fix: 尝试修复所有图片都被保存为jpg的问题,并以正确的格式请求识图api

This commit is contained in:
HYY1116
2025-03-12 09:53:01 +08:00
parent b934d473ab
commit 1840599156
2 changed files with 21 additions and 13 deletions

View File

@@ -104,6 +104,7 @@ class LLM_request:
endpoint: str,
prompt: str = None,
image_base64: str = None,
image_format: str = None,
payload: dict = None,
retry_policy: dict = None,
response_handler: callable = None,
@@ -115,6 +116,7 @@ class LLM_request:
endpoint: API端点路径 (如 "chat/completions")
prompt: prompt文本
image_base64: 图片的base64编码
image_format: 图片格式
payload: 请求体数据
retry_policy: 自定义重试策略
response_handler: 自定义响应处理器
@@ -151,7 +153,7 @@ class LLM_request:
# 构建请求体
if image_base64:
payload = await self._build_payload(prompt, image_base64)
payload = await self._build_payload(prompt, image_base64, image_format)
elif payload is None:
payload = await self._build_payload(prompt)
@@ -172,7 +174,7 @@ class LLM_request:
if response.status == 413:
logger.warning("请求体过大,尝试压缩...")
image_base64 = compress_base64_image_by_scale(image_base64)
payload = await self._build_payload(prompt, image_base64)
payload = await self._build_payload(prompt, image_base64, image_format)
elif response.status in [500, 503]:
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
raise RuntimeError("服务器负载过高模型恢复失败QAQ")
@@ -294,7 +296,7 @@ class LLM_request:
new_params["max_completion_tokens"] = new_params.pop("max_tokens")
return new_params
async def _build_payload(self, prompt: str, image_base64: str = None) -> dict:
async def _build_payload(self, prompt: str, image_base64: str = None, image_format: str = None) -> dict:
"""构建请求体"""
# 复制一份参数,避免直接修改 self.params
params_copy = await self._transform_parameters(self.params)
@@ -306,7 +308,7 @@ class LLM_request:
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
{"type": "image_url", "image_url": {"url": f"data:image/{image_format.lower()};base64,{image_base64}"}}
]
}
],
@@ -391,13 +393,14 @@ class LLM_request:
)
return content, reasoning_content
async def generate_response_for_image(self, prompt: str, image_base64: str) -> Tuple[str, str]:
async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple[str, str, str]:
"""根据输入的提示和图片生成模型的异步响应"""
content, reasoning_content = await self._execute_request(
endpoint="/chat/completions",
prompt=prompt,
image_base64=image_base64
image_base64=image_base64,
image_format=image_format
)
return content, reasoning_content