diff --git a/src/api/__init__.py b/src/api/__init__.py new file mode 100644 index 000000000..f5bc08a6e --- /dev/null +++ b/src/api/__init__.py @@ -0,0 +1,8 @@ +from fastapi import FastAPI +from strawberry.fastapi import GraphQLRouter + +app = FastAPI() + +graphql_router = GraphQLRouter(schema=None, path="/") # Replace `None` with your actual schema + +app.include_router(graphql_router, prefix="/graphql", tags=["GraphQL"]) diff --git a/src/api/config_api.py b/src/api/config_api.py new file mode 100644 index 000000000..e39346176 --- /dev/null +++ b/src/api/config_api.py @@ -0,0 +1,155 @@ +from typing import Dict, List, Optional +import strawberry + +# from packaging.version import Version, InvalidVersion +# from packaging.specifiers import SpecifierSet, InvalidSpecifier +# from ..config.config import global_config +# import os +from packaging.version import Version + + +@strawberry.type +class BotConfig: + """机器人配置类""" + + INNER_VERSION: Version + MAI_VERSION: str # 硬编码的版本信息 + + # bot + BOT_QQ: Optional[int] + BOT_NICKNAME: Optional[str] + BOT_ALIAS_NAMES: List[str] # 别名,可以通过这个叫它 + + # group + talk_allowed_groups: set + talk_frequency_down_groups: set + ban_user_id: set + + # personality + personality_core: str # 建议20字以内,谁再写3000字小作文敲谁脑袋 + personality_sides: List[str] + # identity + identity_detail: List[str] + height: int # 身高 单位厘米 + weight: int # 体重 单位千克 + age: int # 年龄 单位岁 + gender: str # 性别 + appearance: str # 外貌特征 + + # schedule + ENABLE_SCHEDULE_GEN: bool # 是否启用日程生成 + PROMPT_SCHEDULE_GEN: str + SCHEDULE_DOING_UPDATE_INTERVAL: int # 日程表更新间隔 单位秒 + SCHEDULE_TEMPERATURE: float # 日程表温度,建议0.5-1.0 + TIME_ZONE: str # 时区 + + # message + MAX_CONTEXT_SIZE: int # 上下文最大消息数 + emoji_chance: float # 发送表情包的基础概率 + thinking_timeout: int # 思考时间 + max_response_length: int # 最大回复长度 + message_buffer: bool # 消息缓冲器 + + ban_words: set + ban_msgs_regex: set + # heartflow + # enable_heartflow: bool = False # 是否启用心流 + sub_heart_flow_update_interval: int # 子心流更新频率,间隔 单位秒 + sub_heart_flow_freeze_time: int # 子心流冻结时间,超过这个时间没有回复,子心流会冻结,间隔 单位秒 + sub_heart_flow_stop_time: int # 子心流停止时间,超过这个时间没有回复,子心流会停止,间隔 单位秒 + heart_flow_update_interval: int # 心流更新频率,间隔 单位秒 + observation_context_size: int # 心流观察到的最长上下文大小,超过这个值的上下文会被压缩 + compressed_length: int # 不能大于observation_context_size,心流上下文压缩的最短压缩长度,超过心流观察到的上下文长度,会压缩,最短压缩长度为5 + compress_length_limit: int # 最多压缩份数,超过该数值的压缩上下文会被删除 + + # willing + willing_mode: str # 意愿模式 + response_willing_amplifier: float # 回复意愿放大系数 + response_interested_rate_amplifier: float # 回复兴趣度放大系数 + down_frequency_rate: float # 降低回复频率的群组回复意愿降低系数 + emoji_response_penalty: float # 表情包回复惩罚 + mentioned_bot_inevitable_reply: bool # 提及 bot 必然回复 + at_bot_inevitable_reply: bool # @bot 必然回复 + + # response + response_mode: str # 回复策略 + MODEL_R1_PROBABILITY: float # R1模型概率 + MODEL_V3_PROBABILITY: float # V3模型概率 + # MODEL_R1_DISTILL_PROBABILITY: float # R1蒸馏模型概率 + + # emoji + max_emoji_num: int # 表情包最大数量 + max_reach_deletion: bool # 开启则在达到最大数量时删除表情包,关闭则不会继续收集表情包 + EMOJI_CHECK_INTERVAL: int # 表情包检查间隔(分钟) + EMOJI_REGISTER_INTERVAL: int # 表情包注册间隔(分钟) + EMOJI_SAVE: bool # 偷表情包 + EMOJI_CHECK: bool # 是否开启过滤 + EMOJI_CHECK_PROMPT: str # 表情包过滤要求 + + # memory + build_memory_interval: int # 记忆构建间隔(秒) + memory_build_distribution: list # 记忆构建分布,参数:分布1均值,标准差,权重,分布2均值,标准差,权重 + build_memory_sample_num: int # 记忆构建采样数量 + build_memory_sample_length: int # 记忆构建采样长度 + memory_compress_rate: float # 记忆压缩率 + + forget_memory_interval: int # 记忆遗忘间隔(秒) + memory_forget_time: int # 记忆遗忘时间(小时) + memory_forget_percentage: float # 记忆遗忘比例 + + memory_ban_words: list # 添加新的配置项默认值 + + # mood + mood_update_interval: float # 情绪更新间隔 单位秒 + mood_decay_rate: float # 情绪衰减率 + mood_intensity_factor: float # 情绪强度因子 + + # keywords + keywords_reaction_rules: list # 关键词回复规则 + + # chinese_typo + chinese_typo_enable: bool # 是否启用中文错别字生成器 + chinese_typo_error_rate: float # 单字替换概率 + chinese_typo_min_freq: int # 最小字频阈值 + chinese_typo_tone_error_rate: float # 声调错误概率 + chinese_typo_word_replace_rate: float # 整词替换概率 + + # response_splitter + enable_response_splitter: bool # 是否启用回复分割器 + response_max_length: int # 回复允许的最大长度 + response_max_sentence_num: int # 回复允许的最大句子数 + + # remote + remote_enable: bool # 是否启用远程控制 + + # experimental + enable_friend_chat: bool # 是否启用好友聊天 + # enable_think_flow: bool # 是否启用思考流程 + enable_pfc_chatting: bool # 是否启用PFC聊天 + + # 模型配置 + llm_reasoning: Dict[str, str] # LLM推理 + # llm_reasoning_minor: Dict[str, str] + llm_normal: Dict[str, str] # LLM普通 + llm_topic_judge: Dict[str, str] # LLM话题判断 + llm_summary_by_topic: Dict[str, str] # LLM话题总结 + llm_emotion_judge: Dict[str, str] # LLM情感判断 + embedding: Dict[str, str] # 嵌入 + vlm: Dict[str, str] # VLM + moderation: Dict[str, str] # 审核 + + # 实验性 + llm_observation: Dict[str, str] # LLM观察 + llm_sub_heartflow: Dict[str, str] # LLM子心流 + llm_heartflow: Dict[str, str] # LLM心流 + + api_urls: Dict[str, str] # API URLs + + +@strawberry.type +class EnvConfig: + pass + + @strawberry.field + def get_env(self) -> str: + return "env" diff --git a/src/plugins/PFC/reply_generator.py b/src/plugins/PFC/reply_generator.py index bb4719002..a27abecdd 100644 --- a/src/plugins/PFC/reply_generator.py +++ b/src/plugins/PFC/reply_generator.py @@ -151,7 +151,7 @@ class ReplyGenerator: return content except Exception as e: - logger.error(f"生成回复时出错: {e}") + logger.error(f"生成回复时出错: {str(e)}") return "抱歉,我现在有点混乱,让我重新思考一下..." async def check_reply(self, reply: str, goal: str, retry_count: int = 0) -> Tuple[bool, str, bool]: diff --git a/src/plugins/models/utils_model.py b/src/plugins/models/utils_model.py index 7930a035b..365b15a60 100644 --- a/src/plugins/models/utils_model.py +++ b/src/plugins/models/utils_model.py @@ -2,9 +2,11 @@ import asyncio import json import re from datetime import datetime -from typing import Tuple, Union +from typing import Tuple, Union, Dict, Any import aiohttp +from aiohttp.client import ClientResponse + from src.common.logger import get_module_logger import base64 from PIL import Image @@ -16,19 +18,72 @@ from ...config.config import global_config logger = get_module_logger("model_utils") +class PayLoadTooLargeError(Exception): + """自定义异常类,用于处理请求体过大错误""" + + def __init__(self, message: str): + super().__init__(message) + self.message = message + + def __str__(self): + return "请求体过大,请尝试压缩图片或减少输入内容。" + + +class RequestAbortException(Exception): + """自定义异常类,用于处理请求中断异常""" + + def __init__(self, message: str, response: ClientResponse): + super().__init__(message) + self.message = message + self.response = response + + def __str__(self): + return self.message + + +class PermissionDeniedException(Exception): + """自定义异常类,用于处理访问拒绝的异常""" + + def __init__(self, message: str): + super().__init__(message) + self.message = message + + def __str__(self): + return self.message + + +# 常见Error Code Mapping +error_code_mapping = { + 400: "参数不正确", + 401: "API key 错误,认证失败,请检查/config/bot_config.toml和.env中的配置是否正确哦~", + 402: "账号余额不足", + 403: "需要实名,或余额不足", + 404: "Not Found", + 429: "请求过于频繁,请稍后再试", + 500: "服务器内部故障", + 503: "服务器负载过高", +} + + class LLMRequest: # 定义需要转换的模型列表,作为类变量避免重复 MODELS_NEEDING_TRANSFORMATION = [ - "o3-mini", - "o1-mini", - "o1-preview", + "o1", "o1-2024-12-17", - "o1-preview-2024-09-12", - "o3-mini-2025-01-31", + "o1-mini", "o1-mini-2024-09-12", + "o1-preview", + "o1-preview-2024-09-12", + "o1-pro", + "o1-pro-2025-03-19", + "o3", + "o3-2025-04-16", + "o3-mini", + "o3-mini-2025-01-31o4-mini", + "o4-mini-2025-04-16", ] - def __init__(self, model, **kwargs): + def __init__(self, model: dict, **kwargs): # 将大写的配置键转换为小写并从config中获取实际值 try: self.api_key = os.environ[model["key"]] @@ -37,7 +92,7 @@ class LLMRequest: logger.error(f"原始 model dict 