Merge remote-tracking branch 'upstream/debug' into refractor

This commit is contained in:
tcmofashi
2025-03-11 16:45:41 +08:00
20 changed files with 356 additions and 228 deletions

View File

@@ -1,5 +1,6 @@
import asyncio
import time
import os
from loguru import logger
from nonebot import get_driver, on_message, require
@@ -32,12 +33,13 @@ driver = get_driver()
config = driver.config
Database.initialize(
host=config.MONGODB_HOST,
port=int(config.MONGODB_PORT),
db_name=config.DATABASE_NAME,
username=config.MONGODB_USERNAME,
password=config.MONGODB_PASSWORD,
auth_source=config.MONGODB_AUTH_SOURCE
uri=os.getenv("MONGODB_URI"),
host=os.getenv("MONGODB_HOST", "127.0.0.1"),
port=int(os.getenv("MONGODB_PORT", "27017")),
db_name=os.getenv("DATABASE_NAME", "MegBot"),
username=os.getenv("MONGODB_USERNAME"),
password=os.getenv("MONGODB_PASSWORD"),
auth_source=os.getenv("MONGODB_AUTH_SOURCE"),
)
logger.success("初始化数据库成功")

View File

@@ -1,6 +1,5 @@
import base64
import html
import os
import time
from dataclasses import dataclass
from typing import Dict, List, Optional, Union

View File

@@ -36,7 +36,7 @@ class EmojiManager:
self.db = Database.get_instance()
self._scan_task = None
self.vlm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=1000)
self.llm_emotion_judge = LLM_request(model=global_config.llm_normal_minor, max_tokens=60,
self.llm_emotion_judge = LLM_request(model=global_config.llm_emotion_judge, max_tokens=60,
temperature=0.8) # 更高的温度更少的token后续可以根据情绪来调整温度

View File

@@ -19,12 +19,13 @@ from src.common.database import Database
# 从环境变量获取配置
Database.initialize(
uri=os.getenv("MONGODB_URI"),
host=os.getenv("MONGODB_HOST", "127.0.0.1"),
port=int(os.getenv("MONGODB_PORT", "27017")),
db_name=os.getenv("DATABASE_NAME", "maimai"),
db_name=os.getenv("DATABASE_NAME", "MegBot"),
username=os.getenv("MONGODB_USERNAME"),
password=os.getenv("MONGODB_PASSWORD"),
auth_source=os.getenv("MONGODB_AUTH_SOURCE", "admin")
auth_source=os.getenv("MONGODB_AUTH_SOURCE"),
)
class KnowledgeLibrary:

View File

@@ -9,7 +9,10 @@ import networkx as nx
from dotenv import load_dotenv
from loguru import logger
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
# 添加项目根目录到 Python 路径
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
sys.path.append(root_path)
from src.common.database import Database # 使用正确的导入语法
# 加载.env.dev文件
@@ -162,12 +165,13 @@ class Memory_graph:
def main():
# 初始化数据库
Database.initialize(
uri=os.getenv("MONGODB_URI"),
host=os.getenv("MONGODB_HOST", "127.0.0.1"),
port=int(os.getenv("MONGODB_PORT", "27017")),
db_name=os.getenv("DATABASE_NAME", "MegBot"),
username=os.getenv("MONGODB_USERNAME", ""),
password=os.getenv("MONGODB_PASSWORD", ""),
auth_source=os.getenv("MONGODB_AUTH_SOURCE", "")
username=os.getenv("MONGODB_USERNAME"),
password=os.getenv("MONGODB_PASSWORD"),
auth_source=os.getenv("MONGODB_AUTH_SOURCE"),
)
memory_graph = Memory_graph()

