到回复的时间太久
|
||||||
@@ -144,6 +128,7 @@ class ChatBot:
|
|||||||
accu_typing_time = 0
|
accu_typing_time = 0
|
||||||
|
|
||||||
# print(f"\033[1;32m[开始回复]\033[0m 开始将回复1载入发送容器")
|
# print(f"\033[1;32m[开始回复]\033[0m 开始将回复1载入发送容器")
|
||||||
|
mark_head = False
|
||||||
for msg in response:
|
for msg in response:
|
||||||
# print(f"\033[1;32m[回复内容]\033[0m {msg}")
|
# print(f"\033[1;32m[回复内容]\033[0m {msg}")
|
||||||
#通过时间改变时间戳
|
#通过时间改变时间戳
|
||||||
@@ -164,15 +149,20 @@ class ChatBot:
|
|||||||
thinking_start_time=thinking_start_time, #记录了思考开始的时间
|
thinking_start_time=thinking_start_time, #记录了思考开始的时间
|
||||||
reply_message_id=message.message_id
|
reply_message_id=message.message_id
|
||||||
)
|
)
|
||||||
|
await bot_message.initialize()
|
||||||
|
if not mark_head:
|
||||||
|
bot_message.is_head = True
|
||||||
|
mark_head = True
|
||||||
message_set.add_message(bot_message)
|
message_set.add_message(bot_message)
|
||||||
|
|
||||||
#message_set 可以直接加入 message_manager
|
#message_set 可以直接加入 message_manager
|
||||||
print(f"\033[1;32m[回复]\033[0m 将回复载入发送容器")
|
# print(f"\033[1;32m[回复]\033[0m 将回复载入发送容器")
|
||||||
message_manager.add_message(message_set)
|
message_manager.add_message(message_set)
|
||||||
|
|
||||||
bot_response_time = tinking_time_point
|
bot_response_time = tinking_time_point
|
||||||
|
|
||||||
if random() < global_config.emoji_chance:
|
if random() < global_config.emoji_chance:
|
||||||
emoji_path = await emoji_manager.get_emoji_for_emotion(emotion)
|
emoji_path,discription = await emoji_manager.get_emoji_for_text(response)
|
||||||
if emoji_path:
|
if emoji_path:
|
||||||
emoji_cq = CQCode.create_emoji_cq(emoji_path)
|
emoji_cq = CQCode.create_emoji_cq(emoji_path)
|
||||||
|
|
||||||
@@ -188,6 +178,7 @@ class ChatBot:
|
|||||||
raw_message=emoji_cq,
|
raw_message=emoji_cq,
|
||||||
plain_text=emoji_cq,
|
plain_text=emoji_cq,
|
||||||
processed_plain_text=emoji_cq,
|
processed_plain_text=emoji_cq,
|
||||||
|
detailed_plain_text=discription,
|
||||||
user_nickname=global_config.BOT_NICKNAME,
|
user_nickname=global_config.BOT_NICKNAME,
|
||||||
group_name=message.group_name,
|
group_name=message.group_name,
|
||||||
time=bot_response_time,
|
time=bot_response_time,
|
||||||
@@ -196,9 +187,16 @@ class ChatBot:
|
|||||||
thinking_start_time=thinking_start_time,
|
thinking_start_time=thinking_start_time,
|
||||||
# reply_message_id=message.message_id
|
# reply_message_id=message.message_id
|
||||||
)
|
)
|
||||||
|
await bot_message.initialize()
|
||||||
message_manager.add_message(bot_message)
|
message_manager.add_message(bot_message)
|
||||||
|
emotion = await self.gpt._get_emotion_tags(raw_content)
|
||||||
|
print(f"为 '{response}' 获取到的情感标签为:{emotion}")
|
||||||
|
valuedict={
|
||||||
|
'happy':0.5,'angry':-1,'sad':-0.5,'surprised':0.5,'disgusted':-1.5,'fearful':-0.25,'neutral':0.25
|
||||||
|
}
|
||||||
|
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
|
||||||
|
|
||||||
willing_manager.change_reply_willing_after_sent(event.group_id)
|
# willing_manager.change_reply_willing_after_sent(event.group_id)
|
||||||
|
|
||||||
# 创建全局ChatBot实例
|
# 创建全局ChatBot实例
|
||||||
chat_bot = ChatBot()
|
chat_bot = ChatBot()
|
||||||
@@ -30,23 +30,26 @@ class BotConfig:
|
|||||||
forget_memory_interval: int = 300 # 记忆遗忘间隔(秒)
|
forget_memory_interval: int = 300 # 记忆遗忘间隔(秒)
|
||||||
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
|
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
|
||||||
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
|
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
|
||||||
|
EMOJI_SAVE: bool = True # 偷表情包
|
||||||
|
EMOJI_CHECK: bool = False #是否开启过滤
|
||||||
|
EMOJI_CHECK_PROMPT: str = "符合公序良俗" # 表情包过滤要求
|
||||||
|
|
||||||
ban_words = set()
|
ban_words = set()
|
||||||
|
|
||||||
|
max_response_length: int = 1024 # 最大回复长度
|
||||||
|
|
||||||
# 模型配置
|
# 模型配置
|
||||||
llm_reasoning: Dict[str, str] = field(default_factory=lambda: {})
|
llm_reasoning: Dict[str, str] = field(default_factory=lambda: {})
|
||||||
llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
|
llm_reasoning_minor: Dict[str, str] = field(default_factory=lambda: {})
|
||||||
llm_normal: Dict[str, str] = field(default_factory=lambda: {})
|
llm_normal: Dict[str, str] = field(default_factory=lambda: {})
|
||||||
llm_normal_minor: Dict[str, str] = field(default_factory=lambda: {})
|
llm_normal_minor: Dict[str, str] = field(default_factory=lambda: {})
|
||||||
|
llm_topic_judge: Dict[str, str] = field(default_factory=lambda: {})
|
||||||
|
llm_summary_by_topic: Dict[str, str] = field(default_factory=lambda: {})
|
||||||
|
llm_emotion_judge: Dict[str, str] = field(default_factory=lambda: {})
|
||||||
embedding: Dict[str, str] = field(default_factory=lambda: {})
|
embedding: Dict[str, str] = field(default_factory=lambda: {})
|
||||||
vlm: Dict[str, str] = field(default_factory=lambda: {})
|
vlm: Dict[str, str] = field(default_factory=lambda: {})
|
||||||
|
moderation: Dict[str, str] = field(default_factory=lambda: {})
|
||||||
|
|
||||||
# 主题提取配置
|
|
||||||
topic_extract: str = 'snownlp' # 只支持jieba,snownlp,llm
|
|
||||||
llm_topic_extract: Dict[str, str] = field(default_factory=lambda: {})
|
|
||||||
|
|
||||||
API_USING: str = "siliconflow" # 使用的API
|
|
||||||
API_PAID: bool = False # 是否使用付费API
|
|
||||||
MODEL_R1_PROBABILITY: float = 0.8 # R1模型概率
|
MODEL_R1_PROBABILITY: float = 0.8 # R1模型概率
|
||||||
MODEL_V3_PROBABILITY: float = 0.1 # V3模型概率
|
MODEL_V3_PROBABILITY: float = 0.1 # V3模型概率
|
||||||
MODEL_R1_DISTILL_PROBABILITY: float = 0.1 # R1蒸馏模型概率
|
MODEL_R1_DISTILL_PROBABILITY: float = 0.1 # R1蒸馏模型概率
|
||||||
@@ -93,6 +96,9 @@ class BotConfig:
|
|||||||
emoji_config = toml_dict["emoji"]
|
emoji_config = toml_dict["emoji"]
|
||||||
config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL)
|
config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL)
|
||||||
config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL)
|
config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL)
|
||||||
|
config.EMOJI_CHECK_PROMPT = emoji_config.get('check_prompt',config.EMOJI_CHECK_PROMPT)
|
||||||
|
config.EMOJI_SAVE = emoji_config.get('auto_save',config.EMOJI_SAVE)
|
||||||
|
config.EMOJI_CHECK = emoji_config.get('enable_check',config.EMOJI_CHECK)
|
||||||
|
|
||||||
if "cq_code" in toml_dict:
|
if "cq_code" in toml_dict:
|
||||||
cq_code_config = toml_dict["cq_code"]
|
cq_code_config = toml_dict["cq_code"]
|
||||||
@@ -110,8 +116,7 @@ class BotConfig:
|
|||||||
config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
|
config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
|
||||||
config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
|
config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
|
||||||
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get("model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY)
|
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get("model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY)
|
||||||
config.API_USING = response_config.get("api_using", config.API_USING)
|
config.max_response_length = response_config.get("max_response_length", config.max_response_length)
|
||||||
config.API_PAID = response_config.get("api_paid", config.API_PAID)
|
|
||||||
|
|
||||||
# 加载模型配置
|
# 加载模型配置
|
||||||
if "model" in toml_dict:
|
if "model" in toml_dict:
|
||||||
@@ -125,25 +130,27 @@ class BotConfig:
|
|||||||
|
|
||||||
if "llm_normal" in model_config:
|
if "llm_normal" in model_config:
|
||||||
config.llm_normal = model_config["llm_normal"]
|
config.llm_normal = model_config["llm_normal"]
|
||||||
config.llm_topic_extract = config.llm_normal
|
|
||||||
|
|
||||||
if "llm_normal_minor" in model_config:
|
if "llm_normal_minor" in model_config:
|
||||||
config.llm_normal_minor = model_config["llm_normal_minor"]
|
config.llm_normal_minor = model_config["llm_normal_minor"]
|
||||||
|
|
||||||
|
if "llm_topic_judge" in model_config:
|
||||||
|
config.llm_topic_judge = model_config["llm_topic_judge"]
|
||||||
|
|
||||||
|
if "llm_summary_by_topic" in model_config:
|
||||||
|
config.llm_summary_by_topic = model_config["llm_summary_by_topic"]
|
||||||
|
|
||||||
|
if "llm_emotion_judge" in model_config:
|
||||||
|
config.llm_emotion_judge = model_config["llm_emotion_judge"]
|
||||||
|
|
||||||
if "vlm" in model_config:
|
if "vlm" in model_config:
|
||||||
config.vlm = model_config["vlm"]
|
config.vlm = model_config["vlm"]
|
||||||
|
|
||||||
if "embedding" in model_config:
|
if "embedding" in model_config:
|
||||||
config.embedding = model_config["embedding"]
|
config.embedding = model_config["embedding"]
|
||||||
|
|
||||||
if 'topic' in toml_dict:
|
if "moderation" in model_config:
|
||||||
topic_config=toml_dict['topic']
|
config.moderation = model_config["moderation"]
|
||||||
if 'topic_extract' in topic_config:
|
|
||||||
config.topic_extract=topic_config.get('topic_extract',config.topic_extract)
|
|
||||||
logger.info(f"载入自定义主题提取为{config.topic_extract}")
|
|
||||||
if config.topic_extract=='llm' and 'llm_topic' in topic_config:
|
|
||||||
config.llm_topic_extract=topic_config['llm_topic']
|
|
||||||
logger.info(f"载入自定义主题提取模型为{config.llm_topic_extract['name']}")
|
|
||||||
|
|
||||||
# 消息配置
|
# 消息配置
|
||||||
if "message" in toml_dict:
|
if "message" in toml_dict:
|
||||||
@@ -178,13 +185,13 @@ class BotConfig:
|
|||||||
|
|
||||||
bot_config_floder_path = BotConfig.get_config_dir()
|
bot_config_floder_path = BotConfig.get_config_dir()
|
||||||
print(f"正在品鉴配置文件目录: {bot_config_floder_path}")
|
print(f"正在品鉴配置文件目录: {bot_config_floder_path}")
|
||||||
bot_config_path = os.path.join(bot_config_floder_path, "bot_config_dev.toml")
|
bot_config_path = os.path.join(bot_config_floder_path, "bot_config.toml")
|
||||||
if not os.path.exists(bot_config_path):
|
if os.path.exists(bot_config_path):
|
||||||
# 如果开发环境配置文件不存在,则使用默认配置文件
|
# 如果开发环境配置文件不存在,则使用默认配置文件
|
||||||
bot_config_path = os.path.join(bot_config_floder_path, "bot_config.toml")
|
print(f"异常的新鲜,异常的美味: {bot_config_path}")
|
||||||
logger.info("使用bot配置文件")
|
logger.info("使用bot配置文件")
|
||||||
else:
|
else:
|
||||||
logger.info("已找到开发bot配置文件")
|
logger.info("没有找到美味")
|
||||||
|
|
||||||
global_config = BotConfig.load_config(config_path=bot_config_path)
|
global_config = BotConfig.load_config(config_path=bot_config_path)
|
||||||
|
|
||||||
|
|||||||
@@ -10,12 +10,12 @@ from nonebot.adapters.onebot.v11 import Bot
|
|||||||
from .config import global_config
|
from .config import global_config
|
||||||
import time
|
import time
|
||||||
import asyncio
|
import asyncio
|
||||||
from .utils_image import storage_image,storage_emoji
|
from .utils_image import storage_image, storage_emoji
|
||||||
from .utils_user import get_user_nickname
|
from .utils_user import get_user_nickname
|
||||||
from ..models.utils_model import LLM_request
|
from ..models.utils_model import LLM_request
|
||||||
from .mapper import emojimapper
|
from .mapper import emojimapper
|
||||||
#解析各种CQ码
|
# 解析各种CQ码
|
||||||
#包含CQ码类
|
# 包含CQ码类
|
||||||
import urllib3
|
import urllib3
|
||||||
from urllib3.util import create_urllib3_context
|
from urllib3.util import create_urllib3_context
|
||||||
from nonebot import get_driver
|
from nonebot import get_driver
|
||||||
@@ -28,6 +28,7 @@ ctx = create_urllib3_context()
|
|||||||
ctx.load_default_certs()
|
ctx.load_default_certs()
|
||||||
ctx.set_ciphers("AES128-GCM-SHA256")
|
ctx.set_ciphers("AES128-GCM-SHA256")
|
||||||
|
|
||||||
|
|
||||||
class TencentSSLAdapter(requests.adapters.HTTPAdapter):
|
class TencentSSLAdapter(requests.adapters.HTTPAdapter):
|
||||||
def __init__(self, ssl_context=None, **kwargs):
|
def __init__(self, ssl_context=None, **kwargs):
|
||||||
self.ssl_context = ssl_context
|
self.ssl_context = ssl_context
|
||||||
@@ -38,6 +39,7 @@ class TencentSSLAdapter(requests.adapters.HTTPAdapter):
|
|||||||
num_pools=connections, maxsize=maxsize,
|
num_pools=connections, maxsize=maxsize,
|
||||||
block=block, ssl_context=self.ssl_context)
|
block=block, ssl_context=self.ssl_context)
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class CQCode:
|
class CQCode:
|
||||||
"""
|
"""
|
||||||
@@ -65,15 +67,15 @@ class CQCode:
|
|||||||
"""初始化LLM实例"""
|
"""初始化LLM实例"""
|
||||||
self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=300)
|
self._llm = LLM_request(model=global_config.vlm, temperature=0.4, max_tokens=300)
|
||||||
|
|
||||||
def translate(self):
|
async def translate(self):
|
||||||
"""根据CQ码类型进行相应的翻译处理"""
|
"""根据CQ码类型进行相应的翻译处理"""
|
||||||
if self.type == 'text':
|
if self.type == 'text':
|
||||||
self.translated_plain_text = self.params.get('text', '')
|
self.translated_plain_text = self.params.get('text', '')
|
||||||
elif self.type == 'image':
|
elif self.type == 'image':
|
||||||
if self.params.get('sub_type') == '0':
|
if self.params.get('sub_type') == '0':
|
||||||
self.translated_plain_text = self.translate_image()
|
self.translated_plain_text = await self.translate_image()
|
||||||
else:
|
else:
|
||||||
self.translated_plain_text = self.translate_emoji()
|
self.translated_plain_text = await self.translate_emoji()
|
||||||
elif self.type == 'at':
|
elif self.type == 'at':
|
||||||
user_nickname = get_user_nickname(self.params.get('qq', ''))
|
user_nickname = get_user_nickname(self.params.get('qq', ''))
|
||||||
if user_nickname:
|
if user_nickname:
|
||||||
@@ -81,13 +83,13 @@ class CQCode:
|
|||||||
else:
|
else:
|
||||||
self.translated_plain_text = f"@某人"
|
self.translated_plain_text = f"@某人"
|
||||||
elif self.type == 'reply':
|
elif self.type == 'reply':
|
||||||
self.translated_plain_text = self.translate_reply()
|
self.translated_plain_text = await self.translate_reply()
|
||||||
elif self.type == 'face':
|
elif self.type == 'face':
|
||||||
face_id = self.params.get('id', '')
|
face_id = self.params.get('id', '')
|
||||||
# self.translated_plain_text = f"[表情{face_id}]"
|
# self.translated_plain_text = f"[表情{face_id}]"
|
||||||
self.translated_plain_text = f"[{emojimapper.get(int(face_id), "表情")}]"
|
self.translated_plain_text = f"[{emojimapper.get(int(face_id), "表情")}]"
|
||||||
elif self.type == 'forward':
|
elif self.type == 'forward':
|
||||||
self.translated_plain_text = self.translate_forward()
|
self.translated_plain_text = await self.translate_forward()
|
||||||
else:
|
else:
|
||||||
self.translated_plain_text = f"[{self.type}]"
|
self.translated_plain_text = f"[{self.type}]"
|
||||||
|
|
||||||
@@ -159,7 +161,7 @@ class CQCode:
|
|||||||
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def translate_emoji(self) -> str:
|
async def translate_emoji(self) -> str:
|
||||||
"""处理表情包类型的CQ码"""
|
"""处理表情包类型的CQ码"""
|
||||||
if 'url' not in self.params:
|
if 'url' not in self.params:
|
||||||
return '[表情包]'
|
return '[表情包]'
|
||||||
@@ -168,45 +170,46 @@ class CQCode:
|
|||||||
# 将 base64 字符串转换为字节类型
|
# 将 base64 字符串转换为字节类型
|
||||||
image_bytes = base64.b64decode(base64_str)
|
image_bytes = base64.b64decode(base64_str)
|
||||||
storage_emoji(image_bytes)
|
storage_emoji(image_bytes)
|
||||||
return self.get_emoji_description(base64_str)
|
return await self.get_emoji_description(base64_str)
|
||||||
else:
|
else:
|
||||||
return '[表情包]'
|
return '[表情包]'
|
||||||
|
|
||||||
|
async def translate_image(self) -> str:
|
||||||
def translate_image(self) -> str:
|
|
||||||
"""处理图片类型的CQ码,区分普通图片和表情包"""
|
"""处理图片类型的CQ码,区分普通图片和表情包"""
|
||||||
#没有url,直接返回默认文本
|
# 没有url,直接返回默认文本
|
||||||
if 'url' not in self.params:
|
if 'url' not in self.params:
|
||||||
return '[图片]'
|
return '[图片]'
|
||||||
base64_str = self.get_img()
|
base64_str = self.get_img()
|
||||||
if base64_str:
|
if base64_str:
|
||||||
image_bytes = base64.b64decode(base64_str)
|
image_bytes = base64.b64decode(base64_str)
|
||||||
storage_image(image_bytes)
|
storage_image(image_bytes)
|
||||||
return self.get_image_description(base64_str)
|
return await self.get_image_description(base64_str)
|
||||||
else:
|
else:
|
||||||
return '[图片]'
|
return '[图片]'
|
||||||
|
|
||||||
def get_emoji_description(self, image_base64: str) -> str:
|
async def get_emoji_description(self, image_base64: str) -> str:
|
||||||
"""调用AI接口获取表情包描述"""
|
"""调用AI接口获取表情包描述"""
|
||||||
try:
|
try:
|
||||||
prompt = "这是一个表情包,请用简短的中文描述这个表情包传达的情感和含义。最多20个字。"
|
prompt = "这是一个表情包,请用简短的中文描述这个表情包传达的情感和含义。最多20个字。"
|
||||||
description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
|
# description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
|
||||||
|
description, _ = await self._llm.generate_response_for_image(prompt, image_base64)
|
||||||
return f"[表情包:{description}]"
|
return f"[表情包:{description}]"
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
|
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
|
||||||
return "[表情包]"
|
return "[表情包]"
|
||||||
|
|
||||||
def get_image_description(self, image_base64: str) -> str:
|
async def get_image_description(self, image_base64: str) -> str:
|
||||||
"""调用AI接口获取普通图片描述"""
|
"""调用AI接口获取普通图片描述"""
|
||||||
try:
|
try:
|
||||||
prompt = "请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。"
|
prompt = "请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。"
|
||||||
description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
|
# description, _ = self._llm.generate_response_for_image_sync(prompt, image_base64)
|
||||||
|
description, _ = await self._llm.generate_response_for_image(prompt, image_base64)
|
||||||
return f"[图片:{description}]"
|
return f"[图片:{description}]"
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
|
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
|
||||||
return "[图片]"
|
return "[图片]"
|
||||||
|
|
||||||
def translate_forward(self) -> str:
|
async def translate_forward(self) -> str:
|
||||||
"""处理转发消息"""
|
"""处理转发消息"""
|
||||||
try:
|
try:
|
||||||
if 'content' not in self.params:
|
if 'content' not in self.params:
|
||||||
@@ -250,6 +253,7 @@ class CQCode:
|
|||||||
plain_text=raw_message,
|
plain_text=raw_message,
|
||||||
group_id=msg.get('group_id', 0)
|
group_id=msg.get('group_id', 0)
|
||||||
)
|
)
|
||||||
|
await message_obj.initialize()
|
||||||
content = message_obj.processed_plain_text
|
content = message_obj.processed_plain_text
|
||||||
else:
|
else:
|
||||||
content = '[空消息]'
|
content = '[空消息]'
|
||||||
@@ -264,6 +268,7 @@ class CQCode:
|
|||||||
plain_text=raw_message,
|
plain_text=raw_message,
|
||||||
group_id=msg.get('group_id', 0)
|
group_id=msg.get('group_id', 0)
|
||||||
)
|
)
|
||||||
|
await message_obj.initialize()
|
||||||
content = message_obj.processed_plain_text
|
content = message_obj.processed_plain_text
|
||||||
else:
|
else:
|
||||||
content = '[空消息]'
|
content = '[空消息]'
|
||||||
@@ -280,7 +285,7 @@ class CQCode:
|
|||||||
print(f"\033[1;31m[错误]\033[0m 处理转发消息失败: {str(e)}")
|
print(f"\033[1;31m[错误]\033[0m 处理转发消息失败: {str(e)}")
|
||||||
return '[转发消息]'
|
return '[转发消息]'
|
||||||
|
|
||||||
def translate_reply(self) -> str:
|
async def translate_reply(self) -> str:
|
||||||
"""处理回复类型的CQ码"""
|
"""处理回复类型的CQ码"""
|
||||||
|
|
||||||
# 创建Message对象
|
# 创建Message对象
|
||||||
@@ -296,6 +301,7 @@ class CQCode:
|
|||||||
raw_message=str(self.reply_message.message),
|
raw_message=str(self.reply_message.message),
|
||||||
group_id=self.group_id
|
group_id=self.group_id
|
||||||
)
|
)
|
||||||
|
await message_obj.initialize()
|
||||||
if message_obj.user_id == global_config.BOT_QQ:
|
if message_obj.user_id == global_config.BOT_QQ:
|
||||||
return f"[回复 {global_config.BOT_NICKNAME} 的消息: {message_obj.processed_plain_text}]"
|
return f"[回复 {global_config.BOT_NICKNAME} 的消息: {message_obj.processed_plain_text}]"
|
||||||
else:
|
else:
|
||||||
@@ -309,9 +315,9 @@ class CQCode:
|
|||||||
def unescape(text: str) -> str:
|
def unescape(text: str) -> str:
|
||||||
"""反转义CQ码中的特殊字符"""
|
"""反转义CQ码中的特殊字符"""
|
||||||
return text.replace(',', ',') \
|
return text.replace(',', ',') \
|
||||||
.replace('[', '[') \
|
.replace('[', '[') \
|
||||||
.replace(']', ']') \
|
.replace(']', ']') \
|
||||||
.replace('&', '&')
|
.replace('&', '&')
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def create_emoji_cq(file_path: str) -> str:
|
def create_emoji_cq(file_path: str) -> str:
|
||||||
@@ -326,15 +332,16 @@ class CQCode:
|
|||||||
abs_path = os.path.abspath(file_path)
|
abs_path = os.path.abspath(file_path)
|
||||||
# 转义特殊字符
|
# 转义特殊字符
|
||||||
escaped_path = abs_path.replace('&', '&') \
|
escaped_path = abs_path.replace('&', '&') \
|
||||||
.replace('[', '[') \
|
.replace('[', '[') \
|
||||||
.replace(']', ']') \
|
.replace(']', ']') \
|
||||||
.replace(',', ',')
|
.replace(',', ',')
|
||||||
# 生成CQ码,设置sub_type=1表示这是表情包
|
# 生成CQ码,设置sub_type=1表示这是表情包
|
||||||
return f"[CQ:image,file=file:///{escaped_path},sub_type=1]"
|
return f"[CQ:image,file=file:///{escaped_path},sub_type=1]"
|
||||||
|
|
||||||
|
|
||||||
class CQCode_tool:
|
class CQCode_tool:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def cq_from_dict_to_class(cq_code: Dict, reply: Optional[Dict] = None) -> CQCode:
|
async def cq_from_dict_to_class(cq_code: Dict, reply: Optional[Dict] = None) -> CQCode:
|
||||||
"""
|
"""
|
||||||
将CQ码字典转换为CQCode对象
|
将CQ码字典转换为CQCode对象
|
||||||
|
|
||||||
@@ -363,7 +370,7 @@ class CQCode_tool:
|
|||||||
)
|
)
|
||||||
|
|
||||||
# 进行翻译处理
|
# 进行翻译处理
|
||||||
instance.translate()
|
await instance.translate()
|
||||||
return instance
|
return instance
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
|||||||
@@ -14,10 +14,14 @@ import asyncio
|
|||||||
import time
|
import time
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import io
|
import io
|
||||||
|
from loguru import logger
|
||||||
|
import traceback
|
||||||
|
|
||||||
from nonebot import get_driver
|
from nonebot import get_driver
|
||||||
from ..chat.config import global_config
|
from ..chat.config import global_config
|
||||||
from ..models.utils_model import LLM_request
|
from ..models.utils_model import LLM_request
|
||||||
|
from ..chat.utils_image import image_path_to_base64
|
||||||
|
from ..chat.utils import get_embedding
|
||||||
|
|
||||||
driver = get_driver()
|
driver = get_driver()
|
||||||
config = driver.config
|
config = driver.config
|
||||||
@@ -27,16 +31,6 @@ class EmojiManager:
|
|||||||
_instance = None
|
_instance = None
|
||||||
EMOJI_DIR = "data/emoji" # 表情包存储目录
|
EMOJI_DIR = "data/emoji" # 表情包存储目录
|
||||||
|
|
||||||
EMOTION_KEYWORDS = {
|
|
||||||
'happy': ['开心', '快乐', '高兴', '欢喜', '笑', '喜悦', '兴奋', '愉快', '乐', '好'],
|
|
||||||
'angry': ['生气', '愤怒', '恼火', '不爽', '火大', '怒', '气愤', '恼怒', '发火', '不满'],
|
|
||||||
'sad': ['伤心', '难过', '悲伤', '痛苦', '哭', '忧伤', '悲痛', '哀伤', '委屈', '失落'],
|
|
||||||
'surprised': ['惊讶', '震惊', '吃惊', '意外', '惊', '诧异', '惊奇', '惊喜', '不敢相信', '目瞪口呆'],
|
|
||||||
'disgusted': ['恶心', '讨厌', '厌恶', '反感', '嫌弃', '恶', '嫌恶', '憎恶', '不喜欢', '烦'],
|
|
||||||
'fearful': ['害怕', '恐惧', '惊恐', '担心', '怕', '惊吓', '惊慌', '畏惧', '胆怯', '惧'],
|
|
||||||
'neutral': ['普通', '一般', '还行', '正常', '平静', '平淡', '一般般', '凑合', '还好', '就这样']
|
|
||||||
}
|
|
||||||
|
|
||||||
def __new__(cls):
|
def __new__(cls):
|
||||||
if cls._instance is None:
|
if cls._instance is None:
|
||||||
cls._instance = super().__new__(cls)
|
cls._instance = super().__new__(cls)
|
||||||
@@ -47,7 +41,8 @@ class EmojiManager:
|
|||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.db = Database.get_instance()
|
self.db = Database.get_instance()
|
||||||
self._scan_task = None
|
self._scan_task = None
|
||||||
self.llm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=50)
|
self.vlm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=1000)
|
||||||
|
self.llm_emotion_judge = LLM_request(model=global_config.llm_normal_minor, max_tokens=60,temperature=0.8) #更高的温度,更少的token(后续可以根据情绪来调整温度)
|
||||||
|
|
||||||
def _ensure_emoji_dir(self):
|
def _ensure_emoji_dir(self):
|
||||||
"""确保表情存储目录存在"""
|
"""确保表情存储目录存在"""
|
||||||
@@ -64,7 +59,7 @@ class EmojiManager:
|
|||||||
# 启动时执行一次完整性检查
|
# 启动时执行一次完整性检查
|
||||||
self.check_emoji_file_integrity()
|
self.check_emoji_file_integrity()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"\033[1;31m[错误]\033[0m 初始化表情管理器失败: {str(e)}")
|
logger.error(f"初始化表情管理器失败: {str(e)}")
|
||||||
|
|
||||||
def _ensure_db(self):
|
def _ensure_db(self):
|
||||||
"""确保数据库已初始化"""
|
"""确保数据库已初始化"""
|
||||||
@@ -74,9 +69,20 @@ class EmojiManager:
|
|||||||
raise RuntimeError("EmojiManager not initialized")
|
raise RuntimeError("EmojiManager not initialized")
|
||||||
|
|
||||||
def _ensure_emoji_collection(self):
|
def _ensure_emoji_collection(self):
|
||||||
"""确保emoji集合存在并创建索引"""
|
"""确保emoji集合存在并创建索引
|
||||||
|
|
||||||
|
这个函数用于确保MongoDB数据库中存在emoji集合,并创建必要的索引。
|
||||||
|
|
||||||
|
索引的作用是加快数据库查询速度:
|
||||||
|
- embedding字段的2dsphere索引: 用于加速向量相似度搜索,帮助快速找到相似的表情包
|
||||||
|
- tags字段的普通索引: 加快按标签搜索表情包的速度
|
||||||
|
- filename字段的唯一索引: 确保文件名不重复,同时加快按文件名查找的速度
|
||||||
|
|
||||||
|
没有索引的话,数据库每次查询都需要扫描全部数据,建立索引后可以大大提高查询效率。
|
||||||
|
"""
|
||||||
if 'emoji' not in self.db.db.list_collection_names():
|
if 'emoji' not in self.db.db.list_collection_names():
|
||||||
self.db.db.create_collection('emoji')
|
self.db.db.create_collection('emoji')
|
||||||
|
self.db.db.emoji.create_index([('embedding', '2dsphere')])
|
||||||
self.db.db.emoji.create_index([('tags', 1)])
|
self.db.db.emoji.create_index([('tags', 1)])
|
||||||
self.db.db.emoji.create_index([('filename', 1)], unique=True)
|
self.db.db.emoji.create_index([('filename', 1)], unique=True)
|
||||||
|
|
||||||
@@ -89,78 +95,7 @@ class EmojiManager:
|
|||||||
{'$inc': {'usage_count': 1}}
|
{'$inc': {'usage_count': 1}}
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"\033[1;31m[错误]\033[0m 记录表情使用失败: {str(e)}")
|
logger.error(f"记录表情使用失败: {str(e)}")
|
||||||
|
|
||||||
async def _get_emotion_from_text(self, text: str) -> List[str]:
|
|
||||||
"""从文本中识别情感关键词
|
|
||||||
Args:
|
|
||||||
text: 输入文本
|
|
||||||
Returns:
|
|
||||||
List[str]: 匹配到的情感标签列表
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
prompt = f'分析这段文本:"{text}",从"happy,angry,sad,surprised,disgusted,fearful,neutral"中选出最匹配的1个情感标签。只需要返回标签,不要输出其他任何内容。'
|
|
||||||
|
|
||||||
content, _ = await self.llm.generate_response(prompt)
|
|
||||||
emotion = content.strip().lower()
|
|
||||||
|
|
||||||
if emotion in self.EMOTION_KEYWORDS:
|
|
||||||
print(f"\033[1;32m[成功]\033[0m 识别到的情感: {emotion}")
|
|
||||||
return [emotion]
|
|
||||||
|
|
||||||
return ['neutral']
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"\033[1;31m[错误]\033[0m 情感分析失败: {str(e)}")
|
|
||||||
return ['neutral']
|
|
||||||
|
|
||||||
async def get_emoji_for_emotion(self, emotion_tag: str) -> Optional[str]:
|
|
||||||
try:
|
|
||||||
self._ensure_db()
|
|
||||||
|
|
||||||
# 构建查询条件:标签匹配任一情感
|
|
||||||
query = {'tags': {'$in': emotion_tag}}
|
|
||||||
|
|
||||||
# print(f"\033[1;34m[调试]\033[0m 表情查询条件: {query}")
|
|
||||||
|
|
||||||
try:
|
|
||||||
# 随机获取一个匹配的表情
|
|
||||||
emoji = self.db.db.emoji.aggregate([
|
|
||||||
{'$match': query},
|
|
||||||
{'$sample': {'size': 1}}
|
|
||||||
]).next()
|
|
||||||
print(f"\033[1;32m[成功]\033[0m 找到匹配的表情")
|
|
||||||
if emoji and 'path' in emoji:
|
|
||||||
# 更新使用次数
|
|
||||||
self.db.db.emoji.update_one(
|
|
||||||
{'_id': emoji['_id']},
|
|
||||||
{'$inc': {'usage_count': 1}}
|
|
||||||
)
|
|
||||||
return emoji['path']
|
|
||||||
except StopIteration:
|
|
||||||
# 如果没有匹配的表情,从所有表情中随机选择一个
|
|
||||||
print(f"\033[1;33m[提示]\033[0m 未找到匹配的表情,随机选择一个")
|
|
||||||
try:
|
|
||||||
emoji = self.db.db.emoji.aggregate([
|
|
||||||
{'$sample': {'size': 1}}
|
|
||||||
]).next()
|
|
||||||
if emoji and 'path' in emoji:
|
|
||||||
# 更新使用次数
|
|
||||||
self.db.db.emoji.update_one(
|
|
||||||
{'_id': emoji['_id']},
|
|
||||||
{'$inc': {'usage_count': 1}}
|
|
||||||
)
|
|
||||||
return emoji['path']
|
|
||||||
except StopIteration:
|
|
||||||
print(f"\033[1;31m[错误]\033[0m 数据库中没有任何表情")
|
|
||||||
return None
|
|
||||||
|
|
||||||
return None
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"\033[1;31m[错误]\033[0m 获取表情包失败: {str(e)}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
async def get_emoji_for_text(self, text: str) -> Optional[str]:
|
async def get_emoji_for_text(self, text: str) -> Optional[str]:
|
||||||
"""根据文本内容获取相关表情包
|
"""根据文本内容获取相关表情包
|
||||||
@@ -168,147 +103,118 @@ class EmojiManager:
|
|||||||
text: 输入文本
|
text: 输入文本
|
||||||
Returns:
|
Returns:
|
||||||
Optional[str]: 表情包文件路径,如果没有找到则返回None
|
Optional[str]: 表情包文件路径,如果没有找到则返回None
|
||||||
|
|
||||||
|
|
||||||
|
可不可以通过 配置文件中的指令 来自定义使用表情包的逻辑?
