🤖 自动格式化代码 [skip ci]

This commit is contained in:
github-actions[bot]
2025-07-11 05:19:35 +00:00
parent 5f0a0c0e3a
commit 1bff478fcc
12 changed files with 15 additions and 13 deletions

View File

@@ -58,7 +58,9 @@ def hash_deduplicate(
# 保存去重后的三元组
new_triple_list_data = {}
for _, (raw_paragraph, triple_list) in enumerate(zip(raw_paragraphs.values(), triple_list_data.values())):
for _, (raw_paragraph, triple_list) in enumerate(
zip(raw_paragraphs.values(), triple_list_data.values(), strict=False)
):
# 段落hash
paragraph_hash = get_sha256(raw_paragraph)
if f"{PG_NAMESPACE}-{paragraph_hash}" in stored_pg_hashes and paragraph_hash in stored_paragraph_hashes:

View File

@@ -174,7 +174,7 @@ def main(): # sourcery skip: comprehension-to-generator, extract-method
with ThreadPoolExecutor(max_workers=workers) as executor:
future_to_hash = {
executor.submit(process_single_text, pg_hash, raw_data, llm_client_list): pg_hash
for pg_hash, raw_data in zip(all_sha256_list, all_raw_datas)
for pg_hash, raw_data in zip(all_sha256_list, all_raw_datas, strict=False)
}
with Progress(

View File

@@ -354,7 +354,7 @@ class VirtualLogDisplay:
# 为每个部分应用正确的标签
current_len = 0
for part, tag_name in zip(parts, tags):
for part, tag_name in zip(parts, tags, strict=False):
start_index = f"{start_pos}+{current_len}c"
end_index = f"{start_pos}+{current_len + len(part)}c"
self.text_widget.tag_add(tag_name, start_index, end_index)

View File

@@ -119,7 +119,7 @@ class ExpressionLearner:
min_len = min(len(s1), len(s2))
if min_len < 5:
return False
same = sum(1 for a, b in zip(s1, s2) if a == b)
same = sum(1 for a, b in zip(s1, s2, strict=False) if a == b)
return same / min_len > 0.8
async def learn_and_store_expression(self) -> List[Tuple[str, str, str]]:

View File

@@ -59,7 +59,7 @@ EMBEDDING_SIM_THRESHOLD = 0.99
def cosine_similarity(a, b):
# 计算余弦相似度
dot = sum(x * y for x, y in zip(a, b))
dot = sum(x * y for x, y in zip(a, b, strict=False))
norm_a = math.sqrt(sum(x * x for x in a))
norm_b = math.sqrt(sum(x * x for x in b))
if norm_a == 0 or norm_b == 0:
@@ -285,7 +285,7 @@ class EmbeddingStore:
distances = list(distances.flatten())
result = [
(self.idx2hash[str(int(idx))], float(sim))
for (idx, sim) in zip(indices, distances)
for (idx, sim) in zip(indices, distances, strict=False)
if idx in range(len(self.idx2hash))
]

View File

@@ -819,7 +819,7 @@ class EntorhinalCortex:
timestamps = sample_scheduler.get_timestamp_array()
# 使用 translate_timestamp_to_human_readable 并指定 mode="normal"
readable_timestamps = [translate_timestamp_to_human_readable(ts, mode="normal") for ts in timestamps]
for _, readable_timestamp in zip(timestamps, readable_timestamps):
for _, readable_timestamp in zip(timestamps, readable_timestamps, strict=False):
logger.debug(f"回忆往事: {readable_timestamp}")
chat_samples = []
for timestamp in timestamps:

View File

@@ -299,7 +299,7 @@ class ActionModifier:
task_results = await asyncio.gather(*tasks, return_exceptions=True)
# 处理结果并更新缓存
for _, (action_name, result) in enumerate(zip(task_names, task_results)):
for _, (action_name, result) in enumerate(zip(task_names, task_results, strict=False)):
if isinstance(result, Exception):
logger.error(f"{self.log_prefix}LLM判定action {action_name} 时出错: {result}")
results[action_name] = False

View File

@@ -974,7 +974,7 @@ def weighted_sample_no_replacement(items, weights, k) -> list:
2. 不会重复选中同一个元素
"""
selected = []
pool = list(zip(items, weights))
pool = list(zip(items, weights, strict=False))
for _ in range(min(k, len(pool))):
total = sum(w for _, w in pool)
r = random.uniform(0, total)

View File

@@ -363,7 +363,7 @@ class ChineseTypoGenerator:
else:
# 处理多字词的单字替换
word_result = []
for _, (char, py) in enumerate(zip(word, word_pinyin)):
for _, (char, py) in enumerate(zip(word, word_pinyin, strict=False)):
# 词中的字替换概率降低
word_error_rate = self.error_rate * (0.7 ** (len(word) - 1))

View File

@@ -94,7 +94,7 @@ class ConfigBase:
raise TypeError(
f"Expected {len(field_type_args)} items for {field_type.__name__}, got {len(value)}"
)
return tuple(cls._convert_field(item, arg) for item, arg in zip(value, field_type_args))
return tuple(cls._convert_field(item, arg) for item, arg in zip(value, field_type_args, strict=False))
if field_origin_type is dict:
# 检查提供的value是否为dict

View File

@@ -247,7 +247,7 @@ def weighted_sample_no_replacement(items, weights, k) -> list:
2. 不会重复选中同一个元素
"""
selected = []
pool = list(zip(items, weights))
pool = list(zip(items, weights, strict=False))
for _ in range(min(k, len(pool))):
total = sum(w for _, w in pool)
r = random.uniform(0, total)

View File

@@ -54,7 +54,7 @@ class SearchKnowledgeTool(BaseTool):
@staticmethod
def _cosine_similarity(vec1: List[float], vec2: List[float]) -> float:
"""计算两个向量之间的余弦相似度"""
dot_product = sum(p * q for p, q in zip(vec1, vec2))
dot_product = sum(p * q for p, q in zip(vec1, vec2, strict=False))
magnitude1 = math.sqrt(sum(p * p for p in vec1))
magnitude2 = math.sqrt(sum(q * q for q in vec2))
if magnitude1 == 0 or magnitude2 == 0: