fix: 尝试修复所有图片都被保存为jpg的问题,并以正确的格式请求识图api
This commit is contained in:
@@ -4,6 +4,8 @@ import time
|
||||
import aiohttp
|
||||
import hashlib
|
||||
from typing import Optional, Union
|
||||
from PIL import Image
|
||||
import io
|
||||
|
||||
from loguru import logger
|
||||
from nonebot import get_driver
|
||||
@@ -119,6 +121,7 @@ class ImageManager:
|
||||
|
||||
# 计算哈希值
|
||||
image_hash = hashlib.md5(image_bytes).hexdigest()
|
||||
img_format = Image.open(io.BytesIO(image_bytes)).format()
|
||||
|
||||
# 查重
|
||||
existing = self.db.images.find_one({'hash': image_hash})
|
||||
@@ -127,7 +130,7 @@ class ImageManager:
|
||||
|
||||
# 生成文件名和路径
|
||||
timestamp = int(time.time())
|
||||
filename = f"{timestamp}_{image_hash[:8]}.jpg"
|
||||
filename = f"{timestamp}_{image_hash[:8]}.{img_format}"
|
||||
file_path = os.path.join(self.IMAGE_DIR, filename)
|
||||
|
||||
# 保存文件
|
||||
@@ -238,6 +241,7 @@ class ImageManager:
|
||||
# 计算图片哈希
|
||||
image_bytes = base64.b64decode(image_base64)
|
||||
image_hash = hashlib.md5(image_bytes).hexdigest()
|
||||
image_format = Image.open(io.BytesIO(image_bytes)).format
|
||||
|
||||
# 查询缓存的描述
|
||||
cached_description = self._get_description_from_db(image_hash, 'emoji')
|
||||
@@ -247,13 +251,13 @@ class ImageManager:
|
||||
|
||||
# 调用AI获取描述
|
||||
prompt = "这是一个表情包,使用中文简洁的描述一下表情包的内容和表情包所表达的情感"
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64)
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
|
||||
# 根据配置决定是否保存图片
|
||||
if global_config.EMOJI_SAVE:
|
||||
# 生成文件名和路径
|
||||
timestamp = int(time.time())
|
||||
filename = f"{timestamp}_{image_hash[:8]}.jpg"
|
||||
filename = f"{timestamp}_{image_hash[:8]}.{image_format}"
|
||||
file_path = os.path.join(self.IMAGE_DIR, 'emoji',filename)
|
||||
|
||||
try:
|
||||
@@ -292,6 +296,7 @@ class ImageManager:
|
||||
# 计算图片哈希
|
||||
image_bytes = base64.b64decode(image_base64)
|
||||
image_hash = hashlib.md5(image_bytes).hexdigest()
|
||||
image_format = Image.open(io.BytesIO(image_bytes)).format
|
||||
|
||||
# 查询缓存的描述
|
||||
cached_description = self._get_description_from_db(image_hash, 'image')
|
||||
@@ -300,7 +305,7 @@ class ImageManager:
|
||||
|
||||
# 调用AI获取描述
|
||||
prompt = "请用中文描述这张图片的内容。如果有文字,请把文字都描述出来。并尝试猜测这个图片的含义。最多200个字。"
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64)
|
||||
description, _ = await self._llm.generate_response_for_image(prompt, image_base64, image_format)
|
||||
|
||||
if description is None:
|
||||
logger.warning("AI未能生成图片描述")
|
||||
@@ -310,7 +315,7 @@ class ImageManager:
|
||||
if global_config.EMOJI_SAVE:
|
||||
# 生成文件名和路径
|
||||
timestamp = int(time.time())
|
||||
filename = f"{timestamp}_{image_hash[:8]}.jpg"
|
||||
filename = f"{timestamp}_{image_hash[:8]}.{image_format}"
|
||||
file_path = os.path.join(self.IMAGE_DIR,'image', filename)
|
||||
|
||||
try:
|
||||
|
||||
@@ -104,6 +104,7 @@ class LLM_request:
|
||||
endpoint: str,
|
||||
prompt: str = None,
|
||||
image_base64: str = None,
|
||||
image_format: str = None,
|
||||
payload: dict = None,
|
||||
retry_policy: dict = None,
|
||||
response_handler: callable = None,
|
||||
@@ -115,6 +116,7 @@ class LLM_request:
|
||||
endpoint: API端点路径 (如 "chat/completions")
|
||||
prompt: prompt文本
|
||||
image_base64: 图片的base64编码
|
||||
image_format: 图片格式
|
||||
payload: 请求体数据
|
||||
retry_policy: 自定义重试策略
|
||||
response_handler: 自定义响应处理器
|
||||
@@ -151,7 +153,7 @@ class LLM_request:
|
||||
|
||||
# 构建请求体
|
||||
if image_base64:
|
||||
payload = await self._build_payload(prompt, image_base64)
|
||||
payload = await self._build_payload(prompt, image_base64, image_format)
|
||||
elif payload is None:
|
||||
payload = await self._build_payload(prompt)
|
||||
|
||||
@@ -172,7 +174,7 @@ class LLM_request:
|
||||
if response.status == 413:
|
||||
logger.warning("请求体过大,尝试压缩...")
|
||||
image_base64 = compress_base64_image_by_scale(image_base64)
|
||||
payload = await self._build_payload(prompt, image_base64)
|
||||
payload = await self._build_payload(prompt, image_base64, image_format)
|
||||
elif response.status in [500, 503]:
|
||||
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
|
||||
raise RuntimeError("服务器负载过高,模型恢复失败QAQ")
|
||||
@@ -294,7 +296,7 @@ class LLM_request:
|
||||
new_params["max_completion_tokens"] = new_params.pop("max_tokens")
|
||||
return new_params
|
||||
|
||||
async def _build_payload(self, prompt: str, image_base64: str = None) -> dict:
|
||||
async def _build_payload(self, prompt: str, image_base64: str = None, image_format: str = None) -> dict:
|
||||
"""构建请求体"""
|
||||
# 复制一份参数,避免直接修改 self.params
|
||||
params_copy = await self._transform_parameters(self.params)
|
||||
@@ -306,7 +308,7 @@ class LLM_request:
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": prompt},
|
||||
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
|
||||
{"type": "image_url", "image_url": {"url": f"data:image/{image_format.lower()};base64,{image_base64}"}}
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -391,13 +393,14 @@ class LLM_request:
|
||||
)
|
||||
return content, reasoning_content
|
||||
|
||||
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]:
|
||||
async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple[str, str, str]:
|
||||
"""根据输入的提示和图片生成模型的异步响应"""
|
||||
|
||||
content, reasoning_content = await self._execute_request(
|
||||
endpoint="/chat/completions",
|
||||
prompt=prompt,
|
||||
image_base64=image_base64
|
||||
image_base64=image_base64,
|
||||
image_format=image_format
|
||||
)
|
||||
return content, reasoning_content
|
||||
|
||||
|
||||
Reference in New Issue
Block a user