|
||||||
|
我觉得可行
|
||||||
|
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
self._ensure_db()
|
self._ensure_db()
|
||||||
# 获取情感标签
|
|
||||||
emotions = await self._get_emotion_from_text(text)
|
# 获取文本的embedding
|
||||||
print("为 ‘"+ str(text) + "’ 获取到的情感标签为:" + str(emotions))
|
text_for_search= await self._get_kimoji_for_text(text)
|
||||||
if not emotions:
|
if not text_for_search:
|
||||||
|
logger.error("无法获取文本的情绪")
|
||||||
|
return None
|
||||||
|
text_embedding = await get_embedding(text_for_search)
|
||||||
|
if not text_embedding:
|
||||||
|
logger.error("无法获取文本的embedding")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
# 构建查询条件:标签匹配任一情感
|
|
||||||
query = {'tags': {'$in': emotions}}
|
|
||||||
|
|
||||||
print(f"\033[1;34m[调试]\033[0m 表情查询条件: {query}")
|
|
||||||
print(f"\033[1;34m[调试]\033[0m 匹配到的情感: {emotions}")
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# 随机获取一个匹配的表情
|
# 获取所有表情包
|
||||||
emoji = self.db.db.emoji.aggregate([
|
all_emojis = list(self.db.db.emoji.find({}, {'_id': 1, 'path': 1, 'embedding': 1, 'discription': 1}))
|
||||||
{'$match': query},
|
|
||||||
{'$sample': {'size': 1}}
|
if not all_emojis:
|
||||||
]).next()
|
logger.warning("数据库中没有任何表情包")
|
||||||
print(f"\033[1;32m[成功]\033[0m 找到匹配的表情")
|
|
||||||
if emoji and 'path' in emoji:
|
|
||||||
# 更新使用次数
|
|
||||||
self.db.db.emoji.update_one(
|
|
||||||
{'_id': emoji['_id']},
|
|
||||||
{'$inc': {'usage_count': 1}}
|
|
||||||
)
|
|
||||||
return emoji['path']
|
|
||||||
except StopIteration:
|
|
||||||
# 如果没有匹配的表情,从所有表情中随机选择一个
|
|
||||||
print(f"\033[1;33m[提示]\033[0m 未找到匹配的表情,随机选择一个")
|
|
||||||
try:
|
|
||||||
emoji = self.db.db.emoji.aggregate([
|
|
||||||
{'$sample': {'size': 1}}
|
|
||||||
]).next()
|
|
||||||
if emoji and 'path' in emoji:
|
|
||||||
# 更新使用次数
|
|
||||||
self.db.db.emoji.update_one(
|
|
||||||
{'_id': emoji['_id']},
|
|
||||||
{'$inc': {'usage_count': 1}}
|
|
||||||
)
|
|
||||||
return emoji['path']
|
|
||||||
except StopIteration:
|
|
||||||
print(f"\033[1;31m[错误]\033[0m 数据库中没有任何表情")
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
# 计算余弦相似度并排序
|
||||||
|
def cosine_similarity(v1, v2):
|
||||||
|
if not v1 or not v2:
|
||||||
|
return 0
|
||||||
|
dot_product = sum(a * b for a, b in zip(v1, v2))
|
||||||
|
norm_v1 = sum(a * a for a in v1) ** 0.5
|
||||||
|
norm_v2 = sum(b * b for b in v2) ** 0.5
|
||||||
|
if norm_v1 == 0 or norm_v2 == 0:
|
||||||
|
return 0
|
||||||
|
return dot_product / (norm_v1 * norm_v2)
|
||||||
|
|
||||||
|
# 计算所有表情包与输入文本的相似度
|
||||||
|
emoji_similarities = [
|
||||||
|
(emoji, cosine_similarity(text_embedding, emoji.get('embedding', [])))
|
||||||
|
for emoji in all_emojis
|
||||||
|
]
|
||||||
|
|
||||||
|
# 按相似度降序排序
|
||||||
|
emoji_similarities.sort(key=lambda x: x[1], reverse=True)
|
||||||
|
|
||||||
|
# 获取前3个最相似的表情包
|
||||||
|
top_3_emojis = emoji_similarities[:3]
|
||||||
|
|
||||||
|
if not top_3_emojis:
|
||||||
|
logger.warning("未找到匹配的表情包")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 从前3个中随机选择一个
|
||||||
|
selected_emoji, similarity = random.choice(top_3_emojis)
|
||||||
|
|
||||||
|
if selected_emoji and 'path' in selected_emoji:
|
||||||
|
# 更新使用次数
|
||||||
|
self.db.db.emoji.update_one(
|
||||||
|
{'_id': selected_emoji['_id']},
|
||||||
|
{'$inc': {'usage_count': 1}}
|
||||||
|
)
|
||||||
|
logger.success(f"找到匹配的表情包: {selected_emoji.get('discription', '无描述')} (相似度: {similarity:.4f})")
|
||||||
|
# 稍微改一下文本描述,不然容易产生幻觉,描述已经包含 表情包 了
|
||||||
|
return selected_emoji['path'],"[ %s ]" % selected_emoji.get('discription', '无描述')
|
||||||
|
|
||||||
|
except Exception as search_error:
|
||||||
|
logger.error(f"搜索表情包失败: {str(search_error)}")
|
||||||
|
return None
|
||||||
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"\033[1;31m[错误]\033[0m 获取表情包失败: {str(e)}")
|
logger.error(f"获取表情包失败: {str(e)}")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
async def _get_emoji_tag(self, image_base64: str) -> str:
|
async def _get_emoji_discription(self, image_base64: str) -> str:
|
||||||
"""获取表情包的标签"""
|
"""获取表情包的标签"""
|
||||||
try:
|
try:
|
||||||
prompt = '这是一个表情包,请从"happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"中选出1个情感标签。只输出标签,不要输出其他任何内容,只输出情感标签就好'
|
prompt = '这是一个表情包,使用中文简洁的描述一下表情包的内容和表情包所表达的情感'
|
||||||
|
|
||||||
content, _ = await self.llm.generate_response_for_image(prompt, image_base64)
|
content, _ = await self.vlm.generate_response_for_image(prompt, image_base64)
|
||||||
tag_result = content.strip().lower()
|
logger.debug(f"输出描述: {content}")
|
||||||
|
return content
|
||||||
valid_tags = ["happy", "angry", "sad", "surprised", "disgusted", "fearful", "neutral"]
|
|
||||||
for tag_match in valid_tags:
|
|
||||||
if tag_match in tag_result or tag_match == tag_result:
|
|
||||||
return tag_match
|
|
||||||
print(f"\033[1;33m[警告]\033[0m 无效的标签: {tag_result}, 跳过")
|
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"\033[1;31m[错误]\033[0m 获取标签失败: {str(e)}")
|
logger.error(f"获取标签失败: {str(e)}")
|
||||||
return "skip"
|
return None
|
||||||
|
|
||||||
print(f"\033[1;32m[调试信息]\033[0m 使用默认标签: neutral")
|
async def _check_emoji(self, image_base64: str) -> str:
|
||||||
return "skip" # 默认标签
|
|
||||||
|
|
||||||
async def _compress_image(self, image_path: str, target_size: int = 0.8 * 1024 * 1024) -> Optional[str]:
|
|
||||||
"""压缩图片并返回base64编码
|
|
||||||
Args:
|
|
||||||
image_path: 图片文件路径
|
|
||||||
target_size: 目标文件大小(字节),默认0.8MB
|
|
||||||
Returns:
|
|
||||||
Optional[str]: 成功返回base64编码的图片数据,失败返回None
|
|
||||||
"""
|
|
||||||
try:
|
try:
|
||||||
file_size = os.path.getsize(image_path)
|
prompt = f'这是一个表情包,请回答这个表情包是否满足\"{global_config.EMOJI_CHECK_PROMPT}\"的要求,是则回答是,否则回答否,不要出现任何其他内容'
|
||||||
if file_size <= target_size:
|
|
||||||
# 如果文件已经小于目标大小,直接读取并返回base64
|
|
||||||
with open(image_path, 'rb') as f:
|
|
||||||
return base64.b64encode(f.read()).decode('utf-8')
|
|
||||||
|
|
||||||
# 打开图片
|
content, _ = await self.vlm.generate_response_for_image(prompt, image_base64)
|
||||||
with Image.open(image_path) as img:
|
logger.debug(f"输出描述: {content}")
|
||||||
# 获取原始尺寸
|
return content
|
||||||
original_width, original_height = img.size
|
|
||||||
|
|
||||||
# 计算缩放比例
|
|
||||||
scale = min(1.0, (target_size / file_size) ** 0.5)
|
|
||||||
|
|
||||||
# 计算新的尺寸
|
|
||||||
new_width = int(original_width * scale)
|
|
||||||
new_height = int(original_height * scale)
|
|
||||||
|
|
||||||
# 创建内存缓冲区
|
|
||||||
output_buffer = io.BytesIO()
|
|
||||||
|
|
||||||
# 如果是GIF,处理所有帧
|
|
||||||
if getattr(img, "is_animated", False):
|
|
||||||
frames = []
|
|
||||||
for frame_idx in range(img.n_frames):
|
|
||||||
img.seek(frame_idx)
|
|
||||||
new_frame = img.copy()
|
|
||||||
new_frame = new_frame.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
|
||||||
frames.append(new_frame)
|
|
||||||
|
|
||||||
# 保存到缓冲区
|
|
||||||
frames[0].save(
|
|
||||||
output_buffer,
|
|
||||||
format='GIF',
|
|
||||||
save_all=True,
|
|
||||||
append_images=frames[1:],
|
|
||||||
optimize=True,
|
|
||||||
duration=img.info.get('duration', 100),
|
|
||||||
loop=img.info.get('loop', 0)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
# 处理静态图片
|
|
||||||
resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
|
||||||
|
|
||||||
# 保存到缓冲区,保持原始格式
|
|
||||||
if img.format == 'PNG' and img.mode in ('RGBA', 'LA'):
|
|
||||||
resized_img.save(output_buffer, format='PNG', optimize=True)
|
|
||||||
else:
|
|
||||||
resized_img.save(output_buffer, format='JPEG', quality=95, optimize=True)
|
|
||||||
|
|
||||||
# 获取压缩后的数据并转换为base64
|
|
||||||
compressed_data = output_buffer.getvalue()
|
|
||||||
print(f"\033[1;32m[成功]\033[0m 压缩图片: {os.path.basename(image_path)} ({original_width}x{original_height} -> {new_width}x{new_height})")
|
|
||||||
|
|
||||||
return base64.b64encode(compressed_data).decode('utf-8')
|
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"\033[1;31m[错误]\033[0m 压缩图片失败: {os.path.basename(image_path)}, 错误: {str(e)}")
|
logger.error(f"获取标签失败: {str(e)}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def _get_kimoji_for_text(self, text:str):
|
||||||
|
try:
|
||||||
|
prompt = f'这是{global_config.BOT_NICKNAME}将要发送的消息内容:\n{text}\n若要为其配上表情包,请你输出这个表情包应该表达怎样的情感,应该给人什么样的感觉,不要太简洁也不要太长,注意不要输出任何对消息内容的分析内容,只输出\"一种什么样的感觉\"中间的形容词部分。'
|
||||||
|
|
||||||
|
content, _ = await self.llm_emotion_judge.generate_response_async(prompt)
|
||||||
|
logger.info(f"输出描述: {content}")
|
||||||
|
return content
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"获取标签失败: {str(e)}")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
async def scan_new_emojis(self):
|
async def scan_new_emojis(self):
|
||||||
@@ -329,33 +235,42 @@ class EmojiManager:
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
# 压缩图片并获取base64编码
|
# 压缩图片并获取base64编码
|
||||||
image_base64 = await self._compress_image(image_path)
|
image_base64 = image_path_to_base64(image_path)
|
||||||
if image_base64 is None:
|
if image_base64 is None:
|
||||||
os.remove(image_path)
|
os.remove(image_path)
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# 获取表情包的情感标签
|
# 获取表情包的描述
|
||||||
tag = await self._get_emoji_tag(image_base64)
|
discription = await self._get_emoji_discription(image_base64)
|
||||||
if not tag == "skip":
|
if global_config.EMOJI_CHECK:
|
||||||
|
check = await self._check_emoji(image_base64)
|
||||||
|
if '是' not in check:
|
||||||
|
os.remove(image_path)
|
||||||
|
logger.info(f"描述: {discription}")
|
||||||
|
logger.info(f"其不满足过滤规则,被剔除 {check}")
|
||||||
|
continue
|
||||||
|
logger.info(f"check通过 {check}")
|
||||||
|
embedding = await get_embedding(discription)
|
||||||
|
if discription is not None:
|
||||||
# 准备数据库记录
|
# 准备数据库记录
|
||||||
emoji_record = {
|
emoji_record = {
|
||||||
'filename': filename,
|
'filename': filename,
|
||||||
'path': image_path,
|
'path': image_path,
|
||||||
'tags': [tag],
|
'embedding':embedding,
|
||||||
|
'discription': discription,
|
||||||
'timestamp': int(time.time())
|
'timestamp': int(time.time())
|
||||||
}
|
}
|
||||||
|
|
||||||
# 保存到数据库
|
# 保存到数据库
|
||||||
self.db.db['emoji'].insert_one(emoji_record)
|
self.db.db['emoji'].insert_one(emoji_record)
|
||||||
print(f"\033[1;32m[成功]\033[0m 注册新表情包: {filename}")
|
logger.success(f"注册新表情包: {filename}")
|
||||||
print(f"标签: {tag}")
|
logger.info(f"描述: {discription}")
|
||||||
else:
|
else:
|
||||||
print(f"\033[1;33m[警告]\033[0m 跳过表情包: {filename}")
|
logger.warning(f"跳过表情包: {filename}")
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"\033[1;31m[错误]\033[0m 扫描表情包失败: {str(e)}")
|
logger.error(f"扫描表情包失败: {str(e)}")
|
||||||
import traceback
|
logger.error(traceback.format_exc())
|
||||||
print(traceback.format_exc())
|
|
||||||
|
|
||||||
async def _periodic_scan(self, interval_MINS: int = 10):
|
async def _periodic_scan(self, interval_MINS: int = 10):
|
||||||
"""定期扫描新表情包"""
|
"""定期扫描新表情包"""
|
||||||
@@ -364,6 +279,7 @@ class EmojiManager:
|
|||||||
await self.scan_new_emojis()
|
await self.scan_new_emojis()
|
||||||
await asyncio.sleep(interval_MINS * 60) # 每600秒扫描一次
|
await asyncio.sleep(interval_MINS * 60) # 每600秒扫描一次
|
||||||
|
|
||||||
|
|
||||||
def check_emoji_file_integrity(self):
|
def check_emoji_file_integrity(self):
|
||||||
"""检查表情包文件完整性
|
"""检查表情包文件完整性
|
||||||
如果文件已被删除,则从数据库中移除对应记录
|
如果文件已被删除,则从数据库中移除对应记录
|
||||||
@@ -378,44 +294,42 @@ class EmojiManager:
|
|||||||
for emoji in all_emojis:
|
for emoji in all_emojis:
|
||||||
try:
|
try:
|
||||||
if 'path' not in emoji:
|
if 'path' not in emoji:
|
||||||
print(f"\033[1;33m[提示]\033[0m 发现无效记录(缺少path字段),ID: {emoji.get('_id', 'unknown')}")
|
logger.warning(f"发现无效记录(缺少path字段),ID: {emoji.get('_id', 'unknown')}")
|
||||||
|
self.db.db.emoji.delete_one({'_id': emoji['_id']})
|
||||||
|
removed_count += 1
|
||||||
|
continue
|
||||||
|
|
||||||
|
if 'embedding' not in emoji:
|
||||||
|
logger.warning(f"发现过时记录(缺少embedding字段),ID: {emoji.get('_id', 'unknown')}")
|
||||||
self.db.db.emoji.delete_one({'_id': emoji['_id']})
|
self.db.db.emoji.delete_one({'_id': emoji['_id']})
|
||||||
removed_count += 1
|
removed_count += 1
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# 检查文件是否存在
|
# 检查文件是否存在
|
||||||
if not os.path.exists(emoji['path']):
|
if not os.path.exists(emoji['path']):
|
||||||
print(f"\033[1;33m[提示]\033[0m 表情包文件已被删除: {emoji['path']}")
|
logger.warning(f"表情包文件已被删除: {emoji['path']}")
|
||||||
# 从数据库中删除记录
|
# 从数据库中删除记录
|
||||||
result = self.db.db.emoji.delete_one({'_id': emoji['_id']})
|
result = self.db.db.emoji.delete_one({'_id': emoji['_id']})
|
||||||
if result.deleted_count > 0:
|
if result.deleted_count > 0:
|
||||||
print(f"\033[1;32m[成功]\033[0m 成功删除数据库记录: {emoji['_id']}")
|
logger.success(f"成功删除数据库记录: {emoji['_id']}")
|
||||||
removed_count += 1
|
removed_count += 1
|
||||||
else:
|
else:
|
||||||
print(f"\033[1;31m[错误]\033[0m 删除数据库记录失败: {emoji['_id']}")
|
logger.error(f"删除数据库记录失败: {emoji['_id']}")
|
||||||
except Exception as item_error:
|
except Exception as item_error:
|
||||||
print(f"\033[1;31m[错误]\033[0m 处理表情包记录时出错: {str(item_error)}")
|
logger.error(f"处理表情包记录时出错: {str(item_error)}")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# 验证清理结果
|
# 验证清理结果
|
||||||
remaining_count = self.db.db.emoji.count_documents({})
|
remaining_count = self.db.db.emoji.count_documents({})
|
||||||
if removed_count > 0:
|
if removed_count > 0:
|
||||||
print(f"\033[1;32m[成功]\033[0m 已清理 {removed_count} 个失效的表情包记录")
|
logger.success(f"已清理 {removed_count} 个失效的表情包记录")
|
||||||
print(f"\033[1;34m[统计]\033[0m 清理前总数: {total_count} | 清理后总数: {remaining_count}")
|
logger.info(f"清理前总数: {total_count} | 清理后总数: {remaining_count}")
|
||||||
# print(f"\033[1;34m[统计]\033[0m 应删除数量: {removed_count} | 实际删除数量: {total_count - remaining_count}")
|
|
||||||
# 执行数据库压缩
|
|
||||||
try:
|
|
||||||
self.db.db.command({"compact": "emoji"})
|
|
||||||
print(f"\033[1;32m[成功]\033[0m 数据库集合压缩完成")
|
|
||||||
except Exception as compact_error:
|
|
||||||
print(f"\033[1;31m[错误]\033[0m 数据库压缩失败: {str(compact_error)}")
|
|
||||||
else:
|
else:
|
||||||
print(f"\033[1;36m[表情包]\033[0m 已检查 {total_count} 个表情包记录")
|
logger.info(f"已检查 {total_count} 个表情包记录")
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"\033[1;31m[错误]\033[0m 检查表情包完整性失败: {str(e)}")
|
logger.error(f"检查表情包完整性失败: {str(e)}")
|
||||||
import traceback
|
logger.error(traceback.format_exc())
|
||||||
print(f"\033[1;31m[错误追踪]\033[0m\n{traceback.format_exc()}")
|
|
||||||
|
|
||||||
async def start_periodic_check(self, interval_MINS: int = 120):
|
async def start_periodic_check(self, interval_MINS: int = 120):
|
||||||
while True:
|
while True:
|
||||||
|
|||||||
@@ -24,6 +24,7 @@ class ResponseGenerator:
|
|||||||
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7,max_tokens=1000)
|
self.model_r1 = LLM_request(model=global_config.llm_reasoning, temperature=0.7,max_tokens=1000)
|
||||||
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7,max_tokens=1000)
|
self.model_v3 = LLM_request(model=global_config.llm_normal, temperature=0.7,max_tokens=1000)
|
||||||
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7,max_tokens=1000)
|
self.model_r1_distill = LLM_request(model=global_config.llm_reasoning_minor, temperature=0.7,max_tokens=1000)
|
||||||
|
self.model_v25 = LLM_request(model=global_config.llm_normal_minor, temperature=0.7,max_tokens=1000)
|
||||||
self.db = Database.get_instance()
|
self.db = Database.get_instance()
|
||||||
self.current_model_type = 'r1' # 默认使用 R1
|
self.current_model_type = 'r1' # 默认使用 R1
|
||||||
|
|
||||||
@@ -44,19 +45,15 @@ class ResponseGenerator:
|
|||||||
print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++")
|
print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++")
|
||||||
|
|
||||||
model_response = await self._generate_response_with_model(message, current_model)
|
model_response = await self._generate_response_with_model(message, current_model)
|
||||||
|
raw_content=model_response
|
||||||
|
|
||||||
if model_response:
|
if model_response:
|
||||||
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
|
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
|
||||||
model_response, emotion = await self._process_response(model_response)
|
model_response = await self._process_response(model_response)
|
||||||
if model_response:
|
if model_response:
|
||||||
print(f"为 '{model_response}' 获取到的情感标签为:{emotion}")
|
|
||||||
valuedict={
|
|
||||||
'happy':0.5,'angry':-1,'sad':-0.5,'surprised':0.5,'disgusted':-1.5,'fearful':-0.25,'neutral':0.25
|
|
||||||
}
|
|
||||||
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
|
|
||||||
|
|
||||||
return model_response, emotion
|
return model_response ,raw_content
|
||||||
return None, []
|
return None,raw_content
|
||||||
|
|
||||||
async def _generate_response_with_model(self, message: Message, model: LLM_request) -> Optional[str]:
|
async def _generate_response_with_model(self, message: Message, model: LLM_request) -> Optional[str]:
|
||||||
"""使用指定的模型生成回复"""
|
"""使用指定的模型生成回复"""
|
||||||
@@ -67,10 +64,11 @@ class ResponseGenerator:
|
|||||||
# 获取关系值
|
# 获取关系值
|
||||||
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value if relationship_manager.get_relationship(message.user_id) else 0.0
|
relationship_value = relationship_manager.get_relationship(message.user_id).relationship_value if relationship_manager.get_relationship(message.user_id) else 0.0
|
||||||
if relationship_value != 0.0:
|
if relationship_value != 0.0:
|
||||||
print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
# print(f"\033[1;32m[关系管理]\033[0m 回复中_当前关系值: {relationship_value}")
|
||||||
|
pass
|
||||||
|
|
||||||
# 构建prompt
|
# 构建prompt
|
||||||
prompt, prompt_check = prompt_builder._build_prompt(
|
prompt, prompt_check = await prompt_builder._build_prompt(
|
||||||
message_txt=message.processed_plain_text,
|
message_txt=message.processed_plain_text,
|
||||||
sender_name=sender_name,
|
sender_name=sender_name,
|
||||||
relationship_value=relationship_value,
|
relationship_value=relationship_value,
|
||||||
@@ -142,7 +140,7 @@ class ResponseGenerator:
|
|||||||
内容:{content}
|
内容:{content}
|
||||||
输出:
|
输出:
|
||||||
'''
|
'''
|
||||||
content, _ = await self.model_v3.generate_response(prompt)
|
content, _ = await self.model_v25.generate_response(prompt)
|
||||||
content=content.strip()
|
content=content.strip()
|
||||||
if content in ['happy','angry','sad','surprised','disgusted','fearful','neutral']:
|
if content in ['happy','angry','sad','surprised','disgusted','fearful','neutral']:
|
||||||
return [content]
|
return [content]
|
||||||
@@ -158,10 +156,9 @@ class ResponseGenerator:
|
|||||||
if not content:
|
if not content:
|
||||||
return None, []
|
return None, []
|
||||||
|
|
||||||
emotion_tags = await self._get_emotion_tags(content)
|
|
||||||
processed_response = process_llm_response(content)
|
processed_response = process_llm_response(content)
|
||||||
|
|
||||||
return processed_response, emotion_tags
|
return processed_response
|
||||||
|
|
||||||
|
|
||||||
class InitiativeMessageGenerate:
|
class InitiativeMessageGenerate:
|
||||||
|
|||||||
@@ -33,52 +33,60 @@ class Message:
|
|||||||
|
|
||||||
user_id: int = None
|
user_id: int = None
|
||||||
user_nickname: str = None # 用户昵称
|
user_nickname: str = None # 用户昵称
|
||||||
user_cardname: str=None # 用户群昵称
|
user_cardname: str = None # 用户群昵称
|
||||||
|
|
||||||
raw_message: str = None # 原始消息,包含未解析的cq码
|
raw_message: str = None # 原始消息,包含未解析的cq码
|
||||||
plain_text: str = None # 纯文本
|
plain_text: str = None # 纯文本
|
||||||
|
|
||||||
|
reply_message: Dict = None # 存储 回复的 源消息
|
||||||
|
|
||||||
|
# 延迟初始化字段
|
||||||
|
_initialized: bool = False
|
||||||
message_segments: List[Dict] = None # 存储解析后的消息片段
|
message_segments: List[Dict] = None # 存储解析后的消息片段
|
||||||
processed_plain_text: str = None # 用于存储处理后的plain_text
|
processed_plain_text: str = None # 用于存储处理后的plain_text
|
||||||
detailed_plain_text: str = None # 用于存储详细可读文本
|
detailed_plain_text: str = None # 用于存储详细可读文本
|
||||||
|
|
||||||
reply_message: Dict = None # 存储 回复的 源消息
|
# 状态标志
|
||||||
|
is_emoji: bool = False
|
||||||
|
has_emoji: bool = False
|
||||||
|
translate_cq: bool = True
|
||||||
|
|
||||||
is_emoji: bool = False # 是否是表情包
|
async def initialize(self):
|
||||||
has_emoji: bool = False # 是否包含表情包
|
"""显式异步初始化方法(必须调用)"""
|
||||||
|
if self._initialized:
|
||||||
|
return
|
||||||
|
|
||||||
translate_cq: bool = True # 是否翻译cq码
|
# 异步获取补充信息
|
||||||
|
self.group_name = self.group_name or get_groupname(self.group_id)
|
||||||
|
self.user_nickname = self.user_nickname or get_user_nickname(self.user_id)
|
||||||
|
self.user_cardname = self.user_cardname or get_user_cardname(self.user_id)
|
||||||
|
|
||||||
def __post_init__(self):
|
# 消息解析
|
||||||
if self.time is None:
|
if self.raw_message:
|
||||||
self.time = int(time.time())
|
if not isinstance(self,Message_Sending):
|
||||||
|
self.message_segments = await self.parse_message_segments(self.raw_message)
|
||||||
if not self.group_name:
|
|
||||||
self.group_name = get_groupname(self.group_id)
|
|
||||||
|
|
||||||
if not self.user_nickname:
|
|
||||||
self.user_nickname = get_user_nickname(self.user_id)
|
|
||||||
|
|
||||||
if not self.user_cardname:
|
|
||||||
self.user_cardname=get_user_cardname(self.user_id)
|
|
||||||
|
|
||||||
if not self.processed_plain_text:
|
|
||||||
if self.raw_message:
|
|
||||||
self.message_segments = self.parse_message_segments(str(self.raw_message))
|
|
||||||
self.processed_plain_text = ' '.join(
|
self.processed_plain_text = ' '.join(
|
||||||
seg.translated_plain_text
|
seg.translated_plain_text
|
||||||
for seg in self.message_segments
|
for seg in self.message_segments
|
||||||
)
|
)
|
||||||
#将详细翻译为详细可读文本
|
|
||||||
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(self.time))
|
|
||||||
try:
|
|
||||||
name = f"{self.user_nickname}(ta的昵称:{self.user_cardname},ta的id:{self.user_id})"
|
|
||||||
except:
|
|
||||||
name = self.user_nickname or f"用户{self.user_id}"
|
|
||||||
content = self.processed_plain_text
|
|
||||||
self.detailed_plain_text = f"[{time_str}] {name}: {content}\n"
|
|
||||||
|
|
||||||
def parse_message_segments(self, message: str) -> List[CQCode]:
|
# 构建详细文本
|
||||||
|
if self.time is None:
|
||||||
|
self.time = int(time.time())
|
||||||
|
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(self.time))
|
||||||
|
name = (
|
||||||
|
f"{self.user_nickname}(ta的昵称:{self.user_cardname},ta的id:{self.user_id})"
|
||||||
|
if self.user_cardname
|
||||||
|
else f"{self.user_nickname or f'用户{self.user_id}'}"
|
||||||
|
)
|
||||||
|
if isinstance(self,Message_Sending) and self.is_emoji:
|
||||||
|
self.detailed_plain_text = f"[{time_str}] {name}: {self.detailed_plain_text}\n"
|
||||||
|
else:
|
||||||
|
self.detailed_plain_text = f"[{time_str}] {name}: {self.processed_plain_text}\n"
|
||||||
|
|
||||||
|
self._initialized = True
|
||||||
|
|
||||||
|
async def parse_message_segments(self, message: str) -> List[CQCode]:
|
||||||
"""
|
"""
|
||||||
将消息解析为片段列表,包括纯文本和CQ码
|
将消息解析为片段列表,包括纯文本和CQ码
|
||||||
返回的列表中每个元素都是字典,包含:
|
返回的列表中每个元素都是字典,包含:
|
||||||
@@ -136,7 +144,7 @@ class Message:
|
|||||||
|
|
||||||
#翻译作为字典的CQ码
|
#翻译作为字典的CQ码
|
||||||
for _code_item in cq_code_dict_list:
|
for _code_item in cq_code_dict_list:
|
||||||
message_obj = cq_code_tool.cq_from_dict_to_class(_code_item,reply = self.reply_message)
|
message_obj = await cq_code_tool.cq_from_dict_to_class(_code_item,reply = self.reply_message)
|
||||||
trans_list.append(message_obj)
|
trans_list.append(message_obj)
|
||||||
return trans_list
|
return trans_list
|
||||||
|
|
||||||
@@ -169,6 +177,8 @@ class Message_Sending(Message):
|
|||||||
|
|
||||||
reply_message_id: int = None # 存储 回复的 源消息ID
|
reply_message_id: int = None # 存储 回复的 源消息ID
|
||||||
|
|
||||||
|
is_head: bool = False # 是否是头部消息
|
||||||
|
|
||||||
def update_thinking_time(self):
|
def update_thinking_time(self):
|
||||||
self.thinking_time = round(time.time(), 2) - self.thinking_start_time
|
self.thinking_time = round(time.time(), 2) - self.thinking_start_time
|
||||||
return self.thinking_time
|
return self.thinking_time
|
||||||
|
|||||||
@@ -103,7 +103,7 @@ class MessageContainer:
|
|||||||
|
|
||||||
def add_message(self, message: Union[Message_Thinking, Message_Sending]) -> None:
|
def add_message(self, message: Union[Message_Thinking, Message_Sending]) -> None:
|
||||||
"""添加消息到队列"""
|
"""添加消息到队列"""
|
||||||
print(f"\033[1;32m[添加消息]\033[0m 添加消息到对应群")
|
# print(f"\033[1;32m[添加消息]\033[0m 添加消息到对应群")
|
||||||
if isinstance(message, MessageSet):
|
if isinstance(message, MessageSet):
|
||||||
for single_message in message.messages:
|
for single_message in message.messages:
|
||||||
self.messages.append(single_message)
|
self.messages.append(single_message)
|
||||||
@@ -156,26 +156,21 @@ class MessageManager:
|
|||||||
#最早的对象,可能是思考消息,也可能是发送消息
|
#最早的对象,可能是思考消息,也可能是发送消息
|
||||||
message_earliest = container.get_earliest_message() #一个message_thinking or message_sending
|
message_earliest = container.get_earliest_message() #一个message_thinking or message_sending
|
||||||
|
|
||||||
#一个月后删了
|
|
||||||
if not message_earliest:
|
|
||||||
print(f"\033[1;34m[BUG,如果出现这个,说明有BUG,3月4日留]\033[0m ")
|
|
||||||
return
|
|
||||||
|
|
||||||
#如果是思考消息
|
#如果是思考消息
|
||||||
if isinstance(message_earliest, Message_Thinking):
|
if isinstance(message_earliest, Message_Thinking):
|
||||||
#优先等待这条消息
|
#优先等待这条消息
|
||||||
message_earliest.update_thinking_time()
|
message_earliest.update_thinking_time()
|
||||||
thinking_time = message_earliest.thinking_time
|
thinking_time = message_earliest.thinking_time
|
||||||
print(f"\033[1;34m[调试]\033[0m 消息正在思考中,已思考{int(thinking_time)}秒")
|
if thinking_time % 10 == 0:
|
||||||
|
print(f"\033[1;34m[调试]\033[0m 消息正在思考中,已思考{int(thinking_time)}秒")
|
||||||
else:# 如果不是message_thinking就只能是message_sending
|
else:# 如果不是message_thinking就只能是message_sending
|
||||||
print(f"\033[1;34m[调试]\033[0m 消息'{message_earliest.processed_plain_text}'正在发送中")
|
print(f"\033[1;34m[调试]\033[0m 消息'{message_earliest.processed_plain_text}'正在发送中")
|
||||||
#直接发,等什么呢
|
#直接发,等什么呢
|
||||||
if message_earliest.update_thinking_time() < 30:
|
if message_earliest.is_head and message_earliest.update_thinking_time() >30:
|
||||||
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False)
|
|
||||||
else:
|
|
||||||
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False, reply_message_id=message_earliest.reply_message_id)
|
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False, reply_message_id=message_earliest.reply_message_id)
|
||||||
|
else:
|
||||||
#移除消息
|
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False)
|
||||||
|
#移除消息
|
||||||
if message_earliest.is_emoji:
|
if message_earliest.is_emoji:
|
||||||
message_earliest.processed_plain_text = "[表情包]"
|
message_earliest.processed_plain_text = "[表情包]"
|
||||||
await self.storage.store_message(message_earliest, None)
|
await self.storage.store_message(message_earliest, None)
|
||||||
@@ -192,10 +187,11 @@ class MessageManager:
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
#发送
|
#发送
|
||||||
if msg.update_thinking_time() < 30:
|
if msg.is_head and msg.update_thinking_time() >30:
|
||||||
await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False)
|
|
||||||
else:
|
|
||||||
await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False, reply_message_id=msg.reply_message_id)
|
await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False, reply_message_id=msg.reply_message_id)
|
||||||
|
else:
|
||||||
|
await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False)
|
||||||
|
|
||||||
|
|
||||||
#如果是表情包,则替换为"[表情包]"
|
#如果是表情包,则替换为"[表情包]"
|
||||||
if msg.is_emoji:
|
if msg.is_emoji:
|
||||||
|
|||||||
@@ -6,9 +6,11 @@ from .utils import get_embedding, combine_messages, get_recent_group_detailed_pl
|
|||||||
from ...common.database import Database
|
from ...common.database import Database
|
||||||
from .config import global_config
|
from .config import global_config
|
||||||
from .topic_identifier import topic_identifier
|
from .topic_identifier import topic_identifier
|
||||||
from ..memory_system.memory import memory_graph
|
from ..memory_system.memory import memory_graph,hippocampus
|
||||||
from random import choice
|
from random import choice
|
||||||
|
import numpy as np
|
||||||
|
import jieba
|
||||||
|
from collections import Counter
|
||||||
|
|
||||||
class PromptBuilder:
|
class PromptBuilder:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
@@ -16,7 +18,9 @@ class PromptBuilder:
|
|||||||
self.activate_messages = ''
|
self.activate_messages = ''
|
||||||
self.db = Database.get_instance()
|
self.db = Database.get_instance()
|
||||||
|
|
||||||
def _build_prompt(self,
|
|
||||||
|
|
||||||
|
async def _build_prompt(self,
|
||||||
message_txt: str,
|
message_txt: str,
|
||||||
sender_name: str = "某人",
|
sender_name: str = "某人",
|
||||||
relationship_value: float = 0.0,
|
relationship_value: float = 0.0,
|
||||||
@@ -32,59 +36,6 @@ class PromptBuilder:
|
|||||||
Returns:
|
Returns:
|
||||||
str: 构建好的prompt
|
str: 构建好的prompt
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
memory_prompt = ''
|
|
||||||
start_time = time.time() # 记录开始时间
|
|
||||||
# topic = await topic_identifier.identify_topic_llm(message_txt)
|
|
||||||
topic = topic_identifier.identify_topic_snownlp(message_txt)
|
|
||||||
|
|
||||||
# print(f"\033[1;32m[pb主题识别]\033[0m 主题: {topic}")
|
|
||||||
|
|
||||||
all_first_layer_items = [] # 存储所有第一层记忆
|
|
||||||
all_second_layer_items = {} # 用字典存储每个topic的第二层记忆
|
|
||||||
overlapping_second_layer = set() # 存储重叠的第二层记忆
|
|
||||||
|
|
||||||
if topic:
|
|
||||||
# 遍历所有topic
|
|
||||||
for current_topic in topic:
|
|
||||||
first_layer_items, second_layer_items = memory_graph.get_related_item(current_topic, depth=2)
|
|
||||||
# if first_layer_items:
|
|
||||||
# print(f"\033[1;32m[前额叶]\033[0m 主题 '{current_topic}' 的第一层记忆: {first_layer_items}")
|
|
||||||
|
|
||||||
# 记录第一层数据
|
|
||||||
all_first_layer_items.extend(first_layer_items)
|
|
||||||
|
|
||||||
# 记录第二层数据
|
|
||||||
all_second_layer_items[current_topic] = second_layer_items
|
|
||||||
|
|
||||||
# 检查是否有重叠的第二层数据
|
|
||||||
for other_topic, other_second_layer in all_second_layer_items.items():
|
|
||||||
if other_topic != current_topic:
|
|
||||||
# 找到重叠的记忆
|
|
||||||
overlap = set(second_layer_items) & set(other_second_layer)
|
|
||||||
if overlap:
|
|
||||||
# print(f"\033[1;32m[前额叶]\033[0m 发现主题 '{current_topic}' 和 '{other_topic}' 有共同的第二层记忆: {overlap}")
|
|
||||||
overlapping_second_layer.update(overlap)
|
|
||||||
|
|
||||||
selected_first_layer = random.sample(all_first_layer_items, min(2, len(all_first_layer_items))) if all_first_layer_items else []
|
|
||||||
selected_second_layer = random.sample(list(overlapping_second_layer), min(2, len(overlapping_second_layer))) if overlapping_second_layer else []
|
|
||||||
|
|
||||||
# 合并并去重
|
|
||||||
all_memories = list(set(selected_first_layer + selected_second_layer))
|
|
||||||
if all_memories:
|
|
||||||
print(f"\033[1;32m[前额叶]\033[0m 合并所有需要的记忆: {all_memories}")
|
|
||||||
random_item = " ".join(all_memories)
|
|
||||||
memory_prompt = f"看到这些聊天,你想起来{random_item}\n"
|
|
||||||
else:
|
|
||||||
memory_prompt = "" # 如果没有记忆,则返回空字符串
|
|
||||||
|
|
||||||
end_time = time.time() # 记录结束时间
|
|
||||||
print(f"\033[1;32m[回忆耗时]\033[0m 耗时: {(end_time - start_time):.3f}秒") # 输出耗时
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#先禁用关系
|
#先禁用关系
|
||||||
if 0 > 30:
|
if 0 > 30:
|
||||||
relation_prompt = "关系特别特别好,你很喜欢喜欢他"
|
relation_prompt = "关系特别特别好,你很喜欢喜欢他"
|
||||||
@@ -109,24 +60,51 @@ class PromptBuilder:
|
|||||||
|
|
||||||
prompt_info = ''
|
prompt_info = ''
|
||||||
promt_info_prompt = ''
|
promt_info_prompt = ''
|
||||||
prompt_info = self.get_prompt_info(message_txt,threshold=0.5)
|
prompt_info = await self.get_prompt_info(message_txt,threshold=0.5)
|
||||||
if prompt_info:
|
if prompt_info:
|
||||||
prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]:\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n'''
|
prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]:\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n'''
|
||||||
# promt_info_prompt = '你有一些[知识],在上面可以参考。'
|
|
||||||
|
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
print(f"\033[1;32m[知识检索]\033[0m 耗时: {(end_time - start_time):.3f}秒")
|
print(f"\033[1;32m[知识检索]\033[0m 耗时: {(end_time - start_time):.3f}秒")
|
||||||
# print(f"\033[1;34m[调试]\033[0m 获取知识库内容结果: {prompt_info}")
|
|
||||||
|
|
||||||
|
|
||||||
# print(f"\033[1;34m[调试信息]\033[0m 正在构建聊天上下文")
|
|
||||||
|
|
||||||
|
# 获取聊天上下文
|
||||||
chat_talking_prompt = ''
|
chat_talking_prompt = ''
|
||||||
if group_id:
|
if group_id:
|
||||||
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True)
|
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True)
|
||||||
|
|
||||||
chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}"
|
chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}"
|
||||||
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
|
|
||||||
|
|
||||||
|
|
||||||
|
# 使用新的记忆获取方法
|
||||||
|
memory_prompt = ''
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
# 调用 hippocampus 的 get_relevant_memories 方法
|
||||||
|
relevant_memories = await hippocampus.get_relevant_memories(
|
||||||
|
text=message_txt,
|
||||||
|
max_topics=5,
|
||||||
|
similarity_threshold=0.4,
|
||||||
|
max_memory_num=5
|
||||||
|
)
|
||||||
|
|
||||||
|
if relevant_memories:
|
||||||
|
# 格式化记忆内容
|
||||||
|
memory_items = []
|
||||||
|
for memory in relevant_memories:
|
||||||
|
memory_items.append(f"关于「{memory['topic']}」的记忆:{memory['content']}")
|
||||||
|
|
||||||
|
memory_prompt = f"看到这些聊天,你想起来:\n" + "\n".join(memory_items) + "\n"
|
||||||
|
|
||||||
|
# 打印调试信息
|
||||||
|
print("\n\033[1;32m[记忆检索]\033[0m 找到以下相关记忆:")
|
||||||
|
for memory in relevant_memories:
|
||||||
|
print(f"- 主题「{memory['topic']}」[相似度: {memory['similarity']:.2f}]: {memory['content']}")
|
||||||
|
|
||||||
|
end_time = time.time()
|
||||||
|
print(f"\033[1;32m[回忆耗时]\033[0m 耗时: {(end_time - start_time):.3f}秒")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#激活prompt构建
|
#激活prompt构建
|
||||||
activate_prompt = ''
|
activate_prompt = ''
|
||||||
@@ -162,29 +140,19 @@ class PromptBuilder:
|
|||||||
if random.random() < 0.01:
|
if random.random() < 0.01:
|
||||||
prompt_ger += '你喜欢用文言文'
|
prompt_ger += '你喜欢用文言文'
|
||||||
|
|
||||||
|
|
||||||
#额外信息要求
|
#额外信息要求
|
||||||
extra_info = '''但是记得回复平淡一些,简短一些,尤其注意在没明确提到时不要过多提及自身的背景, 记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容'''
|
extra_info = '''但是记得回复平淡一些,简短一些,尤其注意在没明确提到时不要过多提及自身的背景, 不要直接回复别人发的表情包,记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容'''
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#合并prompt
|
#合并prompt
|
||||||
prompt = ""
|
prompt = ""
|
||||||
prompt += f"{prompt_info}\n"
|
prompt += f"{prompt_info}\n"
|
||||||
prompt += f"{prompt_date}\n"
|
prompt += f"{prompt_date}\n"
|
||||||
prompt += f"{chat_talking_prompt}\n"
|
prompt += f"{chat_talking_prompt}\n"
|
||||||
|
|
||||||
# prompt += f"{memory_prompt}\n"
|
|
||||||
|
|
||||||
# prompt += f"{activate_prompt}\n"
|
|
||||||
prompt += f"{prompt_personality}\n"
|
prompt += f"{prompt_personality}\n"
|
||||||
prompt += f"{prompt_ger}\n"
|
prompt += f"{prompt_ger}\n"
|
||||||
prompt += f"{extra_info}\n"
|
prompt += f"{extra_info}\n"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
'''读空气prompt处理'''
|
'''读空气prompt处理'''
|
||||||
|
|
||||||
activate_prompt_check=f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2},但是这不一定是合适的时机,请你决定是否要回应这条消息。"
|
activate_prompt_check=f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2},但是这不一定是合适的时机,请你决定是否要回应这条消息。"
|
||||||
prompt_personality_check = ''
|
prompt_personality_check = ''
|
||||||
extra_check_info=f"请注意把握群里的聊天内容的基础上,综合群内的氛围,例如,和{global_config.BOT_NICKNAME}相关的话题要积极回复,如果是at自己的消息一定要回复,如果自己正在和别人聊天一定要回复,其他话题如果合适搭话也可以回复,如果认为应该回复请输出yes,否则输出no,请注意是决定是否需要回复,而不是编写回复内容,除了yes和no不要输出任何回复内容。"
|
extra_check_info=f"请注意把握群里的聊天内容的基础上,综合群内的氛围,例如,和{global_config.BOT_NICKNAME}相关的话题要积极回复,如果是at自己的消息一定要回复,如果自己正在和别人聊天一定要回复,其他话题如果合适搭话也可以回复,如果认为应该回复请输出yes,否则输出no,请注意是决定是否需要回复,而不是编写回复内容,除了yes和no不要输出任何回复内容。"
|
||||||
@@ -247,10 +215,10 @@ class PromptBuilder:
|
|||||||
return prompt_for_initiative
|
return prompt_for_initiative
|
||||||
|
|
||||||
|
|
||||||
def get_prompt_info(self,message:str,threshold:float):
|
async def get_prompt_info(self,message:str,threshold:float):
|
||||||
related_info = ''
|
related_info = ''
|
||||||
print(f"\033[1;34m[调试]\033[0m 获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
print(f"\033[1;34m[调试]\033[0m 获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||||
embedding = get_embedding(message)
|
embedding = await get_embedding(message)
|
||||||
related_info += self.get_info_from_db(embedding,threshold=threshold)
|
related_info += self.get_info_from_db(embedding,threshold=threshold)
|
||||||
|
|
||||||
return related_info
|
return related_info
|
||||||
|
|||||||
@@ -4,7 +4,6 @@ from .message import Message
|
|||||||
import jieba
|
import jieba
|
||||||
from nonebot import get_driver
|
from nonebot import get_driver
|
||||||
from .config import global_config
|
from .config import global_config
|
||||||
from snownlp import SnowNLP
|
|
||||||
from ..models.utils_model import LLM_request
|
from ..models.utils_model import LLM_request
|
||||||
|
|
||||||
driver = get_driver()
|
driver = get_driver()
|
||||||
@@ -12,9 +11,7 @@ config = driver.config
|
|||||||
|
|
||||||
class TopicIdentifier:
|
class TopicIdentifier:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.llm_client = LLM_request(model=global_config.llm_topic_extract)
|
self.llm_topic_judge = LLM_request(model=global_config.llm_topic_judge)
|
||||||
self.select=global_config.topic_extract
|
|
||||||
|
|
||||||
|
|
||||||
async def identify_topic_llm(self, text: str) -> Optional[List[str]]:
|
async def identify_topic_llm(self, text: str) -> Optional[List[str]]:
|
||||||
"""识别消息主题,返回主题列表"""
|
"""识别消息主题,返回主题列表"""
|
||||||
@@ -26,7 +23,7 @@ class TopicIdentifier:
|
|||||||
消息内容:{text}"""
|
消息内容:{text}"""
|
||||||
|
|
||||||
# 使用 LLM_request 类进行请求
|
# 使用 LLM_request 类进行请求
|
||||||
topic, _ = await self.llm_client.generate_response(prompt)
|
topic, _ = await self.llm_topic_judge.generate_response(prompt)
|
||||||
|
|
||||||
if not topic:
|
if not topic:
|
||||||
print(f"\033[1;31m[错误]\033[0m LLM API 返回为空")
|
print(f"\033[1;31m[错误]\033[0m LLM API 返回为空")
|
||||||
@@ -42,25 +39,4 @@ class TopicIdentifier:
|
|||||||
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic_list}")
|
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic_list}")
|
||||||
return topic_list if topic_list else None
|
return topic_list if topic_list else None
|
||||||
|
|
||||||
def identify_topic_snownlp(self, text: str) -> Optional[List[str]]:
|
|
||||||
"""使用 SnowNLP 进行主题识别
|
|
||||||
|
|
||||||
Args:
|
|
||||||
text (str): 需要识别主题的文本
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Optional[List[str]]: 返回识别出的主题关键词列表,如果无法识别则返回 None
|
|
||||||
"""
|
|
||||||
if not text or len(text.strip()) == 0:
|
|
||||||
return None
|
|
||||||
|
|
||||||
try:
|
|
||||||
s = SnowNLP(text)
|
|
||||||
# 提取前3个关键词作为主题
|
|
||||||
keywords = s.keywords(5)
|
|
||||||
return keywords if keywords else None
|
|
||||||
except Exception as e:
|
|
||||||
print(f"\033[1;31m[错误]\033[0m SnowNLP 处理失败: {str(e)}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
topic_identifier = TopicIdentifier()
|
topic_identifier = TopicIdentifier()
|
||||||
@@ -11,6 +11,9 @@ from collections import Counter
|
|||||||
import math
|
import math
|
||||||
from nonebot import get_driver
|
from nonebot import get_driver
|
||||||
from ..models.utils_model import LLM_request
|
from ..models.utils_model import LLM_request
|
||||||
|
import aiohttp
|
||||||
|
import jieba
|
||||||
|
from ..utils.typo_generator import ChineseTypoGenerator
|
||||||
|
|
||||||
driver = get_driver()
|
driver = get_driver()
|
||||||
config = driver.config
|
config = driver.config
|
||||||
@@ -35,11 +38,13 @@ def combine_messages(messages: List[Message]) -> str:
|
|||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def db_message_to_str (message_dict: Dict) -> str:
|
|
||||||
|
def db_message_to_str(message_dict: Dict) -> str:
|
||||||
print(f"message_dict: {message_dict}")
|
print(f"message_dict: {message_dict}")
|
||||||
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message_dict["time"]))
|
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message_dict["time"]))
|
||||||
try:
|
try:
|
||||||
name="[(%s)%s]%s" % (message_dict['user_id'],message_dict.get("user_nickname", ""),message_dict.get("user_cardname", ""))
|
name = "[(%s)%s]%s" % (
|
||||||
|
message_dict['user_id'], message_dict.get("user_nickname", ""), message_dict.get("user_cardname", ""))
|
||||||
except:
|
except:
|
||||||
name = message_dict.get("user_nickname", "") or f"用户{message_dict['user_id']}"
|
name = message_dict.get("user_nickname", "") or f"用户{message_dict['user_id']}"
|
||||||
content = message_dict.get("processed_plain_text", "")
|
content = message_dict.get("processed_plain_text", "")
|
||||||
@@ -56,6 +61,7 @@ def is_mentioned_bot_in_message(message: Message) -> bool:
|
|||||||
return True
|
return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def is_mentioned_bot_in_txt(message: str) -> bool:
|
def is_mentioned_bot_in_txt(message: str) -> bool:
|
||||||
"""检查消息是否提到了机器人"""
|
"""检查消息是否提到了机器人"""
|
||||||
keywords = [global_config.BOT_NICKNAME]
|
keywords = [global_config.BOT_NICKNAME]
|
||||||
@@ -64,10 +70,13 @@ def is_mentioned_bot_in_txt(message: str) -> bool:
|
|||||||
return True
|
return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def get_embedding(text):
|
|
||||||
|
async def get_embedding(text):
|
||||||
"""获取文本的embedding向量"""
|
"""获取文本的embedding向量"""
|
||||||
llm = LLM_request(model=global_config.embedding)
|
llm = LLM_request(model=global_config.embedding)
|
||||||
return llm.get_embedding_sync(text)
|
# return llm.get_embedding_sync(text)
|
||||||
|
return await llm.get_embedding(text)
|
||||||
|
|
||||||
|
|
||||||
def cosine_similarity(v1, v2):
|
def cosine_similarity(v1, v2):
|
||||||
dot_product = np.dot(v1, v2)
|
dot_product = np.dot(v1, v2)
|
||||||
@@ -75,6 +84,7 @@ def cosine_similarity(v1, v2):
|
|||||||
norm2 = np.linalg.norm(v2)
|
norm2 = np.linalg.norm(v2)
|
||||||
return dot_product / (norm1 * norm2)
|
return dot_product / (norm1 * norm2)
|
||||||
|
|
||||||
|
|
||||||
def calculate_information_content(text):
|
def calculate_information_content(text):
|
||||||
"""计算文本的信息量(熵)"""
|
"""计算文本的信息量(熵)"""
|
||||||
char_count = Counter(text)
|
char_count = Counter(text)
|
||||||
@@ -87,6 +97,7 @@ def calculate_information_content(text):
|
|||||||
|
|
||||||
return entropy
|
return entropy
|
||||||
|
|
||||||
|
|
||||||
def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||||
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
|
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
|
||||||
chat_text = ''
|
chat_text = ''
|
||||||
@@ -104,7 +115,7 @@ def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
|||||||
for record in chat_records:
|
for record in chat_records:
|
||||||
# 检查当前记录的memorized值
|
# 检查当前记录的memorized值
|
||||||
current_memorized = record.get('memorized', 0)
|
current_memorized = record.get('memorized', 0)
|
||||||
if current_memorized > 3:
|
if current_memorized > 3:
|
||||||
# print(f"消息已读取3次,跳过")
|
# print(f"消息已读取3次,跳过")
|
||||||
return ''
|
return ''
|
||||||
|
|
||||||
@@ -117,10 +128,11 @@ def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
|||||||
chat_text += record["detailed_plain_text"]
|
chat_text += record["detailed_plain_text"]
|
||||||
|
|
||||||
return chat_text
|
return chat_text
|
||||||
print(f"消息已读取3次,跳过")
|
# print(f"消息已读取3次,跳过")
|
||||||
return ''
|
return ''
|
||||||
|
|
||||||
def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
|
||||||
|
async def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
||||||
"""从数据库获取群组最近的消息记录
|
"""从数据库获取群组最近的消息记录
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -132,7 +144,7 @@ def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
|||||||
list: Message对象列表,按时间正序排列
|
list: Message对象列表,按时间正序排列
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# 从数据库获取最近消息
|
# 从数据库获取最近消息
|
||||||
recent_messages = list(db.db.messages.find(
|
recent_messages = list(db.db.messages.find(
|
||||||
{"group_id": group_id},
|
{"group_id": group_id},
|
||||||
# {
|
# {
|
||||||
@@ -162,6 +174,7 @@ def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
|||||||
processed_plain_text=msg_data.get("processed_text", ""),
|
processed_plain_text=msg_data.get("processed_text", ""),
|
||||||
group_id=group_id
|
group_id=group_id
|
||||||
)
|
)
|
||||||
|
await msg.initialize()
|
||||||
message_objects.append(msg)
|
message_objects.append(msg)
|
||||||
except KeyError:
|
except KeyError:
|
||||||
print("[WARNING] 数据库中存在无效的消息")
|
print("[WARNING] 数据库中存在无效的消息")
|
||||||
@@ -171,7 +184,8 @@ def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
|
|||||||
message_objects.reverse()
|
message_objects.reverse()
|
||||||
return message_objects
|
return message_objects
|
||||||
|
|
||||||
def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12,combine = False):
|
|
||||||
|
def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12, combine=False):
|
||||||
recent_messages = list(db.db.messages.find(
|
recent_messages = list(db.db.messages.find(
|
||||||
{"group_id": group_id},
|
{"group_id": group_id},
|
||||||
{
|
{
|
||||||
@@ -194,7 +208,7 @@ def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12,comb
|
|||||||
|
|
||||||
if combine:
|
if combine:
|
||||||
for msg_db_data in recent_messages:
|
for msg_db_data in recent_messages:
|
||||||
message_detailed_plain_text+=str(msg_db_data["detailed_plain_text"])
|
message_detailed_plain_text += str(msg_db_data["detailed_plain_text"])
|
||||||
return message_detailed_plain_text
|
return message_detailed_plain_text
|
||||||
else:
|
else:
|
||||||
for msg_db_data in recent_messages:
|
for msg_db_data in recent_messages:
|
||||||
@@ -202,7 +216,6 @@ def get_recent_group_detailed_plain_text(db, group_id: int, limit: int = 12,comb
|
|||||||
return message_detailed_plain_text_list
|
return message_detailed_plain_text_list
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
||||||
"""将文本分割成句子,但保持书名号中的内容完整
|
"""将文本分割成句子,但保持书名号中的内容完整
|
||||||
Args:
|
Args:
|
||||||
@@ -222,7 +235,7 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
|||||||
split_strength = 0.7
|
split_strength = 0.7
|
||||||
else:
|
else:
|
||||||
split_strength = 0.9
|
split_strength = 0.9
|
||||||
#先移除换行符
|
# 先移除换行符
|
||||||
# print(f"split_strength: {split_strength}")
|
# print(f"split_strength: {split_strength}")
|
||||||
|
|
||||||
# print(f"处理前的文本: {text}")
|
# print(f"处理前的文本: {text}")
|
||||||
@@ -236,11 +249,11 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
|||||||
text_no_1 = ''
|
text_no_1 = ''
|
||||||
for letter in text:
|
for letter in text:
|
||||||
# print(f"当前字符: {letter}")
|
# print(f"当前字符: {letter}")
|
||||||
if letter in ['!','!','?','?']:
|
if letter in ['!', '!', '?', '?']:
|
||||||
# print(f"当前字符: {letter}, 随机数: {random.random()}")
|
# print(f"当前字符: {letter}, 随机数: {random.random()}")
|
||||||
if random.random() < split_strength:
|
if random.random() < split_strength:
|
||||||
letter = ''
|
letter = ''
|
||||||
if letter in ['。','…']:
|
if letter in ['。', '…']:
|
||||||
# print(f"当前字符: {letter}, 随机数: {random.random()}")
|
# print(f"当前字符: {letter}, 随机数: {random.random()}")
|
||||||
if random.random() < 1 - split_strength:
|
if random.random() < 1 - split_strength:
|
||||||
letter = ''
|
letter = ''
|
||||||
@@ -274,7 +287,7 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
|||||||
sentences_done = []
|
sentences_done = []
|
||||||
for sentence in sentences:
|
for sentence in sentences:
|
||||||
sentence = sentence.rstrip(',,')
|
sentence = sentence.rstrip(',,')
|
||||||
if random.random() < split_strength*0.5:
|
if random.random() < split_strength * 0.5:
|
||||||
sentence = sentence.replace(',', '').replace(',', '')
|
sentence = sentence.replace(',', '').replace(',', '')
|
||||||
elif random.random() < split_strength:
|
elif random.random() < split_strength:
|
||||||
sentence = sentence.replace(',', ' ').replace(',', ' ')
|
sentence = sentence.replace(',', ' ').replace(',', ' ')
|
||||||
@@ -283,75 +296,7 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
|||||||
print(f"处理后的句子: {sentences_done}")
|
print(f"处理后的句子: {sentences_done}")
|
||||||
return sentences_done
|
return sentences_done
|
||||||
|
|
||||||
# 常见的错别字映射
|
|
||||||
TYPO_DICT = {
|
|
||||||
'的': '地得',
|
|
||||||
'了': '咯啦勒',
|
|
||||||
'吗': '嘛麻',
|
|
||||||
'吧': '八把罢',
|
|
||||||
'是': '事',
|
|
||||||
'在': '再在',
|
|
||||||
'和': '合',
|
|
||||||
'有': '又',
|
|
||||||
'我': '沃窝喔',
|
|
||||||
'你': '泥尼拟',
|
|
||||||
'他': '它她塔祂',
|
|
||||||
'们': '门',
|
|
||||||
'啊': '阿哇',
|
|
||||||
'呢': '呐捏',
|
|
||||||
'都': '豆读毒',
|
|
||||||
'很': '狠',
|
|
||||||
'会': '回汇',
|
|
||||||
'去': '趣取曲',
|
|
||||||
'做': '作坐',
|
|
||||||
'想': '相像',
|
|
||||||
'说': '说税睡',
|
|
||||||
'看': '砍堪刊',
|
|
||||||
'来': '来莱赖',
|
|
||||||
'好': '号毫豪',
|
|
||||||
'给': '给既继',
|
|
||||||
'过': '锅果裹',
|
|
||||||
'能': '嫩',
|
|
||||||
'为': '位未',
|
|
||||||
'什': '甚深伸',
|
|
||||||
'么': '末麽嘛',
|
|
||||||
'话': '话花划',
|
|
||||||
'知': '织直值',
|
|
||||||
'道': '到',
|
|
||||||
'听': '听停挺',
|
|
||||||
'见': '见件建',
|
|
||||||
'觉': '觉脚搅',
|
|
||||||
'得': '得德锝',
|
|
||||||
'着': '着找招',
|
|
||||||
'像': '向象想',
|
|
||||||
'等': '等灯登',
|
|
||||||
'谢': '谢写卸',
|
|
||||||
'对': '对队',
|
|
||||||
'里': '里理鲤',
|
|
||||||
'啦': '啦拉喇',
|
|
||||||
'吃': '吃持迟',
|
|
||||||
'哦': '哦喔噢',
|
|
||||||
'呀': '呀压',
|
|
||||||
'要': '药',
|
|
||||||
'太': '太抬台',
|
|
||||||
'快': '块',
|
|
||||||
'点': '店',
|
|
||||||
'以': '以已',
|
|
||||||
'因': '因应',
|
|
||||||
'啥': '啥沙傻',
|
|
||||||
'行': '行型形',
|
|
||||||
'哈': '哈蛤铪',
|
|
||||||
'嘿': '嘿黑嗨',
|
|
||||||
'嗯': '嗯恩摁',
|
|
||||||
'哎': '哎爱埃',
|
|
||||||
'呜': '呜屋污',
|
|
||||||
'喂': '喂位未',
|
|
||||||
'嘛': '嘛麻马',
|
|
||||||
'嗨': '嗨害亥',
|
|
||||||
'哇': '哇娃蛙',
|
|
||||||
'咦': '咦意易',
|
|
||||||
'嘻': '嘻西希'
|
|
||||||
}
|
|
||||||
|
|
||||||
def random_remove_punctuation(text: str) -> str:
|
def random_remove_punctuation(text: str) -> str:
|
||||||
"""随机处理标点符号,模拟人类打字习惯
|
"""随机处理标点符号,模拟人类打字习惯
|
||||||
@@ -379,32 +324,30 @@ def random_remove_punctuation(text: str) -> str:
|
|||||||
result += char
|
result += char
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def add_typos(text: str) -> str:
|
|
||||||
TYPO_RATE = 0.02 # 控制错别字出现的概率(2%)
|
|
||||||
result = ""
|
|
||||||
for char in text:
|
|
||||||
if char in TYPO_DICT and random.random() < TYPO_RATE:
|
|
||||||
# 从可能的错别字中随机选择一个
|
|
||||||
typos = TYPO_DICT[char]
|
|
||||||
result += random.choice(typos)
|
|
||||||
else:
|
|
||||||
result += char
|
|
||||||
return result
|
|
||||||
|
|
||||||
def process_llm_response(text: str) -> List[str]:
|
def process_llm_response(text: str) -> List[str]:
|
||||||
# processed_response = process_text_with_typos(content)
|
# processed_response = process_text_with_typos(content)
|
||||||
if len(text) > 200:
|
if len(text) > 300:
|
||||||
print(f"回复过长 ({len(text)} 字符),返回默认回复")
|
print(f"回复过长 ({len(text)} 字符),返回默认回复")
|
||||||
return ['懒得说']
|
return ['懒得说']
|
||||||
# 处理长消息
|
# 处理长消息
|
||||||
sentences = split_into_sentences_w_remove_punctuation(add_typos(text))
|
typo_generator = ChineseTypoGenerator(
|
||||||
|
error_rate=0.03,
|
||||||
|
min_freq=7,
|
||||||
|
tone_error_rate=0.2,
|
||||||
|
word_replace_rate=0.02
|
||||||
|
)
|
||||||
|
typoed_text = typo_generator.create_typo_sentence(text)[0]
|
||||||
|
sentences = split_into_sentences_w_remove_punctuation(typoed_text)
|
||||||
# 检查分割后的消息数量是否过多(超过3条)
|
# 检查分割后的消息数量是否过多(超过3条)
|
||||||
if len(sentences) > 3:
|
if len(sentences) > 4:
|
||||||
print(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
|
print(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
|
||||||
return [f'{global_config.BOT_NICKNAME}不知道哦']
|
return [f'{global_config.BOT_NICKNAME}不知道哦']
|
||||||
|
|
||||||
return sentences
|
return sentences
|
||||||
|
|
||||||
|
|
||||||
def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_time: float = 0.1) -> float:
|
def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_time: float = 0.1) -> float:
|
||||||
"""
|
"""
|
||||||
计算输入字符串所需的时间,中文和英文字符有不同的输入时间
|
计算输入字符串所需的时间,中文和英文字符有不同的输入时间
|
||||||
@@ -421,3 +364,42 @@ def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_
|
|||||||
return total_time
|
return total_time
|
||||||
|
|
||||||
|
|
||||||
|
def cosine_similarity(v1, v2):
|
||||||
|
"""计算余弦相似度"""
|
||||||
|
dot_product = np.dot(v1, v2)
|
||||||
|
norm1 = np.linalg.norm(v1)
|
||||||
|
norm2 = np.linalg.norm(v2)
|
||||||
|
if norm1 == 0 or norm2 == 0:
|
||||||
|
return 0
|
||||||
|
return dot_product / (norm1 * norm2)
|
||||||
|
|
||||||
|
|
||||||
|
def text_to_vector(text):
|
||||||
|
"""将文本转换为词频向量"""
|
||||||
|
# 分词
|
||||||
|
words = jieba.lcut(text)
|
||||||
|
# 统计词频
|
||||||
|
word_freq = Counter(words)
|
||||||
|
return word_freq
|
||||||
|
|
||||||
|
|
||||||
|
def find_similar_topics_simple(text: str, topics: list, top_k: int = 5) -> list:
|
||||||
|
"""使用简单的余弦相似度计算文本相似度"""
|
||||||
|
# 将输入文本转换为词频向量
|
||||||
|
text_vector = text_to_vector(text)
|
||||||
|
|
||||||
|
# 计算每个主题的相似度
|
||||||
|
similarities = []
|
||||||
|
for topic in topics:
|
||||||
|
topic_vector = text_to_vector(topic)
|
||||||
|
# 获取所有唯一词
|
||||||
|
all_words = set(text_vector.keys()) | set(topic_vector.keys())
|
||||||
|
# 构建向量
|
||||||
|
v1 = [text_vector.get(word, 0) for word in all_words]
|
||||||
|
v2 = [topic_vector.get(word, 0) for word in all_words]
|
||||||
|
# 计算相似度
|
||||||
|
similarity = cosine_similarity(v1, v2)
|
||||||
|
similarities.append((topic, similarity))
|
||||||
|
|
||||||
|
# 按相似度降序排序并返回前k个
|
||||||
|
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k]
|
||||||
|
|||||||
@@ -4,6 +4,7 @@ import hashlib
|
|||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
from ...common.database import Database
|
from ...common.database import Database
|
||||||
|
from ..chat.config import global_config
|
||||||
import zlib # 用于 CRC32
|
import zlib # 用于 CRC32
|
||||||
import base64
|
import base64
|
||||||
from nonebot import get_driver
|
from nonebot import get_driver
|
||||||
@@ -143,6 +144,8 @@ def storage_emoji(image_data: bytes) -> bytes:
|
|||||||
Returns:
|
Returns:
|
||||||
bytes: 原始图片数据
|
bytes: 原始图片数据
|
||||||
"""
|
"""
|
||||||
|
if not global_config.EMOJI_SAVE:
|
||||||
|
return image_data
|
||||||
try:
|
try:
|
||||||
# 使用 CRC32 计算哈希值
|
# 使用 CRC32 计算哈希值
|
||||||
hash_value = format(zlib.crc32(image_data) & 0xFFFFFFFF, 'x')
|
hash_value = format(zlib.crc32(image_data) & 0xFFFFFFFF, 'x')
|
||||||
@@ -227,7 +230,7 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
|
|||||||
image_data = base64.b64decode(base64_data)
|
image_data = base64.b64decode(base64_data)
|
||||||
|
|
||||||
# 如果已经小于目标大小,直接返回原图
|
# 如果已经小于目标大小,直接返回原图
|
||||||
if len(image_data) <= target_size:
|
if len(image_data) <= 2*1024*1024:
|
||||||
return base64_data
|
return base64_data
|
||||||
|
|
||||||
# 将字节数据转换为图片对象
|
# 将字节数据转换为图片对象
|
||||||
@@ -252,7 +255,7 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
|
|||||||
for frame_idx in range(img.n_frames):
|
for frame_idx in range(img.n_frames):
|
||||||
img.seek(frame_idx)
|
img.seek(frame_idx)
|
||||||
new_frame = img.copy()
|
new_frame = img.copy()
|
||||||
new_frame = new_frame.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
new_frame = new_frame.resize((new_width//2, new_height//2), Image.Resampling.LANCZOS) # 动图折上折
|
||||||
frames.append(new_frame)
|
frames.append(new_frame)
|
||||||
|
|
||||||
# 保存到缓冲区
|
# 保存到缓冲区
|
||||||
@@ -287,3 +290,18 @@ def compress_base64_image_by_scale(base64_data: str, target_size: int = 0.8 * 10
|
|||||||
import traceback
|
import traceback
|
||||||
logger.error(traceback.format_exc())
|
logger.error(traceback.format_exc())
|
||||||
return base64_data
|
return base64_data
|
||||||
|
|
||||||
|
def image_path_to_base64(image_path: str) -> str:
|
||||||
|
"""将图片路径转换为base64编码
|
||||||
|
Args:
|
||||||
|
image_path: 图片文件路径
|
||||||
|
Returns:
|
||||||
|
str: base64编码的图片数据
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
with open(image_path, 'rb') as f:
|
||||||
|
image_data = f.read()
|
||||||
|
return base64.b64encode(image_data).decode('utf-8')
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"读取图片失败: {image_path}, 错误: {str(e)}")
|
||||||
|
return None
|
||||||
@@ -34,16 +34,16 @@ class WillingManager:
|
|||||||
print(f"被重复提及, 当前意愿: {current_willing}")
|
print(f"被重复提及, 当前意愿: {current_willing}")
|
||||||
|
|
||||||
if is_emoji:
|
if is_emoji:
|
||||||
current_willing *= 0.15
|
current_willing *= 0.1
|
||||||
print(f"表情包, 当前意愿: {current_willing}")
|
print(f"表情包, 当前意愿: {current_willing}")
|
||||||
|
|
||||||
if interested_rate > 0.65:
|
if interested_rate > 0.4:
|
||||||
print(f"兴趣度: {interested_rate}, 当前意愿: {current_willing}")
|
print(f"兴趣度: {interested_rate}, 当前意愿: {current_willing}")
|
||||||
current_willing += interested_rate-0.6
|
current_willing += interested_rate-0.1
|
||||||
|
|
||||||
self.group_reply_willing[group_id] = min(current_willing, 3.0)
|
self.group_reply_willing[group_id] = min(current_willing, 3.0)
|
||||||
|
|
||||||
reply_probability = max((current_willing - 0.55) * 1.9, 0)
|
reply_probability = max((current_willing - 0.45) * 2, 0)
|
||||||
if group_id not in config.talk_allowed_groups:
|
if group_id not in config.talk_allowed_groups:
|
||||||
current_willing = 0
|
current_willing = 0
|
||||||
reply_probability = 0
|
reply_probability = 0
|
||||||
|
|||||||
@@ -11,7 +11,7 @@ from ..chat.config import global_config
|
|||||||
from ...common.database import Database # 使用正确的导入语法
|
from ...common.database import Database # 使用正确的导入语法
|
||||||
from ..models.utils_model import LLM_request
|
from ..models.utils_model import LLM_request
|
||||||
import math
|
import math
|
||||||
from ..chat.utils import calculate_information_content, get_cloest_chat_from_db
|
from ..chat.utils import calculate_information_content, get_cloest_chat_from_db ,text_to_vector,cosine_similarity
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -132,8 +132,16 @@ class Memory_graph:
|
|||||||
class Hippocampus:
|
class Hippocampus:
|
||||||
def __init__(self,memory_graph:Memory_graph):
|
def __init__(self,memory_graph:Memory_graph):
|
||||||
self.memory_graph = memory_graph
|
self.memory_graph = memory_graph
|
||||||
self.llm_model_get_topic = LLM_request(model = global_config.llm_normal_minor,temperature=0.5)
|
self.llm_topic_judge = LLM_request(model = global_config.llm_topic_judge,temperature=0.5)
|
||||||
self.llm_model_summary = LLM_request(model = global_config.llm_normal,temperature=0.5)
|
self.llm_summary_by_topic = LLM_request(model = global_config.llm_summary_by_topic,temperature=0.5)
|
||||||
|
|
||||||
|
def get_all_node_names(self) -> list:
|
||||||
|
"""获取记忆图中所有节点的名字列表
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list: 包含所有节点名字的列表
|
||||||
|
"""
|
||||||
|
return list(self.memory_graph.G.nodes())
|
||||||
|
|
||||||
def calculate_node_hash(self, concept, memory_items):
|
def calculate_node_hash(self, concept, memory_items):
|
||||||
"""计算节点的特征值"""
|
"""计算节点的特征值"""
|
||||||
@@ -171,18 +179,24 @@ class Hippocampus:
|
|||||||
|
|
||||||
#获取topics
|
#获取topics
|
||||||
topic_num = self.calculate_topic_num(input_text, compress_rate)
|
topic_num = self.calculate_topic_num(input_text, compress_rate)
|
||||||
topics_response = await self.llm_model_get_topic.generate_response(self.find_topic_llm(input_text, topic_num))
|
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(input_text, topic_num))
|
||||||
# 修改话题处理逻辑
|
# 修改话题处理逻辑
|
||||||
print(f"话题: {topics_response[0]}")
|
# 定义需要过滤的关键词
|
||||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
|
||||||
print(f"话题: {topics}")
|
|
||||||
|
|
||||||
# 创建所有话题的请求任务
|
# 过滤topics
|
||||||
|
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||||
|
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
|
||||||
|
|
||||||
|
# print(f"原始话题: {topics}")
|
||||||
|
print(f"过滤后话题: {filtered_topics}")
|
||||||
|
|
||||||
|
# 使用过滤后的话题继续处理
|
||||||
tasks = []
|
tasks = []
|
||||||
for topic in topics:
|
for topic in filtered_topics:
|
||||||
topic_what_prompt = self.topic_what(input_text, topic)
|
topic_what_prompt = self.topic_what(input_text, topic)
|
||||||
# 创建异步任务
|
# 创建异步任务
|
||||||
task = self.llm_model_summary.generate_response_async(topic_what_prompt)
|
task = self.llm_summary_by_topic.generate_response_async(topic_what_prompt)
|
||||||
tasks.append((topic.strip(), task))
|
tasks.append((topic.strip(), task))
|
||||||
|
|
||||||
# 等待所有任务完成
|
# 等待所有任务完成
|
||||||
@@ -483,6 +497,198 @@ class Hippocampus:
|
|||||||
prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
|
async def _identify_topics(self, text: str) -> list:
|
||||||
|
"""从文本中识别可能的主题
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: 输入文本
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list: 识别出的主题列表
|
||||||
|
"""
|
||||||
|
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, 5))
|
||||||
|
# print(f"话题: {topics_response[0]}")
|
||||||
|
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||||
|
# print(f"话题: {topics}")
|
||||||
|
|
||||||
|
return topics
|
||||||
|
|
||||||
|
def _find_similar_topics(self, topics: list, similarity_threshold: float = 0.4, debug_info: str = "") -> list:
|
||||||
|
"""查找与给定主题相似的记忆主题
|
||||||
|
|
||||||
|
Args:
|
||||||
|
topics: 主题列表
|
||||||
|
similarity_threshold: 相似度阈值
|
||||||
|
debug_info: 调试信息前缀
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list: (主题, 相似度) 元组列表
|
||||||
|
"""
|
||||||
|
all_memory_topics = self.get_all_node_names()
|
||||||
|
all_similar_topics = []
|
||||||
|
|
||||||
|
# 计算每个识别出的主题与记忆主题的相似度
|
||||||
|
for topic in topics:
|
||||||
|
if debug_info:
|
||||||
|
print(f"\033[1;32m[{debug_info}]\033[0m 正在思考有没有见过: {topic}")
|
||||||
|
|
||||||
|
topic_vector = text_to_vector(topic)
|
||||||
|
has_similar_topic = False
|
||||||
|
|
||||||
|
for memory_topic in all_memory_topics:
|
||||||
|
memory_vector = text_to_vector(memory_topic)
|
||||||
|
# 获取所有唯一词
|
||||||
|
all_words = set(topic_vector.keys()) | set(memory_vector.keys())
|
||||||
|
# 构建向量
|
||||||
|
v1 = [topic_vector.get(word, 0) for word in all_words]
|
||||||
|
v2 = [memory_vector.get(word, 0) for word in all_words]
|
||||||
|
# 计算相似度
|
||||||
|
similarity = cosine_similarity(v1, v2)
|
||||||
|
|
||||||
|
if similarity >= similarity_threshold:
|
||||||
|
has_similar_topic = True
|
||||||
|
if debug_info:
|
||||||
|
print(f"\033[1;32m[{debug_info}]\033[0m 找到相似主题: {topic} -> {memory_topic} (相似度: {similarity:.2f})")
|
||||||
|
all_similar_topics.append((memory_topic, similarity))
|
||||||
|
|
||||||
|
if not has_similar_topic and debug_info:
|
||||||
|
print(f"\033[1;31m[{debug_info}]\033[0m 没有见过: {topic} ,呃呃")
|
||||||
|
|
||||||
|
return all_similar_topics
|
||||||
|
|
||||||
|
def _get_top_topics(self, similar_topics: list, max_topics: int = 5) -> list:
|
||||||
|
"""获取相似度最高的主题
|
||||||
|
|
||||||
|
Args:
|
||||||
|
similar_topics: (主题, 相似度) 元组列表
|
||||||
|
max_topics: 最大主题数量
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list: (主题, 相似度) 元组列表
|
||||||
|
"""
|
||||||
|
seen_topics = set()
|
||||||
|
top_topics = []
|
||||||
|
|
||||||
|
for topic, score in sorted(similar_topics, key=lambda x: x[1], reverse=True):
|
||||||
|
if topic not in seen_topics and len(top_topics) < max_topics:
|
||||||
|
seen_topics.add(topic)
|
||||||
|
top_topics.append((topic, score))
|
||||||
|
|
||||||
|
return top_topics
|
||||||
|
|
||||||
|
async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int:
|
||||||
|
"""计算输入文本对记忆的激活程度"""
|
||||||
|
print(f"\033[1;32m[记忆激活]\033[0m 识别主题: {await self._identify_topics(text)}")
|
||||||
|
|
||||||
|
# 识别主题
|
||||||
|
identified_topics = await self._identify_topics(text)
|
||||||
|
if not identified_topics:
|
||||||
|
return 0
|
||||||
|
|
||||||
|
# 查找相似主题
|
||||||
|
all_similar_topics = self._find_similar_topics(
|
||||||
|
identified_topics,
|
||||||
|
similarity_threshold=similarity_threshold,
|
||||||
|
debug_info="记忆激活"
|
||||||
|
)
|
||||||
|
|
||||||
|
if not all_similar_topics:
|
||||||
|
return 0
|
||||||
|
|
||||||
|
# 获取最相关的主题
|
||||||
|
top_topics = self._get_top_topics(all_similar_topics, max_topics)
|
||||||
|
|
||||||
|
# 如果只找到一个主题,进行惩罚
|
||||||
|
if len(top_topics) == 1:
|
||||||
|
topic, score = top_topics[0]
|
||||||
|
# 获取主题内容数量并计算惩罚系数
|
||||||
|
memory_items = self.memory_graph.G.nodes[topic].get('memory_items', [])
|
||||||
|
if not isinstance(memory_items, list):
|
||||||
|
memory_items = [memory_items] if memory_items else []
|
||||||
|
content_count = len(memory_items)
|
||||||
|
penalty = 1.0 / (1 + math.log(content_count + 1))
|
||||||
|
|
||||||
|
activation = int(score * 50 * penalty)
|
||||||
|
print(f"\033[1;32m[记忆激活]\033[0m 单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}")
|
||||||
|
return activation
|
||||||
|
|
||||||
|
# 计算关键词匹配率,同时考虑内容数量
|
||||||
|
matched_topics = set()
|
||||||
|
topic_similarities = {}
|
||||||
|
|
||||||
|
for memory_topic, similarity in top_topics:
|
||||||
|
# 计算内容数量惩罚
|
||||||
|
memory_items = self.memory_graph.G.nodes[memory_topic].get('memory_items', [])
|
||||||
|
if not isinstance(memory_items, list):
|
||||||
|
memory_items = [memory_items] if memory_items else []
|
||||||
|
content_count = len(memory_items)
|
||||||
|
penalty = 1.0 / (1 + math.log(content_count + 1))
|
||||||
|
|
||||||
|
# 对每个记忆主题,检查它与哪些输入主题相似
|
||||||
|
for input_topic in identified_topics:
|
||||||
|
topic_vector = text_to_vector(input_topic)
|
||||||
|
memory_vector = text_to_vector(memory_topic)
|
||||||
|
all_words = set(topic_vector.keys()) | set(memory_vector.keys())
|
||||||
|
v1 = [topic_vector.get(word, 0) for word in all_words]
|
||||||
|
v2 = [memory_vector.get(word, 0) for word in all_words]
|
||||||
|
sim = cosine_similarity(v1, v2)
|
||||||
|
if sim >= similarity_threshold:
|
||||||
|
matched_topics.add(input_topic)
|
||||||
|
adjusted_sim = sim * penalty
|
||||||
|
topic_similarities[input_topic] = max(topic_similarities.get(input_topic, 0), adjusted_sim)
|
||||||
|
print(f"\033[1;32m[记忆激活]\033[0m 主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})")
|
||||||
|
|
||||||
|
# 计算主题匹配率和平均相似度
|
||||||
|
topic_match = len(matched_topics) / len(identified_topics)
|
||||||
|
average_similarities = sum(topic_similarities.values()) / len(topic_similarities) if topic_similarities else 0
|
||||||
|
|
||||||
|
# 计算最终激活值
|
||||||
|
activation = int((topic_match + average_similarities) / 2 * 100)
|
||||||
|
print(f"\033[1;32m[记忆激活]\033[0m 匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}")
|
||||||
|
|
||||||
|
return activation
|
||||||
|
|
||||||
|
async def get_relevant_memories(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.4, max_memory_num: int = 5) -> list:
|
||||||
|
"""根据输入文本获取相关的记忆内容"""
|
||||||
|
# 识别主题
|
||||||
|
identified_topics = await self._identify_topics(text)
|
||||||
|
|
||||||
|
# 查找相似主题
|
||||||
|
all_similar_topics = self._find_similar_topics(
|
||||||
|
identified_topics,
|
||||||
|
similarity_threshold=similarity_threshold,
|
||||||
|
debug_info="记忆检索"
|
||||||
|
)
|
||||||
|
|
||||||
|
# 获取最相关的主题
|
||||||
|
relevant_topics = self._get_top_topics(all_similar_topics, max_topics)
|
||||||
|
|
||||||
|
# 获取相关记忆内容
|
||||||
|
relevant_memories = []
|
||||||
|
for topic, score in relevant_topics:
|
||||||
|
# 获取该主题的记忆内容
|
||||||
|
first_layer, _ = self.memory_graph.get_related_item(topic, depth=1)
|
||||||
|
if first_layer:
|
||||||
|
# 如果记忆条数超过限制,随机选择指定数量的记忆
|
||||||
|
if len(first_layer) > max_memory_num/2:
|
||||||
|
first_layer = random.sample(first_layer, max_memory_num//2)
|
||||||
|
# 为每条记忆添加来源主题和相似度信息
|
||||||
|
for memory in first_layer:
|
||||||
|
relevant_memories.append({
|
||||||
|
'topic': topic,
|
||||||
|
'similarity': score,
|
||||||
|
'content': memory
|
||||||
|
})
|
||||||
|
|
||||||
|
# 如果记忆数量超过5个,随机选择5个
|
||||||
|
# 按相似度排序
|
||||||
|
relevant_memories.sort(key=lambda x: x['similarity'], reverse=True)
|
||||||
|
|
||||||
|
if len(relevant_memories) > max_memory_num:
|
||||||
|
relevant_memories = random.sample(relevant_memories, max_memory_num)
|
||||||
|
|
||||||
|
return relevant_memories
|
||||||
|
|
||||||
|
|
||||||
def segment_text(text):
|
def segment_text(text):
|
||||||
seg_text = list(jieba.cut(text))
|
seg_text = list(jieba.cut(text))
|
||||||
|
|||||||
@@ -13,7 +13,6 @@ from dotenv import load_dotenv
|
|||||||
import pymongo
|
import pymongo
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from snownlp import SnowNLP
|
|
||||||
# from chat.config import global_config
|
# from chat.config import global_config
|
||||||
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
|
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
|
||||||
from src.common.database import Database
|
from src.common.database import Database
|
||||||
@@ -234,16 +233,22 @@ class Hippocampus:
|
|||||||
async def memory_compress(self, input_text, compress_rate=0.1):
|
async def memory_compress(self, input_text, compress_rate=0.1):
|
||||||
print(input_text)
|
print(input_text)
|
||||||
|
|
||||||
#获取topics
|
|
||||||
topic_num = self.calculate_topic_num(input_text, compress_rate)
|
topic_num = self.calculate_topic_num(input_text, compress_rate)
|
||||||
topics_response = await self.llm_model_get_topic.generate_response_async(self.find_topic_llm(input_text, topic_num))
|
topics_response = self.llm_model_get_topic.generate_response(self.find_topic_llm(input_text, topic_num))
|
||||||
# 修改话题处理逻辑
|
# 修改话题处理逻辑
|
||||||
|
# 定义需要过滤的关键词
|
||||||
|
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
|
||||||
|
|
||||||
|
# 过滤topics
|
||||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||||
print(f"话题: {topics}")
|
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
|
||||||
|
|
||||||
|
# print(f"原始话题: {topics}")
|
||||||
|
print(f"过滤后话题: {filtered_topics}")
|
||||||
|
|
||||||
# 创建所有话题的请求任务
|
# 创建所有话题的请求任务
|
||||||
tasks = []
|
tasks = []
|
||||||
for topic in topics:
|
for topic in filtered_topics:
|
||||||
topic_what_prompt = self.topic_what(input_text, topic)
|
topic_what_prompt = self.topic_what(input_text, topic)
|
||||||
# 创建异步任务
|
# 创建异步任务
|
||||||
task = self.llm_model_small.generate_response_async(topic_what_prompt)
|
task = self.llm_model_small.generate_response_async(topic_what_prompt)
|
||||||
@@ -652,6 +657,21 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
|
|||||||
# 创建一个新图用于可视化
|
# 创建一个新图用于可视化
|
||||||
H = G.copy()
|
H = G.copy()
|
||||||
|
|
||||||
|
# 过滤掉内容数量小于2的节点
|
||||||
|
nodes_to_remove = []
|
||||||
|
for node in H.nodes():
|
||||||
|
memory_items = H.nodes[node].get('memory_items', [])
|
||||||
|
memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
|
||||||
|
if memory_count < 2:
|
||||||
|
nodes_to_remove.append(node)
|
||||||
|
|
||||||
|
H.remove_nodes_from(nodes_to_remove)
|
||||||
|
|
||||||
|
# 如果没有符合条件的节点,直接返回
|
||||||
|
if len(H.nodes()) == 0:
|
||||||
|
print("没有找到内容数量大于等于2的节点")
|
||||||
|
return
|
||||||
|
|
||||||
# 计算节点大小和颜色
|
# 计算节点大小和颜色
|
||||||
node_colors = []
|
node_colors = []
|
||||||
node_sizes = []
|
node_sizes = []
|
||||||
@@ -704,7 +724,7 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
|
|||||||
edge_color='gray',
|
edge_color='gray',
|
||||||
width=1.5) # 统一的边宽度
|
width=1.5) # 统一的边宽度
|
||||||
|
|
||||||
title = '记忆图谱可视化 - 节点大小表示记忆数量\n节点颜色:蓝(弱连接)到红(强连接)渐变,边的透明度表示连接强度\n连接强度越大的节点距离越近'
|
title = '记忆图谱可视化(仅显示内容≥2的节点)\n节点大小表示记忆数量\n节点颜色:蓝(弱连接)到红(强连接)渐变,边的透明度表示连接强度\n连接强度越大的节点距离越近'
|
||||||
plt.title(title, fontsize=16, fontfamily='SimHei')
|
plt.title(title, fontsize=16, fontfamily='SimHei')
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|||||||
@@ -8,6 +8,8 @@ from nonebot import get_driver
|
|||||||
from loguru import logger
|
from loguru import logger
|
||||||
from ..chat.config import global_config
|
from ..chat.config import global_config
|
||||||
from ..chat.utils_image import compress_base64_image_by_scale
|
from ..chat.utils_image import compress_base64_image_by_scale
|
||||||
|
from datetime import datetime
|
||||||
|
from ...common.database import Database
|
||||||
|
|
||||||
driver = get_driver()
|
driver = get_driver()
|
||||||
config = driver.config
|
config = driver.config
|
||||||
@@ -25,396 +27,310 @@ class LLM_request:
|
|||||||
self.model_name = model["name"]
|
self.model_name = model["name"]
|
||||||
self.params = kwargs
|
self.params = kwargs
|
||||||
|
|
||||||
async def generate_response(self, prompt: str) -> Tuple[str, str]:
|
self.pri_in = model.get("pri_in", 0)
|
||||||
"""根据输入的提示生成模型的异步响应"""
|
self.pri_out = model.get("pri_out", 0)
|
||||||
headers = {
|
|
||||||
"Authorization": f"Bearer {self.api_key}",
|
# 获取数据库实例
|
||||||
"Content-Type": "application/json"
|
self.db = Database.get_instance()
|
||||||
|
self._init_database()
|
||||||
|
|
||||||
|
def _init_database(self):
|
||||||
|
"""初始化数据库集合"""
|
||||||
|
try:
|
||||||
|
# 创建llm_usage集合的索引
|
||||||
|
self.db.db.llm_usage.create_index([("timestamp", 1)])
|
||||||
|
self.db.db.llm_usage.create_index([("model_name", 1)])
|
||||||
|
self.db.db.llm_usage.create_index([("user_id", 1)])
|
||||||
|
self.db.db.llm_usage.create_index([("request_type", 1)])
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"创建数据库索引失败: {e}")
|
||||||
|
|
||||||
|
def _record_usage(self, prompt_tokens: int, completion_tokens: int, total_tokens: int,
|
||||||
|
user_id: str = "system", request_type: str = "chat",
|
||||||
|
endpoint: str = "/chat/completions"):
|
||||||
|
"""记录模型使用情况到数据库
|
||||||
|
Args:
|
||||||
|
prompt_tokens: 输入token数
|
||||||
|
completion_tokens: 输出token数
|
||||||
|
total_tokens: 总token数
|
||||||
|
user_id: 用户ID,默认为system
|
||||||
|
request_type: 请求类型(chat/embedding/image等)
|
||||||
|
endpoint: API端点
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
usage_data = {
|
||||||
|
"model_name": self.model_name,
|
||||||
|
"user_id": user_id,
|
||||||
|
"request_type": request_type,
|
||||||
|
"endpoint": endpoint,
|
||||||
|
"prompt_tokens": prompt_tokens,
|
||||||
|
"completion_tokens": completion_tokens,
|
||||||
|
"total_tokens": total_tokens,
|
||||||
|
"cost": self._calculate_cost(prompt_tokens, completion_tokens),
|
||||||
|
"status": "success",
|
||||||
|
"timestamp": datetime.now()
|
||||||
|
}
|
||||||
|
self.db.db.llm_usage.insert_one(usage_data)
|
||||||
|
logger.info(
|
||||||
|
f"Token使用情况 - 模型: {self.model_name}, "
|
||||||
|
f"用户: {user_id}, 类型: {request_type}, "
|
||||||
|
f"提示词: {prompt_tokens}, 完成: {completion_tokens}, "
|
||||||
|
f"总计: {total_tokens}"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"记录token使用情况失败: {e}")
|
||||||
|
|
||||||
|
def _calculate_cost(self, prompt_tokens: int, completion_tokens: int) -> float:
|
||||||
|
"""计算API调用成本
|
||||||
|
使用模型的pri_in和pri_out价格计算输入和输出的成本
|
||||||
|
|
||||||
|
Args:
|
||||||
|
prompt_tokens: 输入token数量
|
||||||
|
completion_tokens: 输出token数量
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
float: 总成本(元)
|
||||||
|
"""
|
||||||
|
# 使用模型的pri_in和pri_out计算成本
|
||||||
|
input_cost = (prompt_tokens / 1000000) * self.pri_in
|
||||||
|
output_cost = (completion_tokens / 1000000) * self.pri_out
|
||||||
|
return round(input_cost + output_cost, 6)
|
||||||
|
|
||||||
|
async def _execute_request(
|
||||||
|
self,
|
||||||
|
endpoint: str,
|
||||||
|
prompt: str = None,
|
||||||
|
image_base64: str = None,
|
||||||
|
payload: dict = None,
|
||||||
|
retry_policy: dict = None,
|
||||||
|
response_handler: callable = None,
|
||||||
|
user_id: str = "system",
|
||||||
|
request_type: str = "chat"
|
||||||
|
):
|
||||||
|
"""统一请求执行入口
|
||||||
|
Args:
|
||||||
|
endpoint: API端点路径 (如 "chat/completions")
|
||||||
|
prompt: prompt文本
|
||||||
|
image_base64: 图片的base64编码
|
||||||
|
payload: 请求体数据
|
||||||
|
retry_policy: 自定义重试策略
|
||||||
|
response_handler: 自定义响应处理器
|
||||||
|
user_id: 用户ID
|
||||||
|
request_type: 请求类型
|
||||||
|
"""
|
||||||
|
# 合并重试策略
|
||||||
|
default_retry = {
|
||||||
|
"max_retries": 3, "base_wait": 15,
|
||||||
|
"retry_codes": [429, 413, 500, 503],
|
||||||
|
"abort_codes": [400, 401, 402, 403]}
|
||||||
|
policy = {**default_retry, **(retry_policy or {})}
|
||||||
|
|
||||||
|
# 常见Error Code Mapping
|
||||||
|
error_code_mapping = {
|
||||||
|
400: "参数不正确",
|
||||||
|
401: "API key 错误,认证失败",
|
||||||
|
402: "账号余额不足",
|
||||||
|
403: "需要实名,或余额不足",
|
||||||
|
404: "Not Found",
|
||||||
|
429: "请求过于频繁,请稍后再试",
|
||||||
|
500: "服务器内部故障",
|
||||||
|
503: "服务器负载过高"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}"
|
||||||
|
logger.info(f"发送请求到URL: {api_url}")
|
||||||
|
logger.info(f"使用模型: {self.model_name}")
|
||||||
|
|
||||||
# 构建请求体
|
# 构建请求体
|
||||||
data = {
|
if image_base64:
|
||||||
"model": self.model_name,
|
payload = await self._build_payload(prompt, image_base64)
|
||||||
"messages": [{"role": "user", "content": prompt}],
|
elif payload is None:
|
||||||
**self.params
|
payload = await self._build_payload(prompt)
|
||||||
}
|
|
||||||
|
|
||||||
# 发送请求到完整的chat/completions端点
|
for retry in range(policy["max_retries"]):
|
||||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
|
||||||
logger.info(f"发送请求到URL: {api_url}") # 记录请求的URL
|
|
||||||
|
|
||||||
max_retries = 3
|
|
||||||
base_wait_time = 15
|
|
||||||
|
|
||||||
for retry in range(max_retries):
|
|
||||||
try:
|
try:
|
||||||
|
# 使用上下文管理器处理会话
|
||||||
|
headers = await self._build_headers()
|
||||||
|
|
||||||
async with aiohttp.ClientSession() as session:
|
async with aiohttp.ClientSession() as session:
|
||||||
async with session.post(api_url, headers=headers, json=data) as response:
|
async with session.post(api_url, headers=headers, json=payload) as response:
|
||||||
if response.status == 429:
|
# 处理需要重试的状态码
|
||||||
wait_time = base_wait_time * (2 ** retry) # 指数退避
|
if response.status in policy["retry_codes"]:
|
||||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
wait_time = policy["base_wait"] * (2 ** retry)
|
||||||
|
logger.warning(f"错误码: {response.status}, 等待 {wait_time}秒后重试")
|
||||||
|
if response.status == 413:
|
||||||
|
logger.warning("请求体过大,尝试压缩...")
|
||||||
|
image_base64 = compress_base64_image_by_scale(image_base64)
|
||||||
|
payload = await self._build_payload(prompt, image_base64)
|
||||||
|
elif response.status in [500, 503]:
|
||||||
|
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
|
||||||
|
raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
|
||||||
|
else:
|
||||||
|
logger.warning(f"请求限制(429),等待{wait_time}秒后重试...")
|
||||||
|
|
||||||
await asyncio.sleep(wait_time)
|
await asyncio.sleep(wait_time)
|
||||||
continue
|
continue
|
||||||
|
elif response.status in policy["abort_codes"]:
|
||||||
|
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
|
||||||
|
raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}")
|
||||||
|
|
||||||
if response.status in [500, 503]:
|
response.raise_for_status()
|
||||||
logger.error(f"服务器错误: {response.status}")
|
|
||||||
raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
|
|
||||||
|
|
||||||
response.raise_for_status() # 检查其他响应状态
|
|
||||||
|
|
||||||
result = await response.json()
|
result = await response.json()
|
||||||
if "choices" in result and len(result["choices"]) > 0:
|
|
||||||
message = result["choices"][0]["message"]
|
# 使用自定义处理器或默认处理
|
||||||
content = message.get("content", "")
|
return response_handler(result) if response_handler else self._default_response_handler(result, user_id, request_type, endpoint)
|
||||||
think_match = None
|
|
||||||
reasoning_content = message.get("reasoning_content", "")
|
|
||||||
if not reasoning_content:
|
|
||||||
think_match = re.search(r'<think>(.*?)</think>', content, re.DOTALL)
|
|
||||||
if think_match:
|
|
||||||
reasoning_content = think_match.group(1).strip()
|
|
||||||
content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
|
|
||||||
return content, reasoning_content
|
|
||||||
return "没有返回结果", ""
|
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if retry < max_retries - 1: # 如果还有重试机会
|
if retry < policy["max_retries"] - 1:
|
||||||
wait_time = base_wait_time * (2 ** retry)
|
wait_time = policy["base_wait"] * (2 ** retry)
|
||||||
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
|
logger.error(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
|
||||||
await asyncio.sleep(wait_time)
|
await asyncio.sleep(wait_time)
|
||||||
else:
|
else:
|
||||||
logger.critical(f"请求失败: {str(e)}", exc_info=True)
|
logger.critical(f"请求失败: {str(e)}")
|
||||||
|
logger.critical(f"请求头: {await self._build_headers()} 请求体: {payload}")
|
||||||
raise RuntimeError(f"API请求失败: {str(e)}")
|
raise RuntimeError(f"API请求失败: {str(e)}")
|
||||||
|
|
||||||
logger.error("达到最大重试次数,请求仍然失败")
|
logger.error("达到最大重试次数,请求仍然失败")
|
||||||
raise RuntimeError("达到最大重试次数,API请求仍然失败")
|
raise RuntimeError("达到最大重试次数,API请求仍然失败")
|
||||||
|
|
||||||
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]:
|
async def _build_payload(self, prompt: str, image_base64: str = None) -> dict:
|
||||||
"""根据输入的提示和图片生成模型的异步响应"""
|
"""构建请求体"""
|
||||||
headers = {
|
if image_base64:
|
||||||
"Authorization": f"Bearer {self.api_key}",
|
|
||||||
"Content-Type": "application/json"
|
|
||||||
}
|
|
||||||
|
|
||||||
# 构建请求体
|
|
||||||
def build_request_data(img_base64: str):
|
|
||||||
return {
|
return {
|
||||||
"model": self.model_name,
|
"model": self.model_name,
|
||||||
"messages": [
|
"messages": [
|
||||||
{
|
{
|
||||||
"role": "user",
|
"role": "user",
|
||||||
"content": [
|
"content": [
|
||||||
{
|
{"type": "text", "text": prompt},
|
||||||
"type": "text",
|
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
|
||||||
"text": prompt
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"type": "image_url",
|
|
||||||
"image_url": {
|
|
||||||
"url": f"data:image/jpeg;base64,{img_base64}"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
"max_tokens": global_config.max_response_length,
|
||||||
|
**self.params
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
return {
|
||||||
|
"model": self.model_name,
|
||||||
|
"messages": [{"role": "user", "content": prompt}],
|
||||||
|
"max_tokens": global_config.max_response_length,
|
||||||
**self.params
|
**self.params
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def _default_response_handler(self, result: dict, user_id: str = "system",
|
||||||
|
request_type: str = "chat", endpoint: str = "/chat/completions") -> Tuple:
|
||||||
|
"""默认响应解析"""
|
||||||
|
if "choices" in result and result["choices"]:
|
||||||
|
message = result["choices"][0]["message"]
|
||||||
|
content = message.get("content", "")
|
||||||
|
content, reasoning = self._extract_reasoning(content)
|
||||||
|
reasoning_content = message.get("model_extra", {}).get("reasoning_content", "")
|
||||||
|
if not reasoning_content:
|
||||||
|
reasoning_content = message.get("reasoning_content", "")
|
||||||
|
if not reasoning_content:
|
||||||
|
reasoning_content = reasoning
|
||||||
|
|
||||||
# 发送请求到完整的chat/completions端点
|
# 记录token使用情况
|
||||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
usage = result.get("usage", {})
|
||||||
logger.info(f"发送请求到URL: {api_url}") # 记录请求的URL
|
if usage:
|
||||||
|
prompt_tokens = usage.get("prompt_tokens", 0)
|
||||||
|
completion_tokens = usage.get("completion_tokens", 0)
|
||||||
|
total_tokens = usage.get("total_tokens", 0)
|
||||||
|
self._record_usage(
|
||||||
|
prompt_tokens=prompt_tokens,
|
||||||
|
completion_tokens=completion_tokens,
|
||||||
|
total_tokens=total_tokens,
|
||||||
|
user_id=user_id,
|
||||||
|
request_type=request_type,
|
||||||
|
endpoint=endpoint
|
||||||
|
)
|
||||||
|
|
||||||
max_retries = 3
|
return content, reasoning_content
|
||||||
base_wait_time = 15
|
|
||||||
|
|
||||||
current_image_base64 = image_base64
|
return "没有返回结果", ""
|
||||||
current_image_base64 = compress_base64_image_by_scale(current_image_base64)
|
|
||||||
|
|
||||||
|
def _extract_reasoning(self, content: str) -> tuple[str, str]:
|
||||||
|
"""CoT思维链提取"""
|
||||||
|
match = re.search(r'(?:<think>)?(.*?)</think>', content, re.DOTALL)
|
||||||
|
content = re.sub(r'(?:<think>)?.*?</think>', '', content, flags=re.DOTALL, count=1).strip()
|
||||||
|
if match:
|
||||||
|
reasoning = match.group(1).strip()
|
||||||
|
else:
|
||||||
|
reasoning = ""
|
||||||
|
return content, reasoning
|
||||||
|
|
||||||
for retry in range(max_retries):
|
async def _build_headers(self) -> dict:
|
||||||
try:
|
"""构建请求头"""
|
||||||
data = build_request_data(current_image_base64)
|
return {
|
||||||
async with aiohttp.ClientSession() as session:
|
|
||||||
async with session.post(api_url, headers=headers, json=data) as response:
|
|
||||||
if response.status == 429:
|
|
||||||
wait_time = base_wait_time * (2 ** retry) # 指数退避
|
|
||||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
|
||||||
await asyncio.sleep(wait_time)
|
|
||||||
continue
|
|
||||||
|
|
||||||
elif response.status == 413:
|
|
||||||
logger.warning("图片太大(413),尝试压缩...")
|
|
||||||
current_image_base64 = compress_base64_image_by_scale(current_image_base64)
|
|
||||||
continue
|
|
||||||
|
|
||||||
response.raise_for_status() # 检查其他响应状态
|
|
||||||
|
|
||||||
result = await response.json()
|
|
||||||
if "choices" in result and len(result["choices"]) > 0:
|
|
||||||
message = result["choices"][0]["message"]
|
|
||||||
content = message.get("content", "")
|
|
||||||
think_match = None
|
|
||||||
reasoning_content = message.get("reasoning_content", "")
|
|
||||||
if not reasoning_content:
|
|
||||||
think_match = re.search(r'<think>(.*?)</think>', content, re.DOTALL)
|
|
||||||
if think_match:
|
|
||||||
reasoning_content = think_match.group(1).strip()
|
|
||||||
content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
|
|
||||||
return content, reasoning_content
|
|
||||||
return "没有返回结果", ""
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
if retry < max_retries - 1: # 如果还有重试机会
|
|
||||||
wait_time = base_wait_time * (2 ** retry)
|
|
||||||
logger.error(f"[image回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
|
|
||||||
await asyncio.sleep(wait_time)
|
|
||||||
else:
|
|
||||||
logger.critical(f"请求失败: {str(e)}", exc_info=True)
|
|
||||||
raise RuntimeError(f"API请求失败: {str(e)}")
|
|
||||||
|
|
||||||
logger.error("达到最大重试次数,请求仍然失败")
|
|
||||||
raise RuntimeError("达到最大重试次数,API请求仍然失败")
|
|
||||||
|
|
||||||
async def generate_response_async(self, prompt: str) -> Union[str, Tuple[str, str]]:
|
|
||||||
"""异步方式根据输入的提示生成模型的响应"""
|
|
||||||
headers = {
|
|
||||||
"Authorization": f"Bearer {self.api_key}",
|
"Authorization": f"Bearer {self.api_key}",
|
||||||
"Content-Type": "application/json"
|
"Content-Type": "application/json"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
async def generate_response(self, prompt: str) -> Tuple[str, str]:
|
||||||
|
"""根据输入的提示生成模型的异步响应"""
|
||||||
|
|
||||||
|
content, reasoning_content = await self._execute_request(
|
||||||
|
endpoint="/chat/completions",
|
||||||
|
prompt=prompt
|
||||||
|
)
|
||||||
|
return content, reasoning_content
|
||||||
|
|
||||||
|
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]:
|
||||||
|
"""根据输入的提示和图片生成模型的异步响应"""
|
||||||
|
|
||||||
|
content, reasoning_content = await self._execute_request(
|
||||||
|
endpoint="/chat/completions",
|
||||||
|
prompt=prompt,
|
||||||
|
image_base64=image_base64
|
||||||
|
)
|
||||||
|
return content, reasoning_content
|
||||||
|
|
||||||
|
async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple[str, str]]:
|
||||||
|
"""异步方式根据输入的提示生成模型的响应"""
|
||||||
# 构建请求体
|
# 构建请求体
|
||||||
data = {
|
data = {
|
||||||
"model": self.model_name,
|
"model": self.model_name,
|
||||||
"messages": [{"role": "user", "content": prompt}],
|
"messages": [{"role": "user", "content": prompt}],
|
||||||
"temperature": 0.5,
|
"max_tokens": global_config.max_response_length,
|
||||||
**self.params
|
**self.params
|
||||||
}
|
}
|
||||||
|
|
||||||
# 发送请求到完整的 chat/completions 端点
|
content, reasoning_content = await self._execute_request(
|
||||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
endpoint="/chat/completions",
|
||||||
logger.info(f"Request URL: {api_url}") # 记录请求的 URL
|
payload=data,
|
||||||
|
prompt=prompt
|
||||||
|
)
|
||||||
|
return content, reasoning_content
|
||||||
|
|
||||||
max_retries = 3
|
async def get_embedding(self, text: str) -> Union[list, None]:
|
||||||
base_wait_time = 15
|
|
||||||
|
|
||||||
async with aiohttp.ClientSession() as session:
|
|
||||||
for retry in range(max_retries):
|
|
||||||
try:
|
|
||||||
async with session.post(api_url, headers=headers, json=data) as response:
|
|
||||||
if response.status == 429:
|
|
||||||
wait_time = base_wait_time * (2 ** retry) # 指数退避
|
|
||||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
|
||||||
await asyncio.sleep(wait_time)
|
|
||||||
continue
|
|
||||||
|
|
||||||
response.raise_for_status() # 检查其他响应状态
|
|
||||||
|
|
||||||
result = await response.json()
|
|
||||||
if "choices" in result and len(result["choices"]) > 0:
|
|
||||||
content = result["choices"][0]["message"]["content"]
|
|
||||||
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
|
|
||||||
return content, reasoning_content
|
|
||||||
return "没有返回结果", ""
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
if retry < max_retries - 1: # 如果还有重试机会
|
|
||||||
wait_time = base_wait_time * (2 ** retry)
|
|
||||||
logger.error(f"[回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
|
|
||||||
await asyncio.sleep(wait_time)
|
|
||||||
else:
|
|
||||||
logger.error(f"请求失败: {str(e)}")
|
|
||||||
return f"请求失败: {str(e)}", ""
|
|
||||||
|
|
||||||
logger.error("达到最大重试次数,请求仍然失败")
|
|
||||||
return "达到最大重试次数,请求仍然失败", ""
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def generate_response_for_image_sync(self, prompt: str, image_base64: str) -> Tuple[str, str]:
|
|
||||||
"""同步方法:根据输入的提示和图片生成模型的响应"""
|
|
||||||
headers = {
|
|
||||||
"Authorization": f"Bearer {self.api_key}",
|
|
||||||
"Content-Type": "application/json"
|
|
||||||
}
|
|
||||||
|
|
||||||
image_base64=compress_base64_image_by_scale(image_base64)
|
|
||||||
|
|
||||||
# 构建请求体
|
|
||||||
data = {
|
|
||||||
"model": self.model_name,
|
|
||||||
"messages": [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": [
|
|
||||||
{
|
|
||||||
"type": "text",
|
|
||||||
"text": prompt
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"type": "image_url",
|
|
||||||
"image_url": {
|
|
||||||
"url": f"data:image/jpeg;base64,{image_base64}"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
**self.params
|
|
||||||
}
|
|
||||||
|
|
||||||
# 发送请求到完整的chat/completions端点
|
|
||||||
api_url = f"{self.base_url.rstrip('/')}/chat/completions"
|
|
||||||
logger.info(f"发送请求到URL: {api_url}") # 记录请求的URL
|
|
||||||
|
|
||||||
max_retries = 2
|
|
||||||
base_wait_time = 6
|
|
||||||
|
|
||||||
for retry in range(max_retries):
|
|
||||||
try:
|
|
||||||
response = requests.post(api_url, headers=headers, json=data, timeout=30)
|
|
||||||
|
|
||||||
if response.status_code == 429:
|
|
||||||
wait_time = base_wait_time * (2 ** retry)
|
|
||||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
|
||||||
time.sleep(wait_time)
|
|
||||||
continue
|
|
||||||
|
|
||||||
response.raise_for_status() # 检查其他响应状态
|
|
||||||
|
|
||||||
result = response.json()
|
|
||||||
if "choices" in result and len(result["choices"]) > 0:
|
|
||||||
message = result["choices"][0]["message"]
|
|
||||||
content = message.get("content", "")
|
|
||||||
think_match = None
|
|
||||||
reasoning_content = message.get("reasoning_content", "")
|
|
||||||
if not reasoning_content:
|
|
||||||
think_match = re.search(r'<think>(.*?)</think>', content, re.DOTALL)
|
|
||||||
if think_match:
|
|
||||||
reasoning_content = think_match.group(1).strip()
|
|
||||||
content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
|
|
||||||
return content, reasoning_content
|
|
||||||
return "没有返回结果", ""
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
if retry < max_retries - 1: # 如果还有重试机会
|
|
||||||
wait_time = base_wait_time * (2 ** retry)
|
|
||||||
logger.error(f"[image_sync回复]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
|
|
||||||
time.sleep(wait_time)
|
|
||||||
else:
|
|
||||||
logger.critical(f"请求失败: {str(e)}", exc_info=True)
|
|
||||||
raise RuntimeError(f"API请求失败: {str(e)}")
|
|
||||||
|
|
||||||
logger.error("达到最大重试次数,请求仍然失败")
|
|
||||||
raise RuntimeError("达到最大重试次数,API请求仍然失败")
|
|
||||||
|
|
||||||
def get_embedding_sync(self, text: str, model: str = "BAAI/bge-m3") -> Union[list, None]:
|
|
||||||
"""同步方法:获取文本的embedding向量
|
|
||||||
|
|
||||||
Args:
|
|
||||||
text: 需要获取embedding的文本
|
|
||||||
model: 使用的模型名称,默认为"BAAI/bge-m3"
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
list: embedding向量,如果失败则返回None
|
|
||||||
"""
|
|
||||||
headers = {
|
|
||||||
"Authorization": f"Bearer {self.api_key}",
|
|
||||||
"Content-Type": "application/json"
|
|
||||||
}
|
|
||||||
|
|
||||||
data = {
|
|
||||||
"model": model,
|
|
||||||
"input": text,
|
|
||||||
"encoding_format": "float"
|
|
||||||
}
|
|
||||||
|
|
||||||
api_url = f"{self.base_url.rstrip('/')}/embeddings"
|
|
||||||
logger.info(f"发送请求到URL: {api_url}") # 记录请求的URL
|
|
||||||
|
|
||||||
max_retries = 2
|
|
||||||
base_wait_time = 6
|
|
||||||
|
|
||||||
for retry in range(max_retries):
|
|
||||||
try:
|
|
||||||
response = requests.post(api_url, headers=headers, json=data, timeout=30)
|
|
||||||
|
|
||||||
if response.status_code == 429:
|
|
||||||
wait_time = base_wait_time * (2 ** retry)
|
|
||||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
|
||||||
time.sleep(wait_time)
|
|
||||||
continue
|
|
||||||
|
|
||||||
response.raise_for_status()
|
|
||||||
|
|
||||||
result = response.json()
|
|
||||||
if 'data' in result and len(result['data']) > 0:
|
|
||||||
return result['data'][0]['embedding']
|
|
||||||
return None
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
if retry < max_retries - 1:
|
|
||||||
wait_time = base_wait_time * (2 ** retry)
|
|
||||||
logger.error(f"[embedding_sync]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
|
|
||||||
time.sleep(wait_time)
|
|
||||||
else:
|
|
||||||
logger.critical(f"embedding请求失败: {str(e)}", exc_info=True)
|
|
||||||
return None
|
|
||||||
|
|
||||||
logger.error("达到最大重试次数,embedding请求仍然失败")
|
|
||||||
return None
|
|
||||||
|
|
||||||
async def get_embedding(self, text: str, model: str = "BAAI/bge-m3") -> Union[list, None]:
|
|
||||||
"""异步方法:获取文本的embedding向量
|
"""异步方法:获取文本的embedding向量
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
text: 需要获取embedding的文本
|
text: 需要获取embedding的文本
|
||||||
model: 使用的模型名称,默认为"BAAI/bge-m3"
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
list: embedding向量,如果失败则返回None
|
list: embedding向量,如果失败则返回None
|
||||||
"""
|
"""
|
||||||
headers = {
|
def embedding_handler(result):
|
||||||
"Authorization": f"Bearer {self.api_key}",
|
"""处理响应"""
|
||||||
"Content-Type": "application/json"
|
if "data" in result and len(result["data"]) > 0:
|
||||||
}
|
return result["data"][0].get("embedding", None)
|
||||||
|
return None
|
||||||
|
|
||||||
data = {
|
embedding = await self._execute_request(
|
||||||
"model": model,
|
endpoint="/embeddings",
|
||||||
"input": text,
|
prompt=text,
|
||||||
"encoding_format": "float"
|
payload={
|
||||||
}
|
"model": self.model_name,
|
||||||
|
"input": text,
|
||||||
|
"encoding_format": "float"
|
||||||
|
},
|
||||||
|
retry_policy={
|
||||||
|
"max_retries": 2,
|
||||||
|
"base_wait": 6
|
||||||
|
},
|
||||||
|
response_handler=embedding_handler
|
||||||
|
)
|
||||||
|
return embedding
|
||||||
|
|
||||||
api_url = f"{self.base_url.rstrip('/')}/embeddings"
|
|
||||||
logger.info(f"发送请求到URL: {api_url}") # 记录请求的URL
|
|
||||||
|
|
||||||
max_retries = 3
|
|
||||||
base_wait_time = 15
|
|
||||||
|
|
||||||
for retry in range(max_retries):
|
|
||||||
try:
|
|
||||||
async with aiohttp.ClientSession() as session:
|
|
||||||
async with session.post(api_url, headers=headers, json=data) as response:
|
|
||||||
if response.status == 429:
|
|
||||||
wait_time = base_wait_time * (2 ** retry)
|
|
||||||
logger.warning(f"遇到请求限制(429),等待{wait_time}秒后重试...")
|
|
||||||
await asyncio.sleep(wait_time)
|
|
||||||
continue
|
|
||||||
|
|
||||||
response.raise_for_status()
|
|
||||||
|
|
||||||
result = await response.json()
|
|
||||||
if 'data' in result and len(result['data']) > 0:
|
|
||||||
return result['data'][0]['embedding']
|
|
||||||
return None
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
if retry < max_retries - 1:
|
|
||||||
wait_time = base_wait_time * (2 ** retry)
|
|
||||||
logger.error(f"[embedding]请求失败,等待{wait_time}秒后重试... 错误: {str(e)}", exc_info=True)
|
|
||||||
await asyncio.sleep(wait_time)
|
|
||||||
else:
|
|
||||||
logger.critical(f"embedding请求失败: {str(e)}", exc_info=True)
|
|
||||||
return None
|
|
||||||
|
|
||||||
logger.error("达到最大重试次数,embedding请求仍然失败")
|
|
||||||
return None
|
|
||||||
|
|||||||
162
src/plugins/utils/statistic.py
Normal file
162
src/plugins/utils/statistic.py
Normal file
@@ -0,0 +1,162 @@
|
|||||||
|
from typing import Dict, List, Any
|
||||||
|
import time
|
||||||
|
import threading
|
||||||
|
import json
|
||||||
|
from datetime import datetime, timedelta
|
||||||
|
from collections import defaultdict
|
||||||
|
from ...common.database import Database
|
||||||
|
|
||||||
|
class LLMStatistics:
|
||||||
|
def __init__(self, output_file: str = "llm_statistics.txt"):
|
||||||
|
"""初始化LLM统计类
|
||||||
|
|
||||||
|
Args:
|
||||||
|
output_file: 统计结果输出文件路径
|
||||||
|
"""
|
||||||
|
self.db = Database.get_instance()
|
||||||
|
self.output_file = output_file
|
||||||
|
self.running = False
|
||||||
|
self.stats_thread = None
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
"""启动统计线程"""
|
||||||
|
if not self.running:
|
||||||
|
self.running = True
|
||||||
|
self.stats_thread = threading.Thread(target=self._stats_loop)
|
||||||
|
self.stats_thread.daemon = True
|
||||||
|
self.stats_thread.start()
|
||||||
|
|
||||||
|
def stop(self):
|
||||||
|
"""停止统计线程"""
|
||||||
|
self.running = False
|
||||||
|
if self.stats_thread:
|
||||||
|
self.stats_thread.join()
|
||||||
|
|
||||||
|
def _collect_statistics_for_period(self, start_time: datetime) -> Dict[str, Any]:
|
||||||
|
"""收集指定时间段的LLM请求统计数据
|
||||||
|
|
||||||
|
Args:
|
||||||
|
start_time: 统计开始时间
|
||||||
|
"""
|
||||||
|
stats = {
|
||||||
|
"total_requests": 0,
|
||||||
|
"requests_by_type": defaultdict(int),
|
||||||
|
"requests_by_user": defaultdict(int),
|
||||||
|
"requests_by_model": defaultdict(int),
|
||||||
|
"average_tokens": 0,
|
||||||
|
"total_tokens": 0,
|
||||||
|
"total_cost": 0.0,
|
||||||
|
"costs_by_user": defaultdict(float),
|
||||||
|
"costs_by_type": defaultdict(float),
|
||||||
|
"costs_by_model": defaultdict(float)
|
||||||
|
}
|
||||||
|
|
||||||
|
cursor = self.db.db.llm_usage.find({
|
||||||
|
"timestamp": {"$gte": start_time}
|
||||||
|
})
|
||||||
|
|
||||||
|
total_requests = 0
|
||||||
|
|
||||||
|
for doc in cursor:
|
||||||
|
stats["total_requests"] += 1
|
||||||
|
request_type = doc.get("request_type", "unknown")
|
||||||
|
user_id = str(doc.get("user_id", "unknown"))
|
||||||
|
model_name = doc.get("model_name", "unknown")
|
||||||
|
|
||||||
|
stats["requests_by_type"][request_type] += 1
|
||||||
|
stats["requests_by_user"][user_id] += 1
|
||||||
|
stats["requests_by_model"][model_name] += 1
|
||||||
|
|
||||||
|
prompt_tokens = doc.get("prompt_tokens", 0)
|
||||||
|
completion_tokens = doc.get("completion_tokens", 0)
|
||||||
|
stats["total_tokens"] += prompt_tokens + completion_tokens
|
||||||
|
|
||||||
|
cost = doc.get("cost", 0.0)
|
||||||
|
stats["total_cost"] += cost
|
||||||
|
stats["costs_by_user"][user_id] += cost
|
||||||
|
stats["costs_by_type"][request_type] += cost
|
||||||
|
stats["costs_by_model"][model_name] += cost
|
||||||
|
|
||||||
|
total_requests += 1
|
||||||
|
|
||||||
|
if total_requests > 0:
|
||||||
|
stats["average_tokens"] = stats["total_tokens"] / total_requests
|
||||||
|
|
||||||
|
return stats
|
||||||
|
|
||||||
|
def _collect_all_statistics(self) -> Dict[str, Dict[str, Any]]:
|
||||||
|
"""收集所有时间范围的统计数据"""
|
||||||
|
now = datetime.now()
|
||||||
|
|
||||||
|
return {
|
||||||
|
"all_time": self._collect_statistics_for_period(datetime.min),
|
||||||
|
"last_7_days": self._collect_statistics_for_period(now - timedelta(days=7)),
|
||||||
|
"last_24_hours": self._collect_statistics_for_period(now - timedelta(days=1)),
|
||||||
|
"last_hour": self._collect_statistics_for_period(now - timedelta(hours=1))
|
||||||
|
}
|
||||||
|
|
||||||
|
def _format_stats_section(self, stats: Dict[str, Any], title: str) -> str:
|
||||||
|
"""格式化统计部分的输出
|
||||||
|
|
||||||
|
Args:
|
||||||
|
stats: 统计数据
|
||||||
|
title: 部分标题
|
||||||
|
"""
|
||||||
|
output = []
|
||||||
|
output.append(f"\n{title}")
|
||||||
|
output.append("=" * len(title))
|
||||||
|
|
||||||
|
output.append(f"总请求数: {stats['total_requests']}")
|
||||||
|
if stats['total_requests'] > 0:
|
||||||
|
output.append(f"总Token数: {stats['total_tokens']}")
|
||||||
|
output.append(f"总花费: ¥{stats['total_cost']:.4f}")
|
||||||
|
|
||||||
|
output.append("\n按模型统计:")
|
||||||
|
for model_name, count in sorted(stats["requests_by_model"].items()):
|
||||||
|
cost = stats["costs_by_model"][model_name]
|
||||||
|
output.append(f"- {model_name}: {count}次 (花费: ¥{cost:.4f})")
|
||||||
|
|
||||||
|
output.append("\n按请求类型统计:")
|
||||||
|
for req_type, count in sorted(stats["requests_by_type"].items()):
|
||||||
|
cost = stats["costs_by_type"][req_type]
|
||||||
|
output.append(f"- {req_type}: {count}次 (花费: ¥{cost:.4f})")
|
||||||
|
|
||||||
|
return "\n".join(output)
|
||||||
|
|
||||||
|
def _save_statistics(self, all_stats: Dict[str, Dict[str, Any]]):
|
||||||
|
"""将统计结果保存到文件"""
|
||||||
|
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||||
|
|
||||||
|
output = []
|
||||||
|
output.append(f"LLM请求统计报告 (生成时间: {current_time})")
|
||||||
|
output.append("=" * 50)
|
||||||
|
|
||||||
|
# 添加各个时间段的统计
|
||||||
|
sections = [
|
||||||
|
("所有时间统计", "all_time"),
|
||||||
|
("最近7天统计", "last_7_days"),
|
||||||
|
("最近24小时统计", "last_24_hours"),
|
||||||
|
("最近1小时统计", "last_hour")
|
||||||
|
]
|
||||||
|
|
||||||
|
for title, key in sections:
|
||||||
|
output.append(self._format_stats_section(all_stats[key], title))
|
||||||
|
|
||||||
|
# 写入文件
|
||||||
|
with open(self.output_file, "w", encoding="utf-8") as f:
|
||||||
|
f.write("\n".join(output))
|
||||||
|
|
||||||
|
def _stats_loop(self):
|
||||||
|
"""统计循环,每1分钟运行一次"""
|
||||||
|
while self.running:
|
||||||
|
try:
|
||||||
|
all_stats = self._collect_all_statistics()
|
||||||
|
self._save_statistics(all_stats)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\033[1;31m[错误]\033[0m 统计数据处理失败: {e}")
|
||||||
|
|
||||||
|
# 等待1分钟
|
||||||
|
for _ in range(60):
|
||||||
|
if not self.running:
|
||||||
|
break
|
||||||
|
time.sleep(1)
|
||||||
437
src/plugins/utils/typo_generator.py
Normal file
437
src/plugins/utils/typo_generator.py
Normal file
@@ -0,0 +1,437 @@
|
|||||||
|
"""
|
||||||
|
错别字生成器 - 基于拼音和字频的中文错别字生成工具
|
||||||
|
"""
|
||||||
|
|
||||||
|
from pypinyin import pinyin, Style
|
||||||
|
from collections import defaultdict
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import jieba
|
||||||
|
from pathlib import Path
|
||||||
|
import random
|
||||||
|
import math
|
||||||
|
import time
|
||||||
|
|
||||||
|
class ChineseTypoGenerator:
|
||||||
|
def __init__(self,
|
||||||
|
error_rate=0.3,
|
||||||
|
min_freq=5,
|
||||||
|
tone_error_rate=0.2,
|
||||||
|
word_replace_rate=0.3,
|
||||||
|
max_freq_diff=200):
|
||||||
|
"""
|
||||||
|
初始化错别字生成器
|
||||||
|
|
||||||
|
参数:
|
||||||
|
error_rate: 单字替换概率
|
||||||
|
min_freq: 最小字频阈值
|
||||||
|
tone_error_rate: 声调错误概率
|
||||||
|
word_replace_rate: 整词替换概率
|
||||||
|
max_freq_diff: 最大允许的频率差异
|
||||||
|
"""
|
||||||
|
self.error_rate = error_rate
|
||||||
|
self.min_freq = min_freq
|
||||||
|
self.tone_error_rate = tone_error_rate
|
||||||
|
self.word_replace_rate = word_replace_rate
|
||||||
|
self.max_freq_diff = max_freq_diff
|
||||||
|
|
||||||
|
# 加载数据
|
||||||
|
print("正在加载汉字数据库,请稍候...")
|
||||||
|
self.pinyin_dict = self._create_pinyin_dict()
|
||||||
|
self.char_frequency = self._load_or_create_char_frequency()
|
||||||
|
|
||||||
|
def _load_or_create_char_frequency(self):
|
||||||
|
"""
|
||||||
|
加载或创建汉字频率字典
|
||||||
|
"""
|
||||||
|
cache_file = Path("char_frequency.json")
|
||||||
|
|
||||||
|
# 如果缓存文件存在,直接加载
|
||||||
|
if cache_file.exists():
|
||||||
|
with open(cache_file, 'r', encoding='utf-8') as f:
|
||||||
|
return json.load(f)
|
||||||
|
|
||||||
|
# 使用内置的词频文件
|
||||||
|
char_freq = defaultdict(int)
|
||||||
|
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||||
|
|
||||||
|
# 读取jieba的词典文件
|
||||||
|
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||||
|
for line in f:
|
||||||
|
word, freq = line.strip().split()[:2]
|
||||||
|
# 对词中的每个字进行频率累加
|
||||||
|
for char in word:
|
||||||
|
if self._is_chinese_char(char):
|
||||||
|
char_freq[char] += int(freq)
|
||||||
|
|
||||||
|
# 归一化频率值
|
||||||
|
max_freq = max(char_freq.values())
|
||||||
|
normalized_freq = {char: freq/max_freq * 1000 for char, freq in char_freq.items()}
|
||||||
|
|
||||||
|
# 保存到缓存文件
|
||||||
|
with open(cache_file, 'w', encoding='utf-8') as f:
|
||||||
|
json.dump(normalized_freq, f, ensure_ascii=False, indent=2)
|
||||||
|
|
||||||
|
return normalized_freq
|
||||||
|
|
||||||
|
def _create_pinyin_dict(self):
|
||||||
|
"""
|
||||||
|
创建拼音到汉字的映射字典
|
||||||
|
"""
|
||||||
|
# 常用汉字范围
|
||||||
|
chars = [chr(i) for i in range(0x4e00, 0x9fff)]
|
||||||
|
pinyin_dict = defaultdict(list)
|
||||||
|
|
||||||
|
# 为每个汉字建立拼音映射
|
||||||
|
for char in chars:
|
||||||
|
try:
|
||||||
|
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||||
|
pinyin_dict[py].append(char)
|
||||||
|
except Exception:
|
||||||
|
continue
|
||||||
|
|
||||||
|
return pinyin_dict
|
||||||
|
|
||||||
|
def _is_chinese_char(self, char):
|
||||||
|
"""
|
||||||
|
判断是否为汉字
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
return '\u4e00' <= char <= '\u9fff'
|
||||||
|
except:
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _get_pinyin(self, sentence):
|
||||||
|
"""
|
||||||
|
将中文句子拆分成单个汉字并获取其拼音
|
||||||
|
"""
|
||||||
|
# 将句子拆分成单个字符
|
||||||
|
characters = list(sentence)
|
||||||
|
|
||||||
|
# 获取每个字符的拼音
|
||||||
|
result = []
|
||||||
|
for char in characters:
|
||||||
|
# 跳过空格和非汉字字符
|
||||||
|
if char.isspace() or not self._is_chinese_char(char):
|
||||||
|
continue
|
||||||
|
# 获取拼音(数字声调)
|
||||||
|
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||||
|
result.append((char, py))
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
def _get_similar_tone_pinyin(self, py):
|
||||||
|
"""
|
||||||
|
获取相似声调的拼音
|
||||||
|
"""
|
||||||
|
# 检查拼音是否为空或无效
|
||||||
|
if not py or len(py) < 1:
|
||||||
|
return py
|
||||||
|
|
||||||
|
# 如果最后一个字符不是数字,说明可能是轻声或其他特殊情况
|
||||||
|
if not py[-1].isdigit():
|
||||||
|
# 为非数字结尾的拼音添加数字声调1
|
||||||
|
return py + '1'
|
||||||
|
|
||||||
|
base = py[:-1] # 去掉声调
|
||||||
|
tone = int(py[-1]) # 获取声调
|
||||||
|
|
||||||
|
# 处理轻声(通常用5表示)或无效声调
|
||||||
|
if tone not in [1, 2, 3, 4]:
|
||||||
|
return base + str(random.choice([1, 2, 3, 4]))
|
||||||
|
|
||||||
|
# 正常处理声调
|
||||||
|
possible_tones = [1, 2, 3, 4]
|
||||||
|
possible_tones.remove(tone) # 移除原声调
|
||||||
|
new_tone = random.choice(possible_tones) # 随机选择一个新声调
|
||||||
|
return base + str(new_tone)
|
||||||
|
|
||||||
|
def _calculate_replacement_probability(self, orig_freq, target_freq):
|
||||||
|
"""
|
||||||
|
根据频率差计算替换概率
|
||||||
|
"""
|
||||||
|
if target_freq > orig_freq:
|
||||||
|
return 1.0 # 如果替换字频率更高,保持原有概率
|
||||||
|
|
||||||
|
freq_diff = orig_freq - target_freq
|
||||||
|
if freq_diff > self.max_freq_diff:
|
||||||
|
return 0.0 # 频率差太大,不替换
|
||||||
|
|
||||||
|
# 使用指数衰减函数计算概率
|
||||||
|
# 频率差为0时概率为1,频率差为max_freq_diff时概率接近0
|
||||||
|
return math.exp(-3 * freq_diff / self.max_freq_diff)
|
||||||
|
|
||||||
|
def _get_similar_frequency_chars(self, char, py, num_candidates=5):
|
||||||
|
"""
|
||||||
|
获取与给定字频率相近的同音字,可能包含声调错误
|
||||||
|
"""
|
||||||
|
homophones = []
|
||||||
|
|
||||||
|
# 有一定概率使用错误声调
|
||||||
|
if random.random() < self.tone_error_rate:
|
||||||
|
wrong_tone_py = self._get_similar_tone_pinyin(py)
|
||||||
|
homophones.extend(self.pinyin_dict[wrong_tone_py])
|
||||||
|
|
||||||
|
# 添加正确声调的同音字
|
||||||
|
homophones.extend(self.pinyin_dict[py])
|
||||||
|
|
||||||
|
if not homophones:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 获取原字的频率
|
||||||
|
orig_freq = self.char_frequency.get(char, 0)
|
||||||
|
|
||||||
|
# 计算所有同音字与原字的频率差,并过滤掉低频字
|
||||||
|
freq_diff = [(h, self.char_frequency.get(h, 0))
|
||||||
|
for h in homophones
|
||||||
|
if h != char and self.char_frequency.get(h, 0) >= self.min_freq]
|
||||||
|
|
||||||
|
if not freq_diff:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 计算每个候选字的替换概率
|
||||||
|
candidates_with_prob = []
|
||||||
|
for h, freq in freq_diff:
|
||||||
|
prob = self._calculate_replacement_probability(orig_freq, freq)
|
||||||
|
if prob > 0: # 只保留有效概率的候选字
|
||||||
|
candidates_with_prob.append((h, prob))
|
||||||
|
|
||||||
|
if not candidates_with_prob:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 根据概率排序
|
||||||
|
candidates_with_prob.sort(key=lambda x: x[1], reverse=True)
|
||||||
|
|
||||||
|
# 返回概率最高的几个字
|
||||||
|
return [char for char, _ in candidates_with_prob[:num_candidates]]
|
||||||
|
|
||||||
|
def _get_word_pinyin(self, word):
|
||||||
|
"""
|
||||||
|
获取词语的拼音列表
|
||||||
|
"""
|
||||||
|
return [py[0] for py in pinyin(word, style=Style.TONE3)]
|
||||||
|
|
||||||
|
def _segment_sentence(self, sentence):
|
||||||
|
"""
|
||||||
|
使用jieba分词,返回词语列表
|
||||||
|
"""
|
||||||
|
return list(jieba.cut(sentence))
|
||||||
|
|
||||||
|
def _get_word_homophones(self, word):
|
||||||
|
"""
|
||||||
|
获取整个词的同音词,只返回高频的有意义词语
|
||||||
|
"""
|
||||||
|
if len(word) == 1:
|
||||||
|
return []
|
||||||
|
|
||||||
|
# 获取词的拼音
|
||||||
|
word_pinyin = self._get_word_pinyin(word)
|
||||||
|
|
||||||
|
# 遍历所有可能的同音字组合
|
||||||
|
candidates = []
|
||||||
|
for py in word_pinyin:
|
||||||
|
chars = self.pinyin_dict.get(py, [])
|
||||||
|
if not chars:
|
||||||
|
return []
|
||||||
|
candidates.append(chars)
|
||||||
|
|
||||||
|
# 生成所有可能的组合
|
||||||
|
import itertools
|
||||||
|
all_combinations = itertools.product(*candidates)
|
||||||
|
|
||||||
|
# 获取jieba词典和词频信息
|
||||||
|
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||||
|
valid_words = {} # 改用字典存储词语及其频率
|
||||||
|
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||||
|
for line in f:
|
||||||
|
parts = line.strip().split()
|
||||||
|
if len(parts) >= 2:
|
||||||
|
word_text = parts[0]
|
||||||
|
word_freq = float(parts[1]) # 获取词频
|
||||||
|
valid_words[word_text] = word_freq
|
||||||
|
|
||||||
|
# 获取原词的词频作为参考
|
||||||
|
original_word_freq = valid_words.get(word, 0)
|
||||||
|
min_word_freq = original_word_freq * 0.1 # 设置最小词频为原词频的10%
|
||||||
|
|
||||||
|
# 过滤和计算频率
|
||||||
|
homophones = []
|
||||||
|
for combo in all_combinations:
|
||||||
|
new_word = ''.join(combo)
|
||||||
|
if new_word != word and new_word in valid_words:
|
||||||
|
new_word_freq = valid_words[new_word]
|
||||||
|
# 只保留词频达到阈值的词
|
||||||
|
if new_word_freq >= min_word_freq:
|
||||||
|
# 计算词的平均字频(考虑字频和词频)
|
||||||
|
char_avg_freq = sum(self.char_frequency.get(c, 0) for c in new_word) / len(new_word)
|
||||||
|
# 综合评分:结合词频和字频
|
||||||
|
combined_score = (new_word_freq * 0.7 + char_avg_freq * 0.3)
|
||||||
|
if combined_score >= self.min_freq:
|
||||||
|
homophones.append((new_word, combined_score))
|
||||||
|
|
||||||
|
# 按综合分数排序并限制返回数量
|
||||||
|
sorted_homophones = sorted(homophones, key=lambda x: x[1], reverse=True)
|
||||||
|
return [word for word, _ in sorted_homophones[:5]] # 限制返回前5个结果
|
||||||
|
|
||||||
|
def create_typo_sentence(self, sentence):
|
||||||
|
"""
|
||||||
|
创建包含同音字错误的句子,支持词语级别和字级别的替换
|
||||||
|
|
||||||
|
参数:
|
||||||
|
sentence: 输入的中文句子
|
||||||
|
|
||||||
|
返回:
|
||||||
|
typo_sentence: 包含错别字的句子
|
||||||
|
typo_info: 错别字信息列表
|
||||||
|
"""
|
||||||
|
result = []
|
||||||
|
typo_info = []
|
||||||
|
|
||||||
|
# 分词
|
||||||
|
words = self._segment_sentence(sentence)
|
||||||
|
|
||||||
|
for word in words:
|
||||||
|
# 如果是标点符号或空格,直接添加
|
||||||
|
if all(not self._is_chinese_char(c) for c in word):
|
||||||
|
result.append(word)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 获取词语的拼音
|
||||||
|
word_pinyin = self._get_word_pinyin(word)
|
||||||
|
|
||||||
|
# 尝试整词替换
|
||||||
|
if len(word) > 1 and random.random() < self.word_replace_rate:
|
||||||
|
word_homophones = self._get_word_homophones(word)
|
||||||
|
if word_homophones:
|
||||||
|
typo_word = random.choice(word_homophones)
|
||||||
|
# 计算词的平均频率
|
||||||
|
orig_freq = sum(self.char_frequency.get(c, 0) for c in word) / len(word)
|
||||||
|
typo_freq = sum(self.char_frequency.get(c, 0) for c in typo_word) / len(typo_word)
|
||||||
|
|
||||||
|
# 添加到结果中
|
||||||
|
result.append(typo_word)
|
||||||
|
typo_info.append((word, typo_word,
|
||||||
|
' '.join(word_pinyin),
|
||||||
|
' '.join(self._get_word_pinyin(typo_word)),
|
||||||
|
orig_freq, typo_freq))
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 如果不进行整词替换,则进行单字替换
|
||||||
|
if len(word) == 1:
|
||||||
|
char = word
|
||||||
|
py = word_pinyin[0]
|
||||||
|
if random.random() < self.error_rate:
|
||||||
|
similar_chars = self._get_similar_frequency_chars(char, py)
|
||||||
|
if similar_chars:
|
||||||
|
typo_char = random.choice(similar_chars)
|
||||||
|
typo_freq = self.char_frequency.get(typo_char, 0)
|
||||||
|
orig_freq = self.char_frequency.get(char, 0)
|
||||||
|
replace_prob = self._calculate_replacement_probability(orig_freq, typo_freq)
|
||||||
|
if random.random() < replace_prob:
|
||||||
|
result.append(typo_char)
|
||||||
|
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||||
|
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||||
|
continue
|
||||||
|
result.append(char)
|
||||||
|
else:
|
||||||
|
# 处理多字词的单字替换
|
||||||
|
word_result = []
|
||||||
|
for i, (char, py) in enumerate(zip(word, word_pinyin)):
|
||||||
|
# 词中的字替换概率降低
|
||||||
|
word_error_rate = self.error_rate * (0.7 ** (len(word) - 1))
|
||||||
|
|
||||||
|
if random.random() < word_error_rate:
|
||||||
|
similar_chars = self._get_similar_frequency_chars(char, py)
|
||||||
|
if similar_chars:
|
||||||
|
typo_char = random.choice(similar_chars)
|
||||||
|
typo_freq = self.char_frequency.get(typo_char, 0)
|
||||||
|
orig_freq = self.char_frequency.get(char, 0)
|
||||||
|
replace_prob = self._calculate_replacement_probability(orig_freq, typo_freq)
|
||||||
|
if random.random() < replace_prob:
|
||||||
|
word_result.append(typo_char)
|
||||||
|
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||||
|
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||||
|
continue
|
||||||
|
word_result.append(char)
|
||||||
|
result.append(''.join(word_result))
|
||||||
|
|
||||||
|
return ''.join(result), typo_info
|
||||||
|
|
||||||
|
def format_typo_info(self, typo_info):
|
||||||
|
"""
|
||||||
|
格式化错别字信息
|
||||||
|
|
||||||
|
参数:
|
||||||
|
typo_info: 错别字信息列表
|
||||||
|
|
||||||
|
返回:
|
||||||
|
格式化后的错别字信息字符串
|
||||||
|
"""
|
||||||
|
if not typo_info:
|
||||||
|
return "未生成错别字"
|
||||||
|
|
||||||
|
result = []
|
||||||
|
for orig, typo, orig_py, typo_py, orig_freq, typo_freq in typo_info:
|
||||||
|
# 判断是否为词语替换
|
||||||
|
is_word = ' ' in orig_py
|
||||||
|
if is_word:
|
||||||
|
error_type = "整词替换"
|
||||||
|
else:
|
||||||
|
tone_error = orig_py[:-1] == typo_py[:-1] and orig_py[-1] != typo_py[-1]
|
||||||
|
error_type = "声调错误" if tone_error else "同音字替换"
|
||||||
|
|
||||||
|
result.append(f"原文:{orig}({orig_py}) [频率:{orig_freq:.2f}] -> "
|
||||||
|
f"替换:{typo}({typo_py}) [频率:{typo_freq:.2f}] [{error_type}]")
|
||||||
|
|
||||||
|
return "\n".join(result)
|
||||||
|
|
||||||
|
def set_params(self, **kwargs):
|
||||||
|
"""
|
||||||
|
设置参数
|
||||||
|
|
||||||
|
可设置参数:
|
||||||
|
error_rate: 单字替换概率
|
||||||
|
min_freq: 最小字频阈值
|
||||||
|
tone_error_rate: 声调错误概率
|
||||||
|
word_replace_rate: 整词替换概率
|
||||||
|
max_freq_diff: 最大允许的频率差异
|
||||||
|
"""
|
||||||
|
for key, value in kwargs.items():
|
||||||
|
if hasattr(self, key):
|
||||||
|
setattr(self, key, value)
|
||||||
|
print(f"参数 {key} 已设置为 {value}")
|
||||||
|
else:
|
||||||
|
print(f"警告: 参数 {key} 不存在")
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# 创建错别字生成器实例
|
||||||
|
typo_generator = ChineseTypoGenerator(
|
||||||
|
error_rate=0.03,
|
||||||
|
min_freq=7,
|
||||||
|
tone_error_rate=0.02,
|
||||||
|
word_replace_rate=0.3
|
||||||
|
)
|
||||||
|
|
||||||
|
# 获取用户输入
|
||||||
|
sentence = input("请输入中文句子:")
|
||||||
|
|
||||||
|
# 创建包含错别字的句子
|
||||||
|
start_time = time.time()
|
||||||
|
typo_sentence, typo_info = typo_generator.create_typo_sentence(sentence)
|
||||||
|
|
||||||
|
# 打印结果
|
||||||
|
print("\n原句:", sentence)
|
||||||
|
print("错字版:", typo_sentence)
|
||||||
|
|
||||||
|
# 打印错别字信息
|
||||||
|
if typo_info:
|
||||||
|
print("\n错别字信息:")
|
||||||
|
print(typo_generator.format_typo_info(typo_info))
|
||||||
|
|
||||||
|
# 计算并打印总耗时
|
||||||
|
end_time = time.time()
|
||||||
|
total_time = end_time - start_time
|
||||||
|
print(f"\n总耗时:{total_time:.2f}秒")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
807
src/test/typo.py
807
src/test/typo.py
@@ -1,455 +1,376 @@
|
|||||||
"""
|
"""
|
||||||
错别字生成器 - 流程说明
|
错别字生成器 - 基于拼音和字频的中文错别字生成工具
|
||||||
|
|
||||||
整体替换逻辑:
|
|
||||||
1. 数据准备
|
|
||||||
- 加载字频词典:使用jieba词典计算汉字使用频率
|
|
||||||
- 创建拼音映射:建立拼音到汉字的映射关系
|
|
||||||
- 加载词频信息:从jieba词典获取词语使用频率
|
|
||||||
|
|
||||||
2. 分词处理
|
|
||||||
- 使用jieba将输入句子分词
|
|
||||||
- 区分单字词和多字词
|
|
||||||
- 保留标点符号和空格
|
|
||||||
|
|
||||||
3. 词语级别替换(针对多字词)
|
|
||||||
- 触发条件:词长>1 且 随机概率<0.3
|
|
||||||
- 替换流程:
|
|
||||||
a. 获取词语拼音
|
|
||||||
b. 生成所有可能的同音字组合
|
|
||||||
c. 过滤条件:
|
|
||||||
- 必须是jieba词典中的有效词
|
|
||||||
- 词频必须达到原词频的10%以上
|
|
||||||
- 综合评分(词频70%+字频30%)必须达到阈值
|
|
||||||
d. 按综合评分排序,选择最合适的替换词
|
|
||||||
|
|
||||||
4. 字级别替换(针对单字词或未进行整词替换的多字词)
|
|
||||||
- 单字替换概率:0.3
|
|
||||||
- 多字词中的单字替换概率:0.3 * (0.7 ^ (词长-1))
|
|
||||||
- 替换流程:
|
|
||||||
a. 获取字的拼音
|
|
||||||
b. 声调错误处理(20%概率)
|
|
||||||
c. 获取同音字列表
|
|
||||||
d. 过滤条件:
|
|
||||||
- 字频必须达到最小阈值
|
|
||||||
- 频率差异不能过大(指数衰减计算)
|
|
||||||
e. 按频率排序选择替换字
|
|
||||||
|
|
||||||
5. 频率控制机制
|
|
||||||
- 字频控制:使用归一化的字频(0-1000范围)
|
|
||||||
- 词频控制:使用jieba词典中的词频
|
|
||||||
- 频率差异计算:使用指数衰减函数
|
|
||||||
- 最小频率阈值:确保替换字/词不会太生僻
|
|
||||||
|
|
||||||
6. 输出信息
|
|
||||||
- 原文和错字版本的对照
|
|
||||||
- 每个替换的详细信息(原字/词、替换后字/词、拼音、频率)
|
|
||||||
- 替换类型说明(整词替换/声调错误/同音字替换)
|
|
||||||
- 词语分析和完整拼音
|
|
||||||
|
|
||||||
注意事项:
|
|
||||||
1. 所有替换都必须使用有意义的词语
|
|
||||||
2. 替换词的使用频率不能过低
|
|
||||||
3. 多字词优先考虑整词替换
|
|
||||||
4. 考虑声调变化的情况
|
|
||||||
5. 保持标点符号和空格不变
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from pypinyin import pinyin, Style
|
from pypinyin import pinyin, Style
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import unicodedata
|
|
||||||
import jieba
|
import jieba
|
||||||
import jieba.posseg as pseg
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import random
|
import random
|
||||||
import math
|
import math
|
||||||
import time
|
import time
|
||||||
|
|
||||||
def load_or_create_char_frequency():
|
class ChineseTypoGenerator:
|
||||||
"""
|
def __init__(self,
|
||||||
加载或创建汉字频率字典
|
error_rate=0.3,
|
||||||
"""
|
min_freq=5,
|
||||||
cache_file = Path("char_frequency.json")
|
tone_error_rate=0.2,
|
||||||
|
word_replace_rate=0.3,
|
||||||
|
max_freq_diff=200):
|
||||||
|
"""
|
||||||
|
初始化错别字生成器
|
||||||
|
|
||||||
# 如果缓存文件存在,直接加载
|
参数:
|
||||||
if cache_file.exists():
|
error_rate: 单字替换概率
|
||||||
with open(cache_file, 'r', encoding='utf-8') as f:
|
min_freq: 最小字频阈值
|
||||||
return json.load(f)
|
tone_error_rate: 声调错误概率
|
||||||
|
word_replace_rate: 整词替换概率
|
||||||
|
max_freq_diff: 最大允许的频率差异
|
||||||
|
"""
|
||||||
|
self.error_rate = error_rate
|
||||||
|
self.min_freq = min_freq
|
||||||
|
self.tone_error_rate = tone_error_rate
|
||||||
|
self.word_replace_rate = word_replace_rate
|
||||||
|
self.max_freq_diff = max_freq_diff
|
||||||
|
|
||||||
# 使用内置的词频文件
|
# 加载数据
|
||||||
char_freq = defaultdict(int)
|
print("正在加载汉字数据库,请稍候...")
|
||||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
self.pinyin_dict = self._create_pinyin_dict()
|
||||||
|
self.char_frequency = self._load_or_create_char_frequency()
|
||||||
|
|
||||||
# 读取jieba的词典文件
|
def _load_or_create_char_frequency(self):
|
||||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
"""
|
||||||
for line in f:
|
加载或创建汉字频率字典
|
||||||
word, freq = line.strip().split()[:2]
|
"""
|
||||||
# 对词中的每个字进行频率累加
|
cache_file = Path("char_frequency.json")
|
||||||
for char in word:
|
|
||||||
if is_chinese_char(char):
|
|
||||||
char_freq[char] += int(freq)
|
|
||||||
|
|
||||||
# 归一化频率值
|
# 如果缓存文件存在,直接加载
|
||||||
max_freq = max(char_freq.values())
|
if cache_file.exists():
|
||||||
normalized_freq = {char: freq/max_freq * 1000 for char, freq in char_freq.items()}
|
with open(cache_file, 'r', encoding='utf-8') as f:
|
||||||
|
return json.load(f)
|
||||||
|
|
||||||
# 保存到缓存文件
|
# 使用内置的词频文件
|
||||||
with open(cache_file, 'w', encoding='utf-8') as f:
|
char_freq = defaultdict(int)
|
||||||
json.dump(normalized_freq, f, ensure_ascii=False, indent=2)
|
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||||
|
|
||||||
return normalized_freq
|
# 读取jieba的词典文件
|
||||||
|
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||||
|
for line in f:
|
||||||
|
word, freq = line.strip().split()[:2]
|
||||||
|
# 对词中的每个字进行频率累加
|
||||||
|
for char in word:
|
||||||
|
if self._is_chinese_char(char):
|
||||||
|
char_freq[char] += int(freq)
|
||||||
|
|
||||||
# 创建拼音到汉字的映射字典
|
# 归一化频率值
|
||||||
def create_pinyin_dict():
|
max_freq = max(char_freq.values())
|
||||||
"""
|
normalized_freq = {char: freq/max_freq * 1000 for char, freq in char_freq.items()}
|
||||||
创建拼音到汉字的映射字典
|
|
||||||
"""
|
|
||||||
# 常用汉字范围
|
|
||||||
chars = [chr(i) for i in range(0x4e00, 0x9fff)]
|
|
||||||
pinyin_dict = defaultdict(list)
|
|
||||||
|
|
||||||
# 为每个汉字建立拼音映射
|
# 保存到缓存文件
|
||||||
for char in chars:
|
with open(cache_file, 'w', encoding='utf-8') as f:
|
||||||
try:
|
json.dump(normalized_freq, f, ensure_ascii=False, indent=2)
|
||||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
|
||||||
pinyin_dict[py].append(char)
|
|
||||||
except Exception:
|
|
||||||
continue
|
|
||||||
|
|
||||||
return pinyin_dict
|
return normalized_freq
|
||||||
|
|
||||||
def is_chinese_char(char):
|
def _create_pinyin_dict(self):
|
||||||
"""
|
"""
|
||||||
判断是否为汉字
|
创建拼音到汉字的映射字典
|
||||||
"""
|
"""
|
||||||
try:
|
# 常用汉字范围
|
||||||
return '\u4e00' <= char <= '\u9fff'
|
chars = [chr(i) for i in range(0x4e00, 0x9fff)]
|
||||||
except:
|
pinyin_dict = defaultdict(list)
|
||||||
return False
|
|
||||||
|
|
||||||
def get_pinyin(sentence):
|
# 为每个汉字建立拼音映射
|
||||||
"""
|
for char in chars:
|
||||||
将中文句子拆分成单个汉字并获取其拼音
|
try:
|
||||||
:param sentence: 输入的中文句子
|
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||||
:return: 每个汉字及其拼音的列表
|
pinyin_dict[py].append(char)
|
||||||
"""
|
except Exception:
|
||||||
# 将句子拆分成单个字符
|
|
||||||
characters = list(sentence)
|
|
||||||
|
|
||||||
# 获取每个字符的拼音
|
|
||||||
result = []
|
|
||||||
for char in characters:
|
|
||||||
# 跳过空格和非汉字字符
|
|
||||||
if char.isspace() or not is_chinese_char(char):
|
|
||||||
continue
|
|
||||||
# 获取拼音(数字声调)
|
|
||||||
py = pinyin(char, style=Style.TONE3)[0][0]
|
|
||||||
result.append((char, py))
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
def get_homophone(char, py, pinyin_dict, char_frequency, min_freq=5):
|
|
||||||
"""
|
|
||||||
获取同音字,按照使用频率排序
|
|
||||||
"""
|
|
||||||
homophones = pinyin_dict[py]
|
|
||||||
# 移除原字并过滤低频字
|
|
||||||
if char in homophones:
|
|
||||||
homophones.remove(char)
|
|
||||||
|
|
||||||
# 过滤掉低频字
|
|
||||||
homophones = [h for h in homophones if char_frequency.get(h, 0) >= min_freq]
|
|
||||||
|
|
||||||
# 按照字频排序
|
|
||||||
sorted_homophones = sorted(homophones,
|
|
||||||
key=lambda x: char_frequency.get(x, 0),
|
|
||||||
reverse=True)
|
|
||||||
|
|
||||||
# 只返回前10个同音字,避免输出过多
|
|
||||||
return sorted_homophones[:10]
|
|
||||||
|
|
||||||
def get_similar_tone_pinyin(py):
|
|
||||||
"""
|
|
||||||
获取相似声调的拼音
|
|
||||||
例如:'ni3' 可能返回 'ni2' 或 'ni4'
|
|
||||||
处理特殊情况:
|
|
||||||
1. 轻声(如 'de5' 或 'le')
|
|
||||||
2. 非数字结尾的拼音
|
|
||||||
"""
|
|
||||||
# 检查拼音是否为空或无效
|
|
||||||
if not py or len(py) < 1:
|
|
||||||
return py
|
|
||||||
|
|
||||||
# 如果最后一个字符不是数字,说明可能是轻声或其他特殊情况
|
|
||||||
if not py[-1].isdigit():
|
|
||||||
# 为非数字结尾的拼音添加数字声调1
|
|
||||||
return py + '1'
|
|
||||||
|
|
||||||
base = py[:-1] # 去掉声调
|
|
||||||
tone = int(py[-1]) # 获取声调
|
|
||||||
|
|
||||||
# 处理轻声(通常用5表示)或无效声调
|
|
||||||
if tone not in [1, 2, 3, 4]:
|
|
||||||
return base + str(random.choice([1, 2, 3, 4]))
|
|
||||||
|
|
||||||
# 正常处理声调
|
|
||||||
possible_tones = [1, 2, 3, 4]
|
|
||||||
possible_tones.remove(tone) # 移除原声调
|
|
||||||
new_tone = random.choice(possible_tones) # 随机选择一个新声调
|
|
||||||
return base + str(new_tone)
|
|
||||||
|
|
||||||
def calculate_replacement_probability(orig_freq, target_freq, max_freq_diff=200):
|
|
||||||
"""
|
|
||||||
根据频率差计算替换概率
|
|
||||||
频率差越大,概率越低
|
|
||||||
:param orig_freq: 原字频率
|
|
||||||
:param target_freq: 目标字频率
|
|
||||||
:param max_freq_diff: 最大允许的频率差
|
|
||||||
:return: 0-1之间的概率值
|
|
||||||
"""
|
|
||||||
if target_freq > orig_freq:
|
|
||||||
return 1.0 # 如果替换字频率更高,保持原有概率
|
|
||||||
|
|
||||||
freq_diff = orig_freq - target_freq
|
|
||||||
if freq_diff > max_freq_diff:
|
|
||||||
return 0.0 # 频率差太大,不替换
|
|
||||||
|
|
||||||
# 使用指数衰减函数计算概率
|
|
||||||
# 频率差为0时概率为1,频率差为max_freq_diff时概率接近0
|
|
||||||
return math.exp(-3 * freq_diff / max_freq_diff)
|
|
||||||
|
|
||||||
def get_similar_frequency_chars(char, py, pinyin_dict, char_frequency, num_candidates=5, min_freq=5, tone_error_rate=0.2):
|
|
||||||
"""
|
|
||||||
获取与给定字频率相近的同音字,可能包含声调错误
|
|
||||||
"""
|
|
||||||
homophones = []
|
|
||||||
|
|
||||||
# 有20%的概率使用错误声调
|
|
||||||
if random.random() < tone_error_rate:
|
|
||||||
wrong_tone_py = get_similar_tone_pinyin(py)
|
|
||||||
homophones.extend(pinyin_dict[wrong_tone_py])
|
|
||||||
|
|
||||||
# 添加正确声调的同音字
|
|
||||||
homophones.extend(pinyin_dict[py])
|
|
||||||
|
|
||||||
if not homophones:
|
|
||||||
return None
|
|
||||||
|
|
||||||
# 获取原字的频率
|
|
||||||
orig_freq = char_frequency.get(char, 0)
|
|
||||||
|
|
||||||
# 计算所有同音字与原字的频率差,并过滤掉低频字
|
|
||||||
freq_diff = [(h, char_frequency.get(h, 0))
|
|
||||||
for h in homophones
|
|
||||||
if h != char and char_frequency.get(h, 0) >= min_freq]
|
|
||||||
|
|
||||||
if not freq_diff:
|
|
||||||
return None
|
|
||||||
|
|
||||||
# 计算每个候选字的替换概率
|
|
||||||
candidates_with_prob = []
|
|
||||||
for h, freq in freq_diff:
|
|
||||||
prob = calculate_replacement_probability(orig_freq, freq)
|
|
||||||
if prob > 0: # 只保留有效概率的候选字
|
|
||||||
candidates_with_prob.append((h, prob))
|
|
||||||
|
|
||||||
if not candidates_with_prob:
|
|
||||||
return None
|
|
||||||
|
|
||||||
# 根据概率排序
|
|
||||||
candidates_with_prob.sort(key=lambda x: x[1], reverse=True)
|
|
||||||
|
|
||||||
# 返回概率最高的几个字
|
|
||||||
return [char for char, _ in candidates_with_prob[:num_candidates]]
|
|
||||||
|
|
||||||
def get_word_pinyin(word):
|
|
||||||
"""
|
|
||||||
获取词语的拼音列表
|
|
||||||
"""
|
|
||||||
return [py[0] for py in pinyin(word, style=Style.TONE3)]
|
|
||||||
|
|
||||||
def segment_sentence(sentence):
|
|
||||||
"""
|
|
||||||
使用jieba分词,返回词语列表
|
|
||||||
"""
|
|
||||||
return list(jieba.cut(sentence))
|
|
||||||
|
|
||||||
def get_word_homophones(word, pinyin_dict, char_frequency, min_freq=5):
|
|
||||||
"""
|
|
||||||
获取整个词的同音词,只返回高频的有意义词语
|
|
||||||
:param word: 输入词语
|
|
||||||
:param pinyin_dict: 拼音字典
|
|
||||||
:param char_frequency: 字频字典
|
|
||||||
:param min_freq: 最小频率阈值
|
|
||||||
:return: 同音词列表
|
|
||||||
"""
|
|
||||||
if len(word) == 1:
|
|
||||||
return []
|
|
||||||
|
|
||||||
# 获取词的拼音
|
|
||||||
word_pinyin = get_word_pinyin(word)
|
|
||||||
word_pinyin_str = ''.join(word_pinyin)
|
|
||||||
|
|
||||||
# 创建词语频率字典
|
|
||||||
word_freq = defaultdict(float)
|
|
||||||
|
|
||||||
# 遍历所有可能的同音字组合
|
|
||||||
candidates = []
|
|
||||||
for py in word_pinyin:
|
|
||||||
chars = pinyin_dict.get(py, [])
|
|
||||||
if not chars:
|
|
||||||
return []
|
|
||||||
candidates.append(chars)
|
|
||||||
|
|
||||||
# 生成所有可能的组合
|
|
||||||
import itertools
|
|
||||||
all_combinations = itertools.product(*candidates)
|
|
||||||
|
|
||||||
# 获取jieba词典和词频信息
|
|
||||||
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
|
||||||
valid_words = {} # 改用字典存储词语及其频率
|
|
||||||
with open(dict_path, 'r', encoding='utf-8') as f:
|
|
||||||
for line in f:
|
|
||||||
parts = line.strip().split()
|
|
||||||
if len(parts) >= 2:
|
|
||||||
word_text = parts[0]
|
|
||||||
word_freq = float(parts[1]) # 获取词频
|
|
||||||
valid_words[word_text] = word_freq
|
|
||||||
|
|
||||||
# 获取原词的词频作为参考
|
|
||||||
original_word_freq = valid_words.get(word, 0)
|
|
||||||
min_word_freq = original_word_freq * 0.1 # 设置最小词频为原词频的10%
|
|
||||||
|
|
||||||
# 过滤和计算频率
|
|
||||||
homophones = []
|
|
||||||
for combo in all_combinations:
|
|
||||||
new_word = ''.join(combo)
|
|
||||||
if new_word != word and new_word in valid_words:
|
|
||||||
new_word_freq = valid_words[new_word]
|
|
||||||
# 只保留词频达到阈值的词
|
|
||||||
if new_word_freq >= min_word_freq:
|
|
||||||
# 计算词的平均字频(考虑字频和词频)
|
|
||||||
char_avg_freq = sum(char_frequency.get(c, 0) for c in new_word) / len(new_word)
|
|
||||||
# 综合评分:结合词频和字频
|
|
||||||
combined_score = (new_word_freq * 0.7 + char_avg_freq * 0.3)
|
|
||||||
if combined_score >= min_freq:
|
|
||||||
homophones.append((new_word, combined_score))
|
|
||||||
|
|
||||||
# 按综合分数排序并限制返回数量
|
|
||||||
sorted_homophones = sorted(homophones, key=lambda x: x[1], reverse=True)
|
|
||||||
return [word for word, _ in sorted_homophones[:5]] # 限制返回前5个结果
|
|
||||||
|
|
||||||
def create_typo_sentence(sentence, pinyin_dict, char_frequency, error_rate=0.5, min_freq=5, tone_error_rate=0.2, word_replace_rate=0.3):
|
|
||||||
"""
|
|
||||||
创建包含同音字错误的句子,支持词语级别和字级别的替换
|
|
||||||
只使用高频的有意义词语进行替换
|
|
||||||
"""
|
|
||||||
result = []
|
|
||||||
typo_info = []
|
|
||||||
|
|
||||||
# 分词
|
|
||||||
words = segment_sentence(sentence)
|
|
||||||
|
|
||||||
for word in words:
|
|
||||||
# 如果是标点符号或空格,直接添加
|
|
||||||
if all(not is_chinese_char(c) for c in word):
|
|
||||||
result.append(word)
|
|
||||||
continue
|
|
||||||
|
|
||||||
# 获取词语的拼音
|
|
||||||
word_pinyin = get_word_pinyin(word)
|
|
||||||
|
|
||||||
# 尝试整词替换
|
|
||||||
if len(word) > 1 and random.random() < word_replace_rate:
|
|
||||||
word_homophones = get_word_homophones(word, pinyin_dict, char_frequency, min_freq)
|
|
||||||
if word_homophones:
|
|
||||||
typo_word = random.choice(word_homophones)
|
|
||||||
# 计算词的平均频率
|
|
||||||
orig_freq = sum(char_frequency.get(c, 0) for c in word) / len(word)
|
|
||||||
typo_freq = sum(char_frequency.get(c, 0) for c in typo_word) / len(typo_word)
|
|
||||||
|
|
||||||
# 添加到结果中
|
|
||||||
result.append(typo_word)
|
|
||||||
typo_info.append((word, typo_word,
|
|
||||||
' '.join(word_pinyin),
|
|
||||||
' '.join(get_word_pinyin(typo_word)),
|
|
||||||
orig_freq, typo_freq))
|
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# 如果不进行整词替换,则进行单字替换
|
return pinyin_dict
|
||||||
if len(word) == 1:
|
|
||||||
char = word
|
|
||||||
py = word_pinyin[0]
|
|
||||||
if random.random() < error_rate:
|
|
||||||
similar_chars = get_similar_frequency_chars(char, py, pinyin_dict, char_frequency,
|
|
||||||
min_freq=min_freq, tone_error_rate=tone_error_rate)
|
|
||||||
if similar_chars:
|
|
||||||
typo_char = random.choice(similar_chars)
|
|
||||||
typo_freq = char_frequency.get(typo_char, 0)
|
|
||||||
orig_freq = char_frequency.get(char, 0)
|
|
||||||
replace_prob = calculate_replacement_probability(orig_freq, typo_freq)
|
|
||||||
if random.random() < replace_prob:
|
|
||||||
result.append(typo_char)
|
|
||||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
|
||||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
|
||||||
continue
|
|
||||||
result.append(char)
|
|
||||||
else:
|
|
||||||
# 处理多字词的单字替换
|
|
||||||
word_result = []
|
|
||||||
for i, (char, py) in enumerate(zip(word, word_pinyin)):
|
|
||||||
# 词中的字替换概率降低
|
|
||||||
word_error_rate = error_rate * (0.7 ** (len(word) - 1))
|
|
||||||
|
|
||||||
if random.random() < word_error_rate:
|
def _is_chinese_char(self, char):
|
||||||
similar_chars = get_similar_frequency_chars(char, py, pinyin_dict, char_frequency,
|
"""
|
||||||
min_freq=min_freq, tone_error_rate=tone_error_rate)
|
判断是否为汉字
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
return '\u4e00' <= char <= '\u9fff'
|
||||||
|
except:
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _get_pinyin(self, sentence):
|
||||||
|
"""
|
||||||
|
将中文句子拆分成单个汉字并获取其拼音
|
||||||
|
"""
|
||||||
|
# 将句子拆分成单个字符
|
||||||
|
characters = list(sentence)
|
||||||
|
|
||||||
|
# 获取每个字符的拼音
|
||||||
|
result = []
|
||||||
|
for char in characters:
|
||||||
|
# 跳过空格和非汉字字符
|
||||||
|
if char.isspace() or not self._is_chinese_char(char):
|
||||||
|
continue
|
||||||
|
# 获取拼音(数字声调)
|
||||||
|
py = pinyin(char, style=Style.TONE3)[0][0]
|
||||||
|
result.append((char, py))
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
def _get_similar_tone_pinyin(self, py):
|
||||||
|
"""
|
||||||
|
获取相似声调的拼音
|
||||||
|
"""
|
||||||
|
# 检查拼音是否为空或无效
|
||||||
|
if not py or len(py) < 1:
|
||||||
|
return py
|
||||||
|
|
||||||
|
# 如果最后一个字符不是数字,说明可能是轻声或其他特殊情况
|
||||||
|
if not py[-1].isdigit():
|
||||||
|
# 为非数字结尾的拼音添加数字声调1
|
||||||
|
return py + '1'
|
||||||
|
|
||||||
|
base = py[:-1] # 去掉声调
|
||||||
|
tone = int(py[-1]) # 获取声调
|
||||||
|
|
||||||
|
# 处理轻声(通常用5表示)或无效声调
|
||||||
|
if tone not in [1, 2, 3, 4]:
|
||||||
|
return base + str(random.choice([1, 2, 3, 4]))
|
||||||
|
|
||||||
|
# 正常处理声调
|
||||||
|
possible_tones = [1, 2, 3, 4]
|
||||||
|
possible_tones.remove(tone) # 移除原声调
|
||||||
|
new_tone = random.choice(possible_tones) # 随机选择一个新声调
|
||||||
|
return base + str(new_tone)
|
||||||
|
|
||||||
|
def _calculate_replacement_probability(self, orig_freq, target_freq):
|
||||||
|
"""
|
||||||
|
根据频率差计算替换概率
|
||||||
|
"""
|
||||||
|
if target_freq > orig_freq:
|
||||||
|
return 1.0 # 如果替换字频率更高,保持原有概率
|
||||||
|
|
||||||
|
freq_diff = orig_freq - target_freq
|
||||||
|
if freq_diff > self.max_freq_diff:
|
||||||
|
return 0.0 # 频率差太大,不替换
|
||||||
|
|
||||||
|
# 使用指数衰减函数计算概率
|
||||||
|
# 频率差为0时概率为1,频率差为max_freq_diff时概率接近0
|
||||||
|
return math.exp(-3 * freq_diff / self.max_freq_diff)
|
||||||
|
|
||||||
|
def _get_similar_frequency_chars(self, char, py, num_candidates=5):
|
||||||
|
"""
|
||||||
|
获取与给定字频率相近的同音字,可能包含声调错误
|
||||||
|
"""
|
||||||
|
homophones = []
|
||||||
|
|
||||||
|
# 有一定概率使用错误声调
|
||||||
|
if random.random() < self.tone_error_rate:
|
||||||
|
wrong_tone_py = self._get_similar_tone_pinyin(py)
|
||||||
|
homophones.extend(self.pinyin_dict[wrong_tone_py])
|
||||||
|
|
||||||
|
# 添加正确声调的同音字
|
||||||
|
homophones.extend(self.pinyin_dict[py])
|
||||||
|
|
||||||
|
if not homophones:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 获取原字的频率
|
||||||
|
orig_freq = self.char_frequency.get(char, 0)
|
||||||
|
|
||||||
|
# 计算所有同音字与原字的频率差,并过滤掉低频字
|
||||||
|
freq_diff = [(h, self.char_frequency.get(h, 0))
|
||||||
|
for h in homophones
|
||||||
|
if h != char and self.char_frequency.get(h, 0) >= self.min_freq]
|
||||||
|
|
||||||
|
if not freq_diff:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 计算每个候选字的替换概率
|
||||||
|
candidates_with_prob = []
|
||||||
|
for h, freq in freq_diff:
|
||||||
|
prob = self._calculate_replacement_probability(orig_freq, freq)
|
||||||
|
if prob > 0: # 只保留有效概率的候选字
|
||||||
|
candidates_with_prob.append((h, prob))
|
||||||
|
|
||||||
|
if not candidates_with_prob:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 根据概率排序
|
||||||
|
candidates_with_prob.sort(key=lambda x: x[1], reverse=True)
|
||||||
|
|
||||||
|
# 返回概率最高的几个字
|
||||||
|
return [char for char, _ in candidates_with_prob[:num_candidates]]
|
||||||
|
|
||||||
|
def _get_word_pinyin(self, word):
|
||||||
|
"""
|
||||||
|
获取词语的拼音列表
|
||||||
|
"""
|
||||||
|
return [py[0] for py in pinyin(word, style=Style.TONE3)]
|
||||||
|
|
||||||
|
def _segment_sentence(self, sentence):
|
||||||
|
"""
|
||||||
|
使用jieba分词,返回词语列表
|
||||||
|
"""
|
||||||
|
return list(jieba.cut(sentence))
|
||||||
|
|
||||||
|
def _get_word_homophones(self, word):
|
||||||
|
"""
|
||||||
|
获取整个词的同音词,只返回高频的有意义词语
|
||||||
|
"""
|
||||||
|
if len(word) == 1:
|
||||||
|
return []
|
||||||
|
|
||||||
|
# 获取词的拼音
|
||||||
|
word_pinyin = self._get_word_pinyin(word)
|
||||||
|
|
||||||
|
# 遍历所有可能的同音字组合
|
||||||
|
candidates = []
|
||||||
|
for py in word_pinyin:
|
||||||
|
chars = self.pinyin_dict.get(py, [])
|
||||||
|
if not chars:
|
||||||
|
return []
|
||||||
|
candidates.append(chars)
|
||||||
|
|
||||||
|
# 生成所有可能的组合
|
||||||
|
import itertools
|
||||||
|
all_combinations = itertools.product(*candidates)
|
||||||
|
|
||||||
|
# 获取jieba词典和词频信息
|
||||||
|
dict_path = os.path.join(os.path.dirname(jieba.__file__), 'dict.txt')
|
||||||
|
valid_words = {} # 改用字典存储词语及其频率
|
||||||
|
with open(dict_path, 'r', encoding='utf-8') as f:
|
||||||
|
for line in f:
|
||||||
|
parts = line.strip().split()
|
||||||
|
if len(parts) >= 2:
|
||||||
|
word_text = parts[0]
|
||||||
|
word_freq = float(parts[1]) # 获取词频
|
||||||
|
valid_words[word_text] = word_freq
|
||||||
|
|
||||||
|
# 获取原词的词频作为参考
|
||||||
|
original_word_freq = valid_words.get(word, 0)
|
||||||
|
min_word_freq = original_word_freq * 0.1 # 设置最小词频为原词频的10%
|
||||||
|
|
||||||
|
# 过滤和计算频率
|
||||||
|
homophones = []
|
||||||
|
for combo in all_combinations:
|
||||||
|
new_word = ''.join(combo)
|
||||||
|
if new_word != word and new_word in valid_words:
|
||||||
|
new_word_freq = valid_words[new_word]
|
||||||
|
# 只保留词频达到阈值的词
|
||||||
|
if new_word_freq >= min_word_freq:
|
||||||
|
# 计算词的平均字频(考虑字频和词频)
|
||||||
|
char_avg_freq = sum(self.char_frequency.get(c, 0) for c in new_word) / len(new_word)
|
||||||
|
# 综合评分:结合词频和字频
|
||||||
|
combined_score = (new_word_freq * 0.7 + char_avg_freq * 0.3)
|
||||||
|
if combined_score >= self.min_freq:
|
||||||
|
homophones.append((new_word, combined_score))
|
||||||
|
|
||||||
|
# 按综合分数排序并限制返回数量
|
||||||
|
sorted_homophones = sorted(homophones, key=lambda x: x[1], reverse=True)
|
||||||
|
return [word for word, _ in sorted_homophones[:5]] # 限制返回前5个结果
|
||||||
|
|
||||||
|
def create_typo_sentence(self, sentence):
|
||||||
|
"""
|
||||||
|
创建包含同音字错误的句子,支持词语级别和字级别的替换
|
||||||
|
|
||||||
|
参数:
|
||||||
|
sentence: 输入的中文句子
|
||||||
|
|
||||||
|
返回:
|
||||||
|
typo_sentence: 包含错别字的句子
|
||||||
|
typo_info: 错别字信息列表
|
||||||
|
"""
|
||||||
|
result = []
|
||||||
|
typo_info = []
|
||||||
|
|
||||||
|
# 分词
|
||||||
|
words = self._segment_sentence(sentence)
|
||||||
|
|
||||||
|
for word in words:
|
||||||
|
# 如果是标点符号或空格,直接添加
|
||||||
|
if all(not self._is_chinese_char(c) for c in word):
|
||||||
|
result.append(word)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 获取词语的拼音
|
||||||
|
word_pinyin = self._get_word_pinyin(word)
|
||||||
|
|
||||||
|
# 尝试整词替换
|
||||||
|
if len(word) > 1 and random.random() < self.word_replace_rate:
|
||||||
|
word_homophones = self._get_word_homophones(word)
|
||||||
|
if word_homophones:
|
||||||
|
typo_word = random.choice(word_homophones)
|
||||||
|
# 计算词的平均频率
|
||||||
|
orig_freq = sum(self.char_frequency.get(c, 0) for c in word) / len(word)
|
||||||
|
typo_freq = sum(self.char_frequency.get(c, 0) for c in typo_word) / len(typo_word)
|
||||||
|
|
||||||
|
# 添加到结果中
|
||||||
|
result.append(typo_word)
|
||||||
|
typo_info.append((word, typo_word,
|
||||||
|
' '.join(word_pinyin),
|
||||||
|
' '.join(self._get_word_pinyin(typo_word)),
|
||||||
|
orig_freq, typo_freq))
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 如果不进行整词替换,则进行单字替换
|
||||||
|
if len(word) == 1:
|
||||||
|
char = word
|
||||||
|
py = word_pinyin[0]
|
||||||
|
if random.random() < self.error_rate:
|
||||||
|
similar_chars = self._get_similar_frequency_chars(char, py)
|
||||||
if similar_chars:
|
if similar_chars:
|
||||||
typo_char = random.choice(similar_chars)
|
typo_char = random.choice(similar_chars)
|
||||||
typo_freq = char_frequency.get(typo_char, 0)
|
typo_freq = self.char_frequency.get(typo_char, 0)
|
||||||
orig_freq = char_frequency.get(char, 0)
|
orig_freq = self.char_frequency.get(char, 0)
|
||||||
replace_prob = calculate_replacement_probability(orig_freq, typo_freq)
|
replace_prob = self._calculate_replacement_probability(orig_freq, typo_freq)
|
||||||
if random.random() < replace_prob:
|
if random.random() < replace_prob:
|
||||||
word_result.append(typo_char)
|
result.append(typo_char)
|
||||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||||
continue
|
continue
|
||||||
word_result.append(char)
|
result.append(char)
|
||||||
result.append(''.join(word_result))
|
else:
|
||||||
|
# 处理多字词的单字替换
|
||||||
|
word_result = []
|
||||||
|
for i, (char, py) in enumerate(zip(word, word_pinyin)):
|
||||||
|
# 词中的字替换概率降低
|
||||||
|
word_error_rate = self.error_rate * (0.7 ** (len(word) - 1))
|
||||||
|
|
||||||
return ''.join(result), typo_info
|
if random.random() < word_error_rate:
|
||||||
|
similar_chars = self._get_similar_frequency_chars(char, py)
|
||||||
|
if similar_chars:
|
||||||
|
typo_char = random.choice(similar_chars)
|
||||||
|
typo_freq = self.char_frequency.get(typo_char, 0)
|
||||||
|
orig_freq = self.char_frequency.get(char, 0)
|
||||||
|
replace_prob = self._calculate_replacement_probability(orig_freq, typo_freq)
|
||||||
|
if random.random() < replace_prob:
|
||||||
|
word_result.append(typo_char)
|
||||||
|
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||||
|
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||||
|
continue
|
||||||
|
word_result.append(char)
|
||||||
|
result.append(''.join(word_result))
|
||||||
|
|
||||||
def format_frequency(freq):
|
return ''.join(result), typo_info
|
||||||
"""
|
|
||||||
格式化频率显示
|
|
||||||
"""
|
|
||||||
return f"{freq:.2f}"
|
|
||||||
|
|
||||||
def main():
|
def format_typo_info(self, typo_info):
|
||||||
# 记录开始时间
|
"""
|
||||||
start_time = time.time()
|
格式化错别字信息
|
||||||
|
|
||||||
# 首先创建拼音字典和加载字频统计
|
参数:
|
||||||
print("正在加载汉字数据库,请稍候...")
|
typo_info: 错别字信息列表
|
||||||
pinyin_dict = create_pinyin_dict()
|
|
||||||
char_frequency = load_or_create_char_frequency()
|
|
||||||
|
|
||||||
# 获取用户输入
|
返回:
|
||||||
sentence = input("请输入中文句子:")
|
格式化后的错别字信息字符串
|
||||||
|
"""
|
||||||
|
if not typo_info:
|
||||||
|
return "未生成错别字"
|
||||||
|
|
||||||
# 创建包含错别字的句子
|
result = []
|
||||||
typo_sentence, typo_info = create_typo_sentence(sentence, pinyin_dict, char_frequency,
|
|
||||||
error_rate=0.3, min_freq=5,
|
|
||||||
tone_error_rate=0.2, word_replace_rate=0.3)
|
|
||||||
|
|
||||||
# 打印结果
|
|
||||||
print("\n原句:", sentence)
|
|
||||||
print("错字版:", typo_sentence)
|
|
||||||
|
|
||||||
if typo_info:
|
|
||||||
print("\n错别字信息:")
|
|
||||||
for orig, typo, orig_py, typo_py, orig_freq, typo_freq in typo_info:
|
for orig, typo, orig_py, typo_py, orig_freq, typo_freq in typo_info:
|
||||||
# 判断是否为词语替换
|
# 判断是否为词语替换
|
||||||
is_word = ' ' in orig_py
|
is_word = ' ' in orig_py
|
||||||
@@ -459,25 +380,53 @@ def main():
|
|||||||
tone_error = orig_py[:-1] == typo_py[:-1] and orig_py[-1] != typo_py[-1]
|
tone_error = orig_py[:-1] == typo_py[:-1] and orig_py[-1] != typo_py[-1]
|
||||||
error_type = "声调错误" if tone_error else "同音字替换"
|
error_type = "声调错误" if tone_error else "同音字替换"
|
||||||
|
|
||||||
print(f"原文:{orig}({orig_py}) [频率:{format_frequency(orig_freq)}] -> "
|
result.append(f"原文:{orig}({orig_py}) [频率:{orig_freq:.2f}] -> "
|
||||||
f"替换:{typo}({typo_py}) [频率:{format_frequency(typo_freq)}] [{error_type}]")
|
f"替换:{typo}({typo_py}) [频率:{typo_freq:.2f}] [{error_type}]")
|
||||||
|
|
||||||
# 获取拼音结果
|
return "\n".join(result)
|
||||||
result = get_pinyin(sentence)
|
|
||||||
|
|
||||||
# 打印完整拼音
|
def set_params(self, **kwargs):
|
||||||
print("\n完整拼音:")
|
"""
|
||||||
print(" ".join(py for _, py in result))
|
设置参数
|
||||||
|
|
||||||
# 打印词语分析
|
可设置参数:
|
||||||
print("\n词语分析:")
|
error_rate: 单字替换概率
|
||||||
words = segment_sentence(sentence)
|
min_freq: 最小字频阈值
|
||||||
for word in words:
|
tone_error_rate: 声调错误概率
|
||||||
if any(is_chinese_char(c) for c in word):
|
word_replace_rate: 整词替换概率
|
||||||
word_pinyin = get_word_pinyin(word)
|
max_freq_diff: 最大允许的频率差异
|
||||||
print(f"词语:{word}")
|
"""
|
||||||
print(f"拼音:{' '.join(word_pinyin)}")
|
for key, value in kwargs.items():
|
||||||
print("---")
|
if hasattr(self, key):
|
||||||
|
setattr(self, key, value)
|
||||||
|
print(f"参数 {key} 已设置为 {value}")
|
||||||
|
else:
|
||||||
|
print(f"警告: 参数 {key} 不存在")
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# 创建错别字生成器实例
|
||||||
|
typo_generator = ChineseTypoGenerator(
|
||||||
|
error_rate=0.03,
|
||||||
|
min_freq=7,
|
||||||
|
tone_error_rate=0.02,
|
||||||
|
word_replace_rate=0.3
|
||||||
|
)
|
||||||
|
|
||||||
|
# 获取用户输入
|
||||||
|
sentence = input("请输入中文句子:")
|
||||||
|
|
||||||
|
# 创建包含错别字的句子
|
||||||
|
start_time = time.time()
|
||||||
|
typo_sentence, typo_info = typo_generator.create_typo_sentence(sentence)
|
||||||
|
|
||||||
|
# 打印结果
|
||||||
|
print("\n原句:", sentence)
|
||||||
|
print("错字版:", typo_sentence)
|
||||||
|
|
||||||
|
# 打印错别字信息
|
||||||
|
if typo_info:
|
||||||
|
print("\n错别字信息:")
|
||||||
|
print(typo_generator.format_typo_info(typo_info))
|
||||||
|
|
||||||
# 计算并打印总耗时
|
# 计算并打印总耗时
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
|
|||||||
@@ -20,14 +20,18 @@ ban_words = [
|
|||||||
[emoji]
|
[emoji]
|
||||||
check_interval = 120 # 检查表情包的时间间隔
|
check_interval = 120 # 检查表情包的时间间隔
|
||||||
register_interval = 10 # 注册表情包的时间间隔
|
register_interval = 10 # 注册表情包的时间间隔
|
||||||
|
auto_save = true # 自动偷表情包
|
||||||
|
enable_check = false # 是否启用表情包过滤
|
||||||
|
check_prompt = "符合公序良俗" # 表情包过滤要求
|
||||||
|
|
||||||
[cq_code]
|
[cq_code]
|
||||||
enable_pic_translate = false
|
enable_pic_translate = false
|
||||||
|
|
||||||
[response]
|
[response]
|
||||||
model_r1_probability = 0.8 # 麦麦回答时选择R1模型的概率
|
model_r1_probability = 0.8 # 麦麦回答时选择主要回复模型1 模型的概率
|
||||||
model_v3_probability = 0.1 # 麦麦回答时选择V3模型的概率
|
model_v3_probability = 0.1 # 麦麦回答时选择次要回复模型2 模型的概率
|
||||||
model_r1_distill_probability = 0.1 # 麦麦回答时选择R1蒸馏模型的概率
|
model_r1_distill_probability = 0.1 # 麦麦回答时选择次要回复模型3 模型的概率
|
||||||
|
max_response_length = 1024 # 麦麦回答的最大token数
|
||||||
|
|
||||||
[memory]
|
[memory]
|
||||||
build_memory_interval = 300 # 记忆构建间隔 单位秒
|
build_memory_interval = 300 # 记忆构建间隔 单位秒
|
||||||
@@ -58,17 +62,23 @@ ban_user_id = [] #禁止回复消息的QQ号
|
|||||||
|
|
||||||
#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成.env.prod自定义的宏,使用自定义模型则选择定位相似的模型自己填写
|
#下面的模型若使用硅基流动则不需要更改,使用ds官方则改成.env.prod自定义的宏,使用自定义模型则选择定位相似的模型自己填写
|
||||||
|
|
||||||
[model.llm_reasoning] #R1
|
#推理模型:
|
||||||
|
|
||||||
|
[model.llm_reasoning] #回复模型1 主要回复模型
|
||||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
key = "SILICONFLOW_KEY"
|
key = "SILICONFLOW_KEY"
|
||||||
|
pri_in = 0 #模型的输入价格(非必填,可以记录消耗)
|
||||||
|
pri_out = 0 #模型的输出价格(非必填,可以记录消耗)
|
||||||
|
|
||||||
[model.llm_reasoning_minor] #R1蒸馏
|
[model.llm_reasoning_minor] #回复模型3 次要回复模型
|
||||||
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
key = "SILICONFLOW_KEY"
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
[model.llm_normal] #V3
|
#非推理模型
|
||||||
|
|
||||||
|
[model.llm_normal] #V3 回复模型2 次要回复模型
|
||||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
key = "SILICONFLOW_KEY"
|
key = "SILICONFLOW_KEY"
|
||||||
@@ -78,21 +88,42 @@ name = "deepseek-ai/DeepSeek-V2.5"
|
|||||||
base_url = "SILICONFLOW_BASE_URL"
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
key = "SILICONFLOW_KEY"
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
[model.vlm] #图像识别
|
[model.llm_emotion_judge] #主题判断 0.7/m
|
||||||
name = "deepseek-ai/deepseek-vl2"
|
name = "Qwen/Qwen2.5-14B-Instruct"
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
key = "SILICONFLOW_KEY"
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.llm_topic_judge] #主题判断:建议使用qwen2.5 7b
|
||||||
|
name = "Pro/Qwen/Qwen2.5-7B-Instruct"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
[model.llm_summary_by_topic] #建议使用qwen2.5 32b 及以上
|
||||||
|
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
pri_in = 0
|
||||||
|
pri_out = 0
|
||||||
|
|
||||||
|
[model.moderation] #内容审核 未启用
|
||||||
|
name = ""
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
pri_in = 0
|
||||||
|
pri_out = 0
|
||||||
|
|
||||||
|
# 识图模型
|
||||||
|
|
||||||
|
[model.vlm] #图像识别 0.35/m
|
||||||
|
name = "Pro/Qwen/Qwen2-VL-7B-Instruct"
|
||||||
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#嵌入模型
|
||||||
|
|
||||||
[model.embedding] #嵌入
|
[model.embedding] #嵌入
|
||||||
name = "BAAI/bge-m3"
|
name = "BAAI/bge-m3"
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
base_url = "SILICONFLOW_BASE_URL"
|
||||||
key = "SILICONFLOW_KEY"
|
key = "SILICONFLOW_KEY"
|
||||||
|
|
||||||
# 主题提取,jieba和snownlp不用api,llm需要api
|
|
||||||
[topic]
|
|
||||||
topic_extract='snownlp' # 只支持jieba,snownlp,llm三种选项
|
|
||||||
|
|
||||||
[topic.llm_topic]
|
|
||||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
|
||||||
base_url = "SILICONFLOW_BASE_URL"
|
|
||||||
key = "SILICONFLOW_KEY"
|
|
||||||
Reference in New Issue
Block a user