feat:新增关系处理器

This commit is contained in:
SengokuCola
2025-06-03 15:54:55 +08:00
parent 0bea30c052
commit 178feb3c5a
13 changed files with 279 additions and 73 deletions

View File

@@ -14,6 +14,7 @@ from src.chat.heart_flow.observation.observation import Observation
from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info_processors.chattinginfo_processor import ChattingInfoProcessor
from src.chat.focus_chat.info_processors.relationship_processor import RelationshipProcessor
from src.chat.focus_chat.info_processors.mind_processor import MindProcessor
from src.chat.focus_chat.info_processors.working_memory_processor import WorkingMemoryProcessor
@@ -45,6 +46,7 @@ PROCESSOR_CLASSES = {
"ToolProcessor": (ToolProcessor, "tool_use_processor"),
"WorkingMemoryProcessor": (WorkingMemoryProcessor, "working_memory_processor"),
"SelfProcessor": (SelfProcessor, "self_identify_processor"),
"RelationshipProcessor": (RelationshipProcessor, "relationship_processor"),
}
logger = get_logger("hfc") # Logger Name Changed
@@ -194,7 +196,7 @@ class HeartFChatting:
if processor_info:
processor_actual_class = processor_info[0] # 获取实际的类定义
# 根据处理器类名判断是否需要 subheartflow_id
if name in ["MindProcessor", "ToolProcessor", "WorkingMemoryProcessor", "SelfProcessor"]:
if name in ["MindProcessor", "ToolProcessor", "WorkingMemoryProcessor", "SelfProcessor", "RelationshipProcessor"]:
self.processors.append(processor_actual_class(subheartflow_id=self.stream_id))
elif name == "ChattingInfoProcessor":
self.processors.append(processor_actual_class())

View File

@@ -0,0 +1,40 @@
from dataclasses import dataclass
from .info_base import InfoBase
@dataclass
class RelationInfo(InfoBase):
"""关系信息类
用于存储和管理当前关系状态的信息。
Attributes:
type (str): 信息类型标识符,默认为 "relation"
data (Dict[str, Any]): 包含 current_relation 的数据字典
"""
type: str = "relation"
def get_relation_info(self) -> str:
"""获取当前关系状态
Returns:
str: 当前关系状态
"""
return self.get_info("relation_info") or ""
def set_relation_info(self, relation_info: str) -> None:
"""设置当前关系状态
Args:
relation_info: 要设置的关系状态
"""
self.data["relation_info"] = relation_info
def get_processed_info(self) -> str:
"""获取处理后的信息
Returns:
str: 处理后的信息
"""
return self.get_relation_info() or ""

View File

@@ -23,7 +23,7 @@ logger = get_logger("processor")
def init_prompt():
group_prompt = """
{memory_str}{extra_info}{relation_prompt}
{extra_info}{relation_prompt}
{cycle_info_block}
现在是{time_now}你正在上网和qq群里的网友们聊天以下是正在进行的聊天内容
{chat_observe_info}
@@ -42,7 +42,7 @@ def init_prompt():
private_prompt = """
你的名字是{bot_name}
{memory_str}{extra_info}{relation_prompt}
{extra_info}{relation_prompt}
{cycle_info_block}
现在是{time_now}你正在上网和qq群里的网友们聊天以下是正在进行的聊天内容
{chat_observe_info}

View File

@@ -0,0 +1,175 @@
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.observation import Observation
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger_manager import get_logger
from src.individuality.individuality import individuality
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import chat_manager
from src.person_info.relationship_manager import relationship_manager
from .base_processor import BaseProcessor
from typing import List, Optional
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.relation_info import RelationInfo
logger = get_logger("processor")
def init_prompt():
relationship_prompt = """
{name_block}
你是一个AI但是你伪装成了一个人类你不想让别人知道你是一个AI
{relation_prompt}
现在是{time_now}你正在上网和qq群里的网友们聊天以下是正在进行的聊天内容
{chat_observe_info}
现在请你根据现有的信息,总结你和群里的人的关系
1. 当聊天记录中提到你时,请输出你和这个人之间的关系
2. 当聊天记录中提到其他人时,请输出你和这个人之间的关系
输出内容平淡一些,说中文。
请注意不要输出多余内容(包括前后缀,括号()表情包at或 @等 )。只输出关系内容,记得明确说明这是你的关系。
"""
Prompt(relationship_prompt, "relationship_prompt")
class RelationshipProcessor(BaseProcessor):
log_prefix = "关系"
def __init__(self, subheartflow_id: str):
super().__init__()
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.model.focus_self_recognize,
temperature=global_config.model.focus_self_recognize["temp"],
max_tokens=800,
request_type="focus.processor.self_identify",
)
name = chat_manager.get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] "
async def process_info(
self, observations: Optional[List[Observation]] = None, running_memorys: Optional[List[Dict]] = None, *infos
) -> List[InfoBase]:
"""处理信息对象
Args:
*infos: 可变数量的InfoBase类型的信息对象
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
relation_info_str = await self.relation_identify(observations)
if relation_info_str:
relation_info = RelationInfo()
relation_info.set_relation_info(relation_info_str)
else:
relation_info = None
return None
return [relation_info]
async def relation_identify(
self, observations: Optional[List[Observation]] = None,
):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
参数:
observations: 观察信息
返回:
如果return_prompt为False:
tuple: (current_mind, past_mind) 当前想法和过去的想法列表
如果return_prompt为True:
tuple: (current_mind, past_mind, prompt) 当前想法、过去的想法列表和使用的prompt
"""
for observation in observations:
if isinstance(observation, ChattingObservation):
is_group_chat = observation.is_group_chat
chat_target_info = observation.chat_target_info
chat_target_name = "对方" # 私聊默认名称
person_list = observation.person_list
relation_prompt = ""
for person in person_list:
if len(person) >= 3 and person[0] and person[1]:
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
if observations is None:
observations = []
for observation in observations:
if isinstance(observation, ChattingObservation):
# 获取聊天元信息
is_group_chat = observation.is_group_chat
chat_target_info = observation.chat_target_info
chat_target_name = "对方" # 私聊默认名称
if not is_group_chat and chat_target_info:
# 优先使用person_name其次user_nickname最后回退到默认值
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or chat_target_name
)
# 获取聊天内容
chat_observe_info = observation.get_observe_info()
person_list = observation.person_list
if isinstance(observation, HFCloopObservation):
# hfcloop_observe_info = observation.get_observe_info()
pass
nickname_str = ""
for nicknames in global_config.bot.alias_names:
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
if is_group_chat:
relation_prompt_init = "在这个群聊中,你:\n"
else:
relation_prompt_init = ""
for person in person_list:
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
if relation_prompt:
relation_prompt = relation_prompt_init + relation_prompt
else:
relation_prompt = relation_prompt_init + "没有特别在意的人\n"
prompt = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
name_block=name_block,
relation_prompt=relation_prompt,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_observe_info,
)
# print(prompt)
content = ""
try:
content, _ = await self.llm_model.generate_response_async(prompt=prompt)
if not content:
logger.warning(f"{self.log_prefix} LLM返回空结果关系识别失败。")
except Exception as e:
# 处理总体异常
logger.error(f"{self.log_prefix} 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
content = "关系识别过程中出现错误"
if content == "None":
content = ""
# 记录初步思考结果
logger.debug(f"{self.log_prefix} 关系识别prompt: \n{prompt}\n")
logger.info(f"{self.log_prefix} 关系识别: {content}")
return content
init_prompt()

View File

@@ -22,23 +22,21 @@ logger = get_logger("processor")
def init_prompt():
indentify_prompt = """
{name_block}
你是一个AI但是你伪装成了一个人类你的人格是,{prompt_personality}
你是一个AI但是你伪装成了一个人类不要让别人发现这一点
请参考以下人格,不要被当前聊天内容中的内容误导:
{prompt_personality}
{indentify_block}
{relation_prompt}{memory_str}
现在是{time_now},你正在上网和qq群里的网友们聊天以下是正在进行的聊天内容
以下是正在进行的聊天内容:
现在是{time_now},你正在参与聊天
{chat_observe_info}
现在请你根据现有的信息,思考自我认同:请严格遵守以下规则
1. 请严格参考最上方的人设,适当参考记忆和当前聊天内容,不要被记忆和当前聊天内容中相反的内容误导
2. 你是一个什么样的人,你和群里的人关系如何
3. 你的形象是什么
4. 思考有没有人提到你,或者图片与你有关
5. 你的自我认同是否有助于你的回答,如果你需要自我相关的信息来帮你参与聊天,请输出,否则请输出十几个字的简短自我认同
6. 一般情况下不用输出自我认同,只需要输出十几个字的简短自我认同就好,除非有明显需要自我认同的场景
现在请你输出对自己的描述:请严格遵守以下规则
1. 根据聊天记录,输出与聊天记录相关的自我描述,包括人格,形象等等,对人格形象进行精简
2. 思考有没有内容与你的描述相关
3. 如果没有明显相关内容,请输出十几个字的简短自我描述
输出内容平淡一些,说中文,不要浮夸,平淡一些。
请注意不要输出多余内容(包括前后缀,冒号和引号,括号()表情包at或 @等 )。只输出自我认同内容,记得明确说明这是你的自我认同。
现在请输出你的自我描述,请注意不要输出多余内容(包括前后缀,括号()表情包at或 @等 )
"""
Prompt(indentify_prompt, "indentify_prompt")
@@ -107,11 +105,6 @@ class SelfProcessor(BaseProcessor):
chat_target_name = "对方" # 私聊默认名称
person_list = observation.person_list
memory_str = ""
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"{running_memory['topic']}: {running_memory['content']}\n"
relation_prompt = ""
for person in person_list:
@@ -146,23 +139,10 @@ class SelfProcessor(BaseProcessor):
personality_block = individuality.get_personality_prompt(x_person=2, level=2)
identity_block = individuality.get_identity_prompt(x_person=2, level=2)
if is_group_chat:
relation_prompt_init = "在这个群聊中,你:\n"
else:
relation_prompt_init = ""
for person in person_list:
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
if relation_prompt:
relation_prompt = relation_prompt_init + relation_prompt
else:
relation_prompt = relation_prompt_init + "没有特别在意的人\n"
prompt = (await global_prompt_manager.get_prompt_async("indentify_prompt")).format(
name_block=name_block,
prompt_personality=personality_block,
indentify_block=identity_block,
memory_str=memory_str,
relation_prompt=relation_prompt,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_observe_info,
)
@@ -183,7 +163,7 @@ class SelfProcessor(BaseProcessor):
if content == "None":
content = ""
# 记录初步思考结果
# logger.debug(f"{self.log_prefix} 自我识别prompt: \n{prompt}\n")
logger.debug(f"{self.log_prefix} 自我识别prompt: \n{prompt}\n")
logger.info(f"{self.log_prefix} 自我认知: {content}")
return content

View File

@@ -23,7 +23,6 @@ def init_prompt():
# 添加工具执行器提示词
tool_executor_prompt = """
你是一个专门执行工具的助手。你的名字是{bot_name}。现在是{time_now}
{memory_str}
群里正在进行的聊天内容:
{chat_observe_info}
@@ -33,7 +32,7 @@ def init_prompt():
3. 是否有明确的工具使用指令
4. 考虑用户与你的关系以及当前的对话氛围
如果需要使用工具,请直接调用相应的工具函数。如果不需要使用工具,请简单输出"无需使用工具"
If you need to use a tool, please directly call the corresponding tool function. If you do not need to use any tool, simply output "No tool needed".
"""
Prompt(tool_executor_prompt, "tool_executor_prompt")

View File

@@ -19,7 +19,7 @@ class EmojiAction(BaseAction):
"""
action_name: str = "emoji"
action_description: str = "当你想发送一个表情辅助你的回复表达"
action_description: str = "当你想单独发送一个表情辅助你的回复表达"
action_parameters: dict[str:str] = {
"description": "文字描述你想要发送的表情",
}

View File

@@ -11,6 +11,7 @@ from src.chat.focus_chat.info.mind_info import MindInfo
from src.chat.focus_chat.info.action_info import ActionInfo
from src.chat.focus_chat.info.structured_info import StructuredInfo
from src.chat.focus_chat.info.self_info import SelfInfo
from src.chat.focus_chat.info.relation_info import RelationInfo
from src.common.logger_manager import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.individuality.individuality import individuality
@@ -29,6 +30,7 @@ def init_prompt():
"""
你的自我认知是:
{self_info_block}
{relation_info_block}
{extra_info_block}
{memory_str}
@@ -65,7 +67,7 @@ def init_prompt():
描述:{action_description}
{action_parameters}
使用该动作的场景:
{action_require}""",
{action_require}""",
"action_prompt",
)
@@ -122,6 +124,7 @@ class ActionPlanner(BasePlanner):
observed_messages_str = ""
chat_type = "group"
is_group_chat = True
relation_info = ""
for info in all_plan_info:
if isinstance(info, ObsInfo):
observed_messages = info.get_talking_message()
@@ -134,6 +137,8 @@ class ActionPlanner(BasePlanner):
cycle_info = info.get_observe_info()
elif isinstance(info, SelfInfo):
self_info = info.get_processed_info()
elif isinstance(info, RelationInfo):
relation_info = info.get_processed_info()
elif isinstance(info, StructuredInfo):
structured_info = info.get_processed_info()
else:
@@ -164,6 +169,7 @@ class ActionPlanner(BasePlanner):
# --- 构建提示词 (调用修改后的 PromptBuilder 方法) ---
prompt = await self.build_planner_prompt(
self_info_block=self_info,
relation_info_block=relation_info,
is_group_chat=is_group_chat, # <-- Pass HFC state
chat_target_info=None,
observed_messages_str=observed_messages_str, # <-- Pass local variable
@@ -280,6 +286,7 @@ class ActionPlanner(BasePlanner):
async def build_planner_prompt(
self,
self_info_block: str,
relation_info_block: str,
is_group_chat: bool, # Now passed as argument
chat_target_info: Optional[dict], # Now passed as argument
observed_messages_str: str,
@@ -292,13 +299,17 @@ class ActionPlanner(BasePlanner):
) -> str:
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
if relation_info_block:
relation_info_block = f"以下是你和别人的关系描述:\n{relation_info_block}"
else:
relation_info_block = ""
memory_str = ""
if global_config.focus_chat.parallel_processing:
memory_str = ""
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"{running_memory['content']}\n"
if running_memorys:
memory_str = "以下是当前在聊天中,你回忆起的记忆:\n"
for running_memory in running_memorys:
memory_str += f"{running_memory['content']}\n"
chat_context_description = "你现在正在一个群聊中"
chat_target_name = None # Only relevant for private
@@ -338,7 +349,7 @@ class ActionPlanner(BasePlanner):
require_text = ""
for require_item in using_actions_info["require"]:
require_text += f" - {require_item}\n"
require_text += f"{require_item}\n"
if param_text:
param_text = f"参数:\n{param_text}"
@@ -369,6 +380,7 @@ class ActionPlanner(BasePlanner):
planner_prompt_template = await global_prompt_manager.get_prompt_async("simple_planner_prompt")
prompt = planner_prompt_template.format(
relation_info_block=relation_info_block,
self_info_block=self_info_block,
memory_str=memory_str,
time_block=time_block,

View File

@@ -192,19 +192,19 @@ class NormalChat:
await message_manager.add_message(bot_message)
# 改为实例方法 (虽然它只用 message.chat_stream, 但逻辑上属于实例)
async def _update_relationship(self, message: MessageRecv, response_set):
"""更新关系情绪"""
ori_response = ",".join(response_set)
stance, emotion = await self.gpt._get_emotion_tags(ori_response, message.processed_plain_text)
user_info = message.message_info.user_info
platform = user_info.platform
await relationship_manager.calculate_update_relationship_value(
user_info,
platform,
label=emotion,
stance=stance, # 使用 self.chat_stream
)
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood.mood_intensity_factor)
# async def _update_relationship(self, message: MessageRecv, response_set):
# """更新关系情绪"""
# ori_response = ",".join(response_set)
# stance, emotion = await self.gpt._get_emotion_tags(ori_response, message.processed_plain_text)
# user_info = message.message_info.user_info
# platform = user_info.platform
# await relationship_manager.calculate_update_relationship_value(
# user_info,
# platform,
# label=emotion,
# stance=stance, # 使用 self.chat_stream
# )
# self.mood_manager.update_mood_from_emotion(emotion, global_config.mood.mood_intensity_factor)
async def _reply_interested_message(self) -> None:
"""
@@ -452,8 +452,8 @@ class NormalChat:
with Timer("处理表情包", timing_results):
await self._handle_emoji(message, response_set[0])
with Timer("关系更新", timing_results):
await self._update_relationship(message, response_set)
# with Timer("关系更新", timing_results):
# await self._update_relationship(message, response_set)
# 回复后处理
await willing_manager.after_generate_reply_handle(message.message_info.message_id)

View File

@@ -71,7 +71,7 @@ class NormalChatPlanner:
self.log_prefix = log_prefix
# LLM规划器配置
self.planner_llm = LLMRequest(
model=global_config.model.normal_chat_2,
model=global_config.model.planner,
max_tokens=1000,
request_type="normal_chat.planner", # 用于normal_chat动作规划
)

