From 1966b4eaf88fc2715c8f0b7fca5eb0d4436b6f5d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=A2=A8=E6=A2=93=E6=9F=92?= <1787882683@qq.com> Date: Tue, 15 Jul 2025 17:13:15 +0800 Subject: [PATCH] fix: remove unused imports and comments --- src/chat/knowledge/embedding_store.py | 11 ++++------- src/config/official_configs.py | 3 +++ template/bot_config_template.toml | 3 ++- 3 files changed, 9 insertions(+), 8 deletions(-) diff --git a/src/chat/knowledge/embedding_store.py b/src/chat/knowledge/embedding_store.py index b827f4b40..3eb466d21 100644 --- a/src/chat/knowledge/embedding_store.py +++ b/src/chat/knowledge/embedding_store.py @@ -11,7 +11,7 @@ import pandas as pd import faiss # from .llm_client import LLMClient -from .lpmmconfig import global_config +# from .lpmmconfig import global_config from .utils.hash import get_sha256 from .global_logger import logger from rich.traceback import install @@ -27,15 +27,12 @@ from rich.progress import ( ) from src.manager.local_store_manager import local_storage from src.chat.utils.utils import get_embedding +from src.config.config import global_config install(extra_lines=3) ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "..")) -EMBEDDING_DATA_DIR = ( - os.path.join(ROOT_PATH, "data", "embedding") - if global_config["persistence"]["embedding_data_dir"] is None - else os.path.join(ROOT_PATH, global_config["persistence"]["embedding_data_dir"]) -) +EMBEDDING_DATA_DIR = os.path.join(ROOT_PATH, "data", "embedding") EMBEDDING_DATA_DIR_STR = str(EMBEDDING_DATA_DIR).replace("\\", "/") TOTAL_EMBEDDING_TIMES = 3 # 统计嵌入次数 @@ -260,7 +257,7 @@ class EmbeddingStore: # L2归一化 faiss.normalize_L2(embeddings) # 构建索引 - self.faiss_index = faiss.IndexFlatIP(global_config["embedding"]["dimension"]) + self.faiss_index = faiss.IndexFlatIP(global_config.lpmm_knowledge.embedding_dimension) self.faiss_index.add(embeddings) def search_top_k(self, query: List[float], k: int) -> List[Tuple[str, float]]: diff --git a/src/config/official_configs.py b/src/config/official_configs.py index 4462daba7..25bef7e89 100644 --- a/src/config/official_configs.py +++ b/src/config/official_configs.py @@ -589,6 +589,9 @@ class LPMMKnowledgeConfig(ConfigBase): qa_res_top_k: int = 10 """QA最终结果的Top K数量""" + embedding_dimension: int = 1024 + """嵌入向量维度,应该与模型的输出维度一致""" + @dataclass class ModelConfig(ConfigBase): diff --git a/template/bot_config_template.toml b/template/bot_config_template.toml index 41fc80d9b..e54c440b5 100644 --- a/template/bot_config_template.toml +++ b/template/bot_config_template.toml @@ -1,5 +1,5 @@ [inner] -version = "4.1.1" +version = "4.2.0" #----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读---- #如果你想要修改配置文件,请在修改后将version的值进行变更 @@ -158,6 +158,7 @@ qa_paragraph_node_weight = 0.05 # 段落节点权重(在图搜索&PPR计算中 qa_ent_filter_top_k = 10 # 实体过滤TopK qa_ppr_damping = 0.8 # PPR阻尼系数 qa_res_top_k = 3 # 最终提供的文段TopK +embedding_dimension = 1024 # 嵌入向量维度,应该与模型的输出维度一致 # keyword_rules 用于设置关键词触发的额外回复知识 # 添加新规则方法:在 keyword_rules 数组中增加一项,格式如下: