feat: 支持多个API Key,增强错误处理和负载均衡机制

This commit is contained in:
墨梓柒
2025-07-27 13:55:18 +08:00
parent e240fb92ca
commit 16931ef7b4
6 changed files with 391 additions and 44 deletions

View File

@@ -74,8 +74,22 @@ def _handle_resp_not_ok(
:return: (等待间隔如果为0则不等待为-1则不再请求该模型, 新的消息列表(适用于压缩消息))
"""
# 响应错误
if e.status_code in [400, 401, 402, 403, 404]:
# 客户端错误
if e.status_code in [401, 403]:
# API Key认证错误 - 让多API Key机制处理给一次重试机会
if remain_try > 0:
logger.warning(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"API Key认证失败错误代码-{e.status_code}多API Key机制会自动切换"
)
return 0, None # 立即重试让底层客户端切换API Key
else:
logger.warning(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"所有API Key都认证失败错误代码-{e.status_code},错误信息-{e.message}"
)
return -1, None # 不再重试请求该模型
elif e.status_code in [400, 402, 404]:
# 其他客户端错误(不应该重试)
logger.warning(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"请求失败,错误代码-{e.status_code},错误信息-{e.message}"
@@ -105,17 +119,17 @@ def _handle_resp_not_ok(
)
return -1, None
elif e.status_code == 429:
# 请求过于频繁
# 请求过于频繁 - 让多API Key机制处理适当延迟后重试
return _check_retry(
remain_try,
retry_interval,
min(retry_interval, 5), # 限制最大延迟为5秒让API Key切换更快生效
can_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"请求过于频繁,将于{retry_interval}秒后重试"
f"请求过于频繁,多API Key机制会自动切换{min(retry_interval, 5)}秒后重试"
),
cannot_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
"请求过于频繁,超过最大重试次数,放弃请求"
"请求过于频繁,所有API Key都被限制,放弃请求"
),
)
elif e.status_code >= 500:
@@ -161,12 +175,13 @@ def default_exception_handler(
"""
if isinstance(e, NetworkConnectionError): # 网络连接错误
# 网络错误可能是某个API Key的端点问题给多API Key机制一次快速重试机会
return _check_retry(
remain_try,
retry_interval,
min(retry_interval, 3), # 网络错误时减少等待时间让API Key切换更快
can_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"
f"连接异常,将于{retry_interval}秒后重试"
f"连接异常,多API Key机制会尝试其他Key{min(retry_interval, 3)}秒后重试"
),
cannot_retry_msg=(
f"任务-'{task_name}' 模型-'{model_name}'\n"

View File

@@ -17,6 +17,7 @@ from google.genai.errors import (
from .base_client import APIResponse, UsageRecord
from src.config.api_ada_configs import ModelInfo, APIProvider
from . import BaseClient
from src.common.logger import get_logger
from ..exceptions import (
RespParseException,
@@ -28,6 +29,7 @@ from ..payload_content.message import Message, RoleType
from ..payload_content.resp_format import RespFormat, RespFormatType
from ..payload_content.tool_option import ToolOption, ToolParam, ToolCall
logger = get_logger("Gemini客户端")
T = TypeVar("T")
@@ -309,13 +311,55 @@ def _default_normal_response_parser(
class GeminiClient(BaseClient):
client: genai.Client
def __init__(self, api_provider: APIProvider):
super().__init__(api_provider)
self.client = genai.Client(
api_key=api_provider.api_key,
) # 这里和openai不一样gemini会自己决定自己是否需要retry
# 不再在初始化时创建固定的client而是在请求时动态创建
self._clients_cache = {} # API Key -> genai.Client 的缓存
def _get_client(self, api_key: str = None) -> genai.Client:
"""获取或创建对应API Key的客户端"""
if api_key is None:
api_key = self.api_provider.get_current_api_key()
if not api_key:
raise ValueError(f"API Provider '{self.api_provider.name}' 没有可用的API Key")
# 使用缓存避免重复创建客户端
if api_key not in self._clients_cache:
self._clients_cache[api_key] = genai.Client(api_key=api_key)
return self._clients_cache[api_key]
async def _execute_with_fallback(self, func, *args, **kwargs):
"""执行请求并在失败时切换API Key"""
current_api_key = self.api_provider.get_current_api_key()
max_attempts = len(self.api_provider.api_keys) if self.api_provider.api_keys else 1
for attempt in range(max_attempts):
try:
client = self._get_client(current_api_key)
result = await func(client, *args, **kwargs)
# 成功时重置失败计数
self.api_provider.reset_key_failures(current_api_key)
return result
except (ClientError, ServerError) as e:
# 记录失败并尝试下一个API Key
logger.warning(f"API Key失败 (尝试 {attempt + 1}/{max_attempts}): {str(e)}")
if attempt < max_attempts - 1: # 还有重试机会
next_api_key = self.api_provider.mark_key_failed(current_api_key)
if next_api_key and next_api_key != current_api_key:
current_api_key = next_api_key
logger.info(f"切换到下一个API Key: {current_api_key[:8]}***{current_api_key[-4:]}")
continue
# 所有API Key都失败了重新抛出异常
raise RespNotOkException(e.status_code, e.message) from e
except Exception as e:
# 其他异常直接抛出
raise e
async def get_response(
self,
@@ -348,6 +392,39 @@ class GeminiClient(BaseClient):
:param interrupt_flag: 中断信号量可选默认为None
:return: (响应文本, 推理文本, 工具调用, 其他数据)
"""
return await self._execute_with_fallback(
self._get_response_internal,
model_info,
message_list,
tool_options,
max_tokens,
temperature,
thinking_budget,
response_format,
stream_response_handler,
async_response_parser,
interrupt_flag,
)
async def _get_response_internal(
self,
client: genai.Client,
model_info: ModelInfo,
message_list: list[Message],
tool_options: list[ToolOption] | None = None,
max_tokens: int = 1024,
temperature: float = 0.7,
thinking_budget: int = 0,
response_format: RespFormat | None = None,
stream_response_handler: Callable[
[Iterator[GenerateContentResponse], asyncio.Event | None], APIResponse
]
| None = None,
async_response_parser: Callable[[GenerateContentResponse], APIResponse]
| None = None,
interrupt_flag: asyncio.Event | None = None,
) -> APIResponse:
"""内部方法执行实际的API调用"""
if stream_response_handler is None:
stream_response_handler = _default_stream_response_handler
@@ -385,7 +462,7 @@ class GeminiClient(BaseClient):
try:
if model_info.force_stream_mode:
req_task = asyncio.create_task(
self.client.aio.models.generate_content_stream(
client.aio.models.generate_content_stream(
model=model_info.model_identifier,
contents=messages[0],
config=generation_config,
@@ -402,7 +479,7 @@ class GeminiClient(BaseClient):
)
else:
req_task = asyncio.create_task(
self.client.aio.models.generate_content(
client.aio.models.generate_content(
model=model_info.model_identifier,
contents=messages[0],
config=generation_config,
@@ -418,13 +495,13 @@ class GeminiClient(BaseClient):
resp, usage_record = async_response_parser(req_task.result())
except (ClientError, ServerError) as e:
# 重封装ClientError和ServerError为RespNotOkException
raise RespNotOkException(e.status_code, e.message)
raise RespNotOkException(e.status_code, e.message) from e
except (
UnknownFunctionCallArgumentError,
UnsupportedFunctionError,
FunctionInvocationError,
) as e:
raise ValueError("工具类型错误:请检查工具选项和参数:" + str(e))
raise ValueError(f"工具类型错误:请检查工具选项和参数:{str(e)}") from e
except Exception as e:
raise NetworkConnectionError() from e
@@ -437,6 +514,8 @@ class GeminiClient(BaseClient):
total_tokens=usage_record[2],
)
return resp
async def get_embedding(
self,
model_info: ModelInfo,
@@ -448,9 +527,22 @@ class GeminiClient(BaseClient):
:param embedding_input: 嵌入输入文本
:return: 嵌入响应
"""
return await self._execute_with_fallback(
self._get_embedding_internal,
model_info,
embedding_input,
)
async def _get_embedding_internal(
self,
client: genai.Client,
model_info: ModelInfo,
embedding_input: str,
) -> APIResponse:
"""内部方法执行实际的嵌入API调用"""
try:
raw_response: types.EmbedContentResponse = (
await self.client.aio.models.embed_content(
await client.aio.models.embed_content(
model=model_info.model_identifier,
contents=embedding_input,
config=types.EmbedContentConfig(task_type="SEMANTIC_SIMILARITY"),
@@ -458,7 +550,7 @@ class GeminiClient(BaseClient):
)
except (ClientError, ServerError) as e:
# 重封装ClientError和ServerError为RespNotOkException
raise RespNotOkException(e.status_code)
raise RespNotOkException(e.status_code) from e
except Exception as e:
raise NetworkConnectionError() from e

View File

@@ -23,6 +23,7 @@ from openai.types.chat.chat_completion_chunk import ChoiceDelta
from .base_client import APIResponse, UsageRecord
from src.config.api_ada_configs import ModelInfo, APIProvider
from . import BaseClient
from src.common.logger import get_logger
from ..exceptions import (
RespParseException,
@@ -34,6 +35,8 @@ from ..payload_content.message import Message, RoleType
from ..payload_content.resp_format import RespFormat
from ..payload_content.tool_option import ToolOption, ToolParam, ToolCall
logger = get_logger("OpenAI客户端")
def _convert_messages(messages: list[Message]) -> list[ChatCompletionMessageParam]:
"""
@@ -385,11 +388,60 @@ def _default_normal_response_parser(
class OpenaiClient(BaseClient):
def __init__(self, api_provider: APIProvider):
super().__init__(api_provider)
self.client: AsyncOpenAI = AsyncOpenAI(
base_url=api_provider.base_url,
api_key=api_provider.api_key,
max_retries=0,
)
# 不再在初始化时创建固定的client而是在请求时动态创建
self._clients_cache = {} # API Key -> AsyncOpenAI client 的缓存
def _get_client(self, api_key: str = None) -> AsyncOpenAI:
"""获取或创建对应API Key的客户端"""
if api_key is None:
api_key = self.api_provider.get_current_api_key()
if not api_key:
raise ValueError(f"API Provider '{self.api_provider.name}' 没有可用的API Key")
# 使用缓存避免重复创建客户端
if api_key not in self._clients_cache:
self._clients_cache[api_key] = AsyncOpenAI(
base_url=self.api_provider.base_url,
api_key=api_key,
max_retries=0,
)
return self._clients_cache[api_key]
async def _execute_with_fallback(self, func, *args, **kwargs):
"""执行请求并在失败时切换API Key"""
current_api_key = self.api_provider.get_current_api_key()
max_attempts = len(self.api_provider.api_keys) if self.api_provider.api_keys else 1
for attempt in range(max_attempts):
try:
client = self._get_client(current_api_key)
result = await func(client, *args, **kwargs)
# 成功时重置失败计数
self.api_provider.reset_key_failures(current_api_key)
return result
except (APIStatusError, APIConnectionError) as e:
# 记录失败并尝试下一个API Key
logger.warning(f"API Key失败 (尝试 {attempt + 1}/{max_attempts}): {str(e)}")
if attempt < max_attempts - 1: # 还有重试机会
next_api_key = self.api_provider.mark_key_failed(current_api_key)
if next_api_key and next_api_key != current_api_key:
current_api_key = next_api_key
logger.info(f"切换到下一个API Key: {current_api_key[:8]}***{current_api_key[-4:]}")
continue
# 所有API Key都失败了重新抛出异常
if isinstance(e, APIStatusError):
raise RespNotOkException(e.status_code, e.message) from e
elif isinstance(e, APIConnectionError):
raise NetworkConnectionError(str(e)) from e
except Exception as e:
# 其他异常直接抛出
raise e
async def get_response(
self,
@@ -423,6 +475,40 @@ class OpenaiClient(BaseClient):
:param interrupt_flag: 中断信号量可选默认为None
:return: (响应文本, 推理文本, 工具调用, 其他数据)
"""
return await self._execute_with_fallback(
self._get_response_internal,
model_info,
message_list,
tool_options,
max_tokens,
temperature,
response_format,
stream_response_handler,
async_response_parser,
interrupt_flag,
)
async def _get_response_internal(
self,
client: AsyncOpenAI,
model_info: ModelInfo,
message_list: list[Message],
tool_options: list[ToolOption] | None = None,
max_tokens: int = 1024,
temperature: float = 0.7,
response_format: RespFormat | None = None,
stream_response_handler: Callable[
[AsyncStream[ChatCompletionChunk], asyncio.Event | None],
tuple[APIResponse, tuple[int, int, int]],
]
| None = None,
async_response_parser: Callable[
[ChatCompletion], tuple[APIResponse, tuple[int, int, int]]
]
| None = None,
interrupt_flag: asyncio.Event | None = None,
) -> APIResponse:
"""内部方法执行实际的API调用"""
if stream_response_handler is None:
stream_response_handler = _default_stream_response_handler
@@ -439,7 +525,7 @@ class OpenaiClient(BaseClient):
try:
if model_info.force_stream_mode:
req_task = asyncio.create_task(
self.client.chat.completions.create(
client.chat.completions.create(
model=model_info.model_identifier,
messages=messages,
tools=tools,
@@ -464,7 +550,7 @@ class OpenaiClient(BaseClient):
else:
# 发送请求并获取响应
req_task = asyncio.create_task(
self.client.chat.completions.create(
client.chat.completions.create(
model=model_info.model_identifier,
messages=messages,
tools=tools,
@@ -513,8 +599,21 @@ class OpenaiClient(BaseClient):
:param embedding_input: 嵌入输入文本
:return: 嵌入响应
"""
return await self._execute_with_fallback(
self._get_embedding_internal,
model_info,
embedding_input,
)
async def _get_embedding_internal(
self,
client: AsyncOpenAI,
model_info: ModelInfo,
embedding_input: str,
) -> APIResponse:
"""内部方法执行实际的嵌入API调用"""
try:
raw_response = await self.client.embeddings.create(
raw_response = await client.embeddings.create(
model=model_info.model_identifier,
input=embedding_input,
)