信息:{model}") logger.error(f"配置错误:找不到对应的配置项 - {str(e)}") raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e - self.model_name = model["name"] + self.model_name: str = model["name"] self.params = kwargs self.stream = model.get("stream", False) @@ -123,6 +178,7 @@ class LLMRequest: output_cost = (completion_tokens / 1000000) * self.pri_out return round(input_cost + output_cost, 6) + ''' async def _execute_request( self, endpoint: str, @@ -509,6 +565,404 @@ class LLMRequest: logger.error(f"模型 {self.model_name} 达到最大重试次数,请求仍然失败") raise RuntimeError(f"模型 {self.model_name} 达到最大重试次数,API请求仍然失败") + ''' + + async def _prepare_request( + self, + endpoint: str, + prompt: str = None, + image_base64: str = None, + image_format: str = None, + payload: dict = None, + retry_policy: dict = None, + ) -> Dict[str, Any]: + """配置请求参数 + Args: + endpoint: API端点路径 (如 "chat/completions") + prompt: prompt文本 + image_base64: 图片的base64编码 + image_format: 图片格式 + payload: 请求体数据 + retry_policy: 自定义重试策略 + request_type: 请求类型 + """ + + # 合并重试策略 + default_retry = { + "max_retries": 3, + "base_wait": 10, + "retry_codes": [429, 413, 500, 503], + "abort_codes": [400, 401, 402, 403], + } + policy = {**default_retry, **(retry_policy or {})} + + api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}" + + stream_mode = self.stream + + # 构建请求体 + if image_base64: + payload = await self._build_payload(prompt, image_base64, image_format) + elif payload is None: + payload = await self._build_payload(prompt) + + if stream_mode: + payload["stream"] = stream_mode + + return { + "policy": policy, + "payload": payload, + "api_url": api_url, + "stream_mode": stream_mode, + "image_base64": image_base64, # 保留必要的exception处理所需的原始数据 + "image_format": image_format, + "prompt": prompt, + } + + async def _execute_request( + self, + endpoint: str, + prompt: str = None, + image_base64: str = None, + image_format: str = None, + payload: dict = None, + retry_policy: dict = None, + response_handler: callable = None, + user_id: str = "system", + request_type: str = None, + ): + """统一请求执行入口 + Args: + endpoint: API端点路径 (如 "chat/completions") + prompt: prompt文本 + image_base64: 图片的base64编码 + image_format: 图片格式 + payload: 请求体数据 + retry_policy: 自定义重试策略 + response_handler: 自定义响应处理器 + user_id: 用户ID + request_type: 请求类型 + """ + # 获取请求配置 + request_content = await self._prepare_request( + endpoint, prompt, image_base64, image_format, payload, retry_policy + ) + if request_type is None: + request_type = self.request_type + for retry in range(request_content["policy"]["max_retries"]): + try: + # 使用上下文管理器处理会话 + headers = await self._build_headers() + # 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响 + if request_content["stream_mode"]: + headers["Accept"] = "text/event-stream" + async with aiohttp.ClientSession() as session: + async with session.post( + request_content["api_url"], headers=headers, json=request_content["payload"] + ) as response: + handled_result = await self._handle_response( + response, request_content, retry, response_handler, user_id, request_type, endpoint + ) + return handled_result + except Exception as e: + handled_payload, count_delta = await self._handle_exception(e, retry, request_content) + retry += count_delta # 降级不计入重试次数 + if handled_payload: + # 如果降级成功,重新构建请求体 + request_content["payload"] = handled_payload + continue + + logger.error(f"模型 {self.model_name} 达到最大重试次数,请求仍然失败") + raise RuntimeError(f"模型 {self.model_name} 达到最大重试次数,API请求仍然失败") + + async def _handle_response( + self, + response: ClientResponse, + request_content: Dict[str, Any], + retry_count: int, + response_handler: callable, + user_id, + request_type, + endpoint, + ) -> Union[Dict[str, Any], None]: + policy = request_content["policy"] + stream_mode = request_content["stream_mode"] + if response.status in policy["retry_codes"] or response.status in