View File

@@ -171,6 +171,9 @@ class FocusChatProcessorConfig(ConfigBase):
self_identify_processor: bool = True
"""是否启用自我识别处理器"""
relation_processor: bool = True
"""是否启用关系识别处理器"""
tool_use_processor: bool = True
"""是否启用工具使用处理器"""

View File

@@ -72,10 +72,6 @@ class MainSystem:
# 添加情绪打印任务
await async_task_manager.add_task(MoodPrintTask())
# 检查并清除person_info冗余字段启动个人习惯推断
# await person_info_manager.del_all_undefined_field()
asyncio.create_task(person_info_manager.personal_habit_deduction())
# 启动愿望管理器
await willing_manager.async_task_starter()

View File

@@ -1,5 +1,5 @@
[inner]
version = "2.11.1"
version = "2.12.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请在修改后将version的值进行变更
@@ -96,9 +96,7 @@ talk_frequency_down_groups = [] #降低回复频率的群号码
think_interval = 3 # 思考间隔 单位秒,可以有效减少消耗
consecutive_replies = 1 # 连续回复能力,值越高,麦麦连续回复的概率越高
parallel_processing = true # 是否并行处理回忆和处理器阶段,可以节省时间
processor_max_time = 25 # 处理器最大时间,单位秒,如果超过这个时间,处理器会自动停止
processor_max_time = 20 # 处理器最大时间,单位秒,如果超过这个时间,处理器会自动停止
observation_context_size = 20 # 观察到的最长上下文大小
compressed_length = 8 # 不能大于observation_context_size,心流上下文压缩的最短压缩长度超过心流观察到的上下文长度会压缩最短压缩长度为5
@@ -109,13 +107,14 @@ planner_type = "simple" # 规划器类型可选值complex复杂规划
[focus_chat_processor] # 专注聊天处理器打开可以实现更多功能但是会增加token消耗
mind_processor = false # 是否启用思维处理器
self_identify_processor = true # 是否启用自我识别处理器
relation_processor = true # 是否启用关系识别处理器
tool_use_processor = false # 是否启用工具使用处理器
working_memory_processor = false # 是否启用工作记忆处理器,不稳定,消耗量大
[emoji]
max_reg_num = 40 # 表情包最大注册数量
max_reg_num = 60 # 表情包最大注册数量
do_replace = true # 开启则在达到最大数量时删除(替换)表情包,关闭则达到最大数量时不会继续收集表情包
check_interval = 120 # 检查表情包(注册,破损,删除)的时间间隔(分钟)
check_interval = 10 # 检查表情包(注册,破损,删除)的时间间隔(分钟)
steal_emoji = true # 是否偷取表情包,让麦麦可以将一些表情包据为己有
content_filtration = false # 是否启用表情包过滤,只有符合该要求的表情包才会被保存
filtration_prompt = "符合公序良俗" # 表情包过滤要求,只有符合该要求的表情包才会被保存
@@ -123,7 +122,7 @@ filtration_prompt = "符合公序良俗" # 表情包过滤要求,只有符合
[memory]
memory_build_interval = 2000 # 记忆构建间隔 单位秒 间隔越低,麦麦学习越多,但是冗余信息也会增多
memory_build_distribution = [6.0, 3.0, 0.6, 32.0, 12.0, 0.4] # 记忆构建分布参数分布1均值标准差权重分布2均值标准差权重
memory_build_sample_num = 8 # 采样数量,数值越高记忆采样次数越多
memory_build_sample_num = 6 # 采样数量,数值越高记忆采样次数越多
memory_build_sample_length = 40 # 采样长度,数值越高一段记忆内容越丰富
memory_compress_rate = 0.1 # 记忆压缩率 控制记忆精简程度 建议保持默认,调高可以获得更多信息,但是冗余信息也会增多
@@ -131,7 +130,7 @@ forget_memory_interval = 1000 # 记忆遗忘间隔 单位秒 间隔越低,
memory_forget_time = 24 #多长时间后的记忆会被遗忘 单位小时
memory_forget_percentage = 0.01 # 记忆遗忘比例 控制记忆遗忘程度 越大遗忘越多 建议保持默认
consolidate_memory_interval = 1000 # 记忆整合间隔 单位秒 间隔越低,麦麦整合越频繁,记忆更精简
consolidate_memory_interval = 2000 # 记忆整合间隔 单位秒 间隔越低,麦麦整合越频繁,记忆更精简
consolidation_similarity_threshold = 0.7 # 相似度阈值
consolidation_check_percentage = 0.01 # 检查节点比例