policy["abort_codes"]: + await self._handle_error_response(response, retry_count, policy) + return + + response.raise_for_status() + result = {} + if stream_mode: + # 将流式输出转化为非流式输出 + result = await self._handle_stream_output(response) + else: + result = await response.json() + return ( + response_handler(result) + if response_handler + else self._default_response_handler(result, user_id, request_type, endpoint) + ) + + async def _handle_stream_output(self, response: ClientResponse) -> Dict[str, Any]: + flag_delta_content_finished = False + accumulated_content = "" + usage = None # 初始化usage变量,避免未定义错误 + reasoning_content = "" + content = "" + async for line_bytes in response.content: + try: + line = line_bytes.decode("utf-8").strip() + if not line: + continue + if line.startswith("data:"): + data_str = line[5:].strip() + if data_str == "[DONE]": + break + try: + chunk = json.loads(data_str) + if flag_delta_content_finished: + chunk_usage = chunk.get("usage", None) + if chunk_usage: + usage = chunk_usage # 获取token用量 + else: + delta = chunk["choices"][0]["delta"] + delta_content = delta.get("content") + if delta_content is None: + delta_content = "" + accumulated_content += delta_content + # 检测流式输出文本是否结束 + finish_reason = chunk["choices"][0].get("finish_reason") + if delta.get("reasoning_content", None): + reasoning_content += delta["reasoning_content"] + if finish_reason == "stop": + chunk_usage = chunk.get("usage", None) + if chunk_usage: + usage = chunk_usage + break + # 部分平台在文本输出结束前不会返回token用量,此时需要再获取一次chunk + flag_delta_content_finished = True + except Exception as e: + logger.exception(f"模型 {self.model_name} 解析流式输出错误: {str(e)}") + except Exception as e: + if isinstance(e, GeneratorExit): + log_content = f"模型 {self.model_name} 流式输出被中断,正在清理资源..." + else: + log_content = f"模型 {self.model_name} 处理流式输出时发生错误: {str(e)}" + logger.warning(log_content) + # 确保资源被正确清理 + try: + await response.release() + except Exception as cleanup_error: + logger.error(f"清理资源时发生错误: {cleanup_error}") + # 返回已经累积的内容 + content = accumulated_content + if not content: + content = accumulated_content + think_match = re.search(r"(.*?)", content, re.DOTALL) + if think_match: + reasoning_content = think_match.group(1).strip() + content = re.sub(r".*?", "", content, flags=re.DOTALL).strip() + result = { + "choices": [ + { + "message": { + "content": content, + "reasoning_content": reasoning_content, + # 流式输出可能没有工具调用,此处不需要添加tool_calls字段 + } + } + ], + "usage": usage, + } + return result + + async def _handle_error_response( + self, response: ClientResponse, retry_count: int, policy: Dict[str, Any] + ) -> Union[Dict[str, any]]: + if response.status in policy["retry_codes"]: + wait_time = policy["base_wait"] * (2**retry_count) + logger.warning(f"模型 {self.model_name} 错误码: {response.status}, 等待 {wait_time}秒后重试") + if response.status == 413: + logger.warning("请求体过大,尝试压缩...") + raise PayLoadTooLargeError("请求体过大") + elif response.status in [500, 503]: + logger.error( + f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}" + ) + raise RuntimeError("服务器负载过高,模型恢复失败QAQ") + else: + logger.warning(f"模型 {self.model_name} 请求限制(429),等待{wait_time}秒后重试...") + raise RuntimeError("请求限制(429)") + elif response.status in policy["abort_codes"]: + if response.status != 403: + raise RequestAbortException("请求出现错误,中断处理", response) + else: + raise PermissionDeniedException("模型禁止访问") + + async def _handle_exception( + self, exception, retry_count: int, request_content: Dict[str, Any] + ) -> Union[Tuple[Dict[str, Any], int], Tuple[None, int]]: + policy = request_content["policy"] + payload = request_content["payload"] + wait_time = policy["base_wait"] * (2**retry_count) + if retry_count < policy["max_retries"] - 1: + keep_request = True + if isinstance(exception, RequestAbortException): + response = exception.response + logger.error( + f"模型 {self.model_name} 错误码: {response.status} - {error_code_mapping.get(response.status)}" + ) + # 尝试获取并记录服务器返回的详细错误信息 + try: + error_json = await response.json() + if error_json and isinstance(error_json, list) and len(error_json) > 0: + # 处理多个错误的情况 + for error_item in error_json: + if "error" in error_item and isinstance(error_item["error"], dict): + error_obj: dict = error_item["error"] + error_code = error_obj.get("code") + error_message = error_obj.get("message") + error_status = error_obj.get("status") + logger.error( + f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}" + ) + elif isinstance(error_json, dict) and "error" in error_json: + # 处理单个错误对象的情况 + error_obj = error_json.get("error", {}) + error_code = error_obj.get("code") + error_message = error_obj.get("message") + error_status = error_obj.get("status") + logger.error(f"服务器错误详情: 代码={error_code}, 状态={error_status}, 消息={error_message}") + else: + # 记录原始错误响应内容 + logger.error(f"服务器错误响应: {error_json}") + except Exception as e: + logger.warning(f"无法解析服务器错误响应: {str(e)}") + raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}") + + elif isinstance(exception, PermissionDeniedException): + # 只针对硅基流动的V3和R1进行降级处理 + if self.model_name.startswith("Pro/deepseek-ai") and self.base_url == "https://api.siliconflow.cn/v1/": + old_model_name = self.model_name + self.model_name = self.model_name[4:] # 移除"Pro/"前缀 + logger.warning(f"检测到403错误,模型从 {old_model_name} 降级为 {self.model_name}") + + # 对全局配置进行更新 + if global_config.llm_normal.get("name") == old_model_name: + global_config.llm_normal["name"] = self.model_name + logger.warning(f"将全局配置中的 llm_normal 模型临时降级至{self.model_name}") + if global_config.llm_reasoning.get("name") == old_model_name: + global_config.llm_reasoning["name"] = self.model_name + logger.warning(f"将全局配置中的 llm_reasoning 模型临时降级至{self.model_name}") + + if payload and "model" in payload: + payload["model"] = self.model_name + + await asyncio.sleep(wait_time) + return payload, -1 + raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(403)}") + + elif isinstance(exception, PayLoadTooLargeError): + if keep_request: + image_base64 = request_content["image_base64"] + compressed_image_base64 = compress_base64_image_by_scale(image_base64) + new_payload = await self._build_payload( + request_content["prompt"], compressed_image_base64, request_content["image_format"] + ) + return new_payload, 0 + else: + return None, 0 + + elif isinstance(exception, aiohttp.ClientError) or isinstance(exception, asyncio.TimeoutError): + if keep_request: + logger.error(f"模型 {self.model_name} 网络错误,等待{wait_time}秒后重试... 错误: {str(exception)}") + await asyncio.sleep(wait_time) + return None, 0 + else: + logger.critical(f"模型 {self.model_name} 网络错误达到最大重试次数: {str(exception)}") + raise RuntimeError(f"网络请求失败: {str(exception)}") + + elif isinstance(exception, aiohttp.ClientResponseError): + # 处理aiohttp抛出的,除了policy中的status的响应错误 + if keep_request: + logger.error( + f"模型 {self.model_name} HTTP响应错误,等待{wait_time}秒后重试... 状态码: {exception.status}, 错误: {exception.message}" + ) + try: + error_text = await exception.response.text() + error_json = json.loads(error_text) + if isinstance(error_json, list) and len(error_json) > 0: + # 处理多个错误的情况 + for error_item in error_json: + if "error" in error_item and isinstance(error_item["error"], dict): + error_obj = error_item["error"] + logger.error( + f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, " + f"状态={error_obj.get('status')}, " + f"消息={error_obj.get('message')}" + ) + elif isinstance(error_json, dict) and "error" in error_json: + error_obj = error_json.get("error", {}) + logger.error( + f"模型 {self.model_name} 服务器错误详情: 代码={error_obj.get('code')}, " + f"状态={error_obj.get('status')}, " + f"消息={error_obj.get('message')}" + ) + else: + logger.error(f"模型 {self.model_name} 服务器错误响应: {error_json}") + except (json.JSONDecodeError, TypeError) as json_err: + logger.warning( + f"模型 {self.model_name} 响应不是有效的JSON: {str(json_err)}, 原始内容: {error_text[:200]}" + ) + except Exception as parse_err: + logger.warning(f"模型 {self.model_name} 无法解析响应错误内容: {str(parse_err)}") + + await asyncio.sleep(wait_time) + return None, 0 + else: + logger.critical( + f"模型 {self.model_name} HTTP响应错误达到最大重试次数: 状态码: {exception.status}, 错误: {exception.message}" + ) + # 安全地检查和记录请求详情 + handled_payload = await self._safely_record(request_content, payload) + logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {handled_payload}") + raise RuntimeError( + f"模型 {self.model_name} API请求失败: 状态码 {exception.status}, {exception.message}" + ) + + else: + if keep_request: + logger.error(f"模型 {self.model_name} 请求失败,等待{wait_time}秒后重试... 错误: {str(exception)}") + await asyncio.sleep(wait_time) + return None, 0 + else: + logger.critical(f"模型 {self.model_name} 请求失败: {str(exception)}") + # 安全地检查和记录请求详情 + handled_payload = await self._safely_record(request_content, payload) + logger.critical(f"请求头: {await self._build_headers(no_key=True)} 请求体: {handled_payload}") + raise RuntimeError(f"模型 {self.model_name} API请求失败: {str(exception)}") + + async def _safely_record(self, request_content: Dict[str, Any], payload: Dict[str, Any]): + image_base64: str = request_content.get("image_base64") + image_format: str = request_content.get("image_format") + if ( + image_base64 + and payload + and isinstance(payload, dict) + and "messages" in payload + and len(payload["messages"]) > 0 + ): + if isinstance(payload["messages"][0], dict) and "content" in payload["messages"][0]: + content = payload["messages"][0]["content"] + if isinstance(content, list) and len(content) > 1 and "image_url" in content[1]: + payload["messages"][0]["content"][1]["image_url"]["url"] = ( + f"data:image/{image_format.lower() if image_format else 'jpeg'};base64," + f"{image_base64[:10]}...{image_base64[-10:]}" + ) + # if isinstance(content, str) and len(content) > 100: + # payload["messages"][0]["content"] = content[:100] + return payload async def _transform_parameters(self, params: dict) -> dict: """ @@ -532,30 +986,27 @@ class LLMRequest: # 复制一份参数,避免直接修改 self.params params_copy = await self._transform_parameters(self.params) if image_base64: - payload = { - "model": self.model_name, - "messages": [ - { - "role": "user", - "content": [ - {"type": "text", "text": prompt}, - { - "type": "image_url", - "image_url": {"url": f"data:image/{image_format.lower()};base64,{image_base64}"}, - }, - ], - } - ], - "max_tokens": global_config.max_response_length, - **params_copy, - } + messages = [ + { + "role": "user", + "content": [ + {"type": "text", "text": prompt}, + { + "type": "image_url", + "image_url": {"url": f"data:image/{image_format.lower()};base64,{image_base64}"}, + }, + ], + } + ] else: - payload = { - "model": self.model_name, - "messages": [{"role": "user", "content": prompt}], - "max_tokens": global_config.max_response_length, - **params_copy, - } + messages = [{"role": "user", "content": prompt}] + payload = { + "model": self.model_name, + "messages": messages, + **params_copy, + } + if "max_tokens" not in payload and "max_completion_tokens" not in payload: + payload["max_tokens"] = global_config.max_response_length # 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查 if self.model_name.lower() in self.MODELS_NEEDING_TRANSFORMATION and "max_tokens" in payload: payload["max_completion_tokens"] = payload.pop("max_tokens") @@ -648,11 +1099,10 @@ class LLMRequest: async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple]: """异步方式根据输入的提示生成模型的响应""" - # 构建请求体 + # 构建请求体,不硬编码max_tokens data = { "model": self.model_name, "messages": [{"role": "user", "content": prompt}], - "max_tokens": global_config.max_response_length, **self.params, **kwargs, }