View File

@@ -3,11 +3,13 @@ import datetime
import math
import random
import time
import os
import jieba
import networkx as nx
from loguru import logger
from nonebot import get_driver
from ...common.database import Database # 使用正确的导入语法
from ..chat.config import global_config
from ..chat.utils import (
@@ -18,7 +20,6 @@ from ..chat.utils import (
)
from ..models.utils_model import LLM_request
class Memory_graph:
def __init__(self):
self.G = nx.Graph() # 使用 networkx 的图结构
@@ -150,7 +151,7 @@ class Memory_graph:
return None
# 海马体
# 海马体
class Hippocampus:
def __init__(self, memory_graph: Memory_graph):
self.memory_graph = memory_graph
@@ -318,6 +319,8 @@ class Hippocampus:
compressed_memory, similar_topics_dict = await self.memory_compress(messages, compress_rate)
logger.info(f"压缩后记忆数量: {len(compressed_memory)},似曾相识的话题: {len(similar_topics_dict)}")
current_time = datetime.datetime.now().timestamp()
for topic, memory in compressed_memory:
logger.info(f"添加节点: {topic}")
self.memory_graph.add_dot(topic, memory)
@@ -330,7 +333,10 @@ class Hippocampus:
if topic != similar_topic:
strength = int(similarity * 10)
logger.info(f"连接相似节点: {topic}{similar_topic} (强度: {strength})")
self.memory_graph.G.add_edge(topic, similar_topic, strength=strength)
self.memory_graph.G.add_edge(topic, similar_topic,
strength=strength,
created_time=current_time,
last_modified=current_time)
# 连接同批次的相关话题
for i in range(len(all_topics)):
@@ -438,21 +444,39 @@ class Hippocampus:
def sync_memory_from_db(self):
"""从数据库同步数据到内存中的图结构"""
current_time = datetime.datetime.now().timestamp()
need_update = False
# 清空当前图
self.memory_graph.G.clear()
# 从数据库加载所有节点
nodes = self.memory_graph.db.db.graph_data.nodes.find()
nodes = list(self.memory_graph.db.db.graph_data.nodes.find())
for node in nodes:
concept = node['concept']
memory_items = node.get('memory_items', [])
# 确保memory_items是列表
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
# 获取时间信息
created_time = node.get('created_time', datetime.datetime.now().timestamp())
last_modified = node.get('last_modified', datetime.datetime.now().timestamp())
# 检查时间字段是否存在
if 'created_time' not in node or 'last_modified' not in node:
need_update = True
# 更新数据库中的节点
update_data = {}
if 'created_time' not in node:
update_data['created_time'] = current_time
if 'last_modified' not in node:
update_data['last_modified'] = current_time
self.memory_graph.db.db.graph_data.nodes.update_one(
{'concept': concept},
{'$set': update_data}
)
logger.info(f"为节点 {concept} 添加缺失的时间字段")
# 获取时间信息(如果不存在则使用当前时间)
created_time = node.get('created_time', current_time)
last_modified = node.get('last_modified', current_time)
# 添加节点到图中
self.memory_graph.G.add_node(concept,
@@ -461,15 +485,31 @@ class Hippocampus:
last_modified=last_modified)
# 从数据库加载所有边
edges = self.memory_graph.db.db.graph_data.edges.find()
edges = list(self.memory_graph.db.db.graph_data.edges.find())
for edge in edges:
source = edge['source']
target = edge['target']
strength = edge.get('strength', 1) # 获取 strength,默认为 1
strength = edge.get('strength', 1)
# 获取时间信息
created_time = edge.get('created_time', datetime.datetime.now().timestamp())
last_modified = edge.get('last_modified', datetime.datetime.now().timestamp())
# 检查时间字段是否存在
if 'created_time' not in edge or 'last_modified' not in edge:
need_update = True
# 更新数据库中的边
update_data = {}
if 'created_time' not in edge:
update_data['created_time'] = current_time
if 'last_modified' not in edge:
update_data['last_modified'] = current_time
self.memory_graph.db.db.graph_data.edges.update_one(
{'source': source, 'target': target},
{'$set': update_data}
)
logger.info(f"为边 {source} - {target} 添加缺失的时间字段")
# 获取时间信息(如果不存在则使用当前时间)
created_time = edge.get('created_time', current_time)
last_modified = edge.get('last_modified', current_time)
# 只有当源节点和目标节点都存在时才添加边
if source in self.memory_graph.G and target in self.memory_graph.G:
@@ -477,6 +517,9 @@ class Hippocampus:
strength=strength,
created_time=created_time,
last_modified=last_modified)
if need_update:
logger.success("已为缺失的时间字段进行补充")
async def operation_forget_topic(self, percentage=0.1):
"""随机选择图中一定比例的节点和边进行检查,根据时间条件决定是否遗忘"""
@@ -839,21 +882,19 @@ def segment_text(text):
seg_text = list(jieba.cut(text))
return seg_text
from nonebot import get_driver
driver = get_driver()
config = driver.config
start_time = time.time()
Database.initialize(
host=config.MONGODB_HOST,
port=config.MONGODB_PORT,
db_name=config.DATABASE_NAME,
username=config.MONGODB_USERNAME,
password=config.MONGODB_PASSWORD,
auth_source=config.MONGODB_AUTH_SOURCE
uri=os.getenv("MONGODB_URI"),
host=os.getenv("MONGODB_HOST", "127.0.0.1"),
port=int(os.getenv("MONGODB_PORT", "27017")),
db_name=os.getenv("DATABASE_NAME", "MegBot"),
username=os.getenv("MONGODB_USERNAME"),
password=os.getenv("MONGODB_PASSWORD"),
auth_source=os.getenv("MONGODB_AUTH_SOURCE"),
)
# 创建记忆图
memory_graph = Memory_graph()

View File

@@ -16,7 +16,10 @@ from loguru import logger
import jieba
# from chat.config import global_config
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
# 添加项目根目录到 Python 路径
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
sys.path.append(root_path)
from src.common.database import Database
from src.plugins.memory_system.offline_llm import LLMModel
@@ -35,45 +38,6 @@ else:
logger.warning(f"未找到环境变量文件: {env_path}")
logger.info("将使用默认配置")
class Database:
_instance = None
db = None
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls()
return cls._instance
def __init__(self):
if not Database.db:
Database.initialize(
host=os.getenv("MONGODB_HOST"),
port=int(os.getenv("MONGODB_PORT")),
db_name=os.getenv("DATABASE_NAME"),
username=os.getenv("MONGODB_USERNAME"),
password=os.getenv("MONGODB_PASSWORD"),
auth_source=os.getenv("MONGODB_AUTH_SOURCE")
)
@classmethod
def initialize(cls, host, port, db_name, username=None, password=None, auth_source="admin"):
try:
if username and password:
uri = f"mongodb://{username}:{password}@{host}:{port}/{db_name}?authSource={auth_source}"
else:
uri = f"mongodb://{host}:{port}"
client = pymongo.MongoClient(uri)
cls.db = client[db_name]
# 测试连接
client.server_info()
logger.success("MongoDB连接成功!")
except Exception as e:
logger.error(f"初始化MongoDB失败: {str(e)}")
raise
def calculate_information_content(text):
"""计算文本的信息量(熵)"""
char_count = Counter(text)
@@ -202,7 +166,7 @@ class Memory_graph:
# 返回所有节点对应的 Memory_dot 对象
return [self.get_dot(node) for node in self.G.nodes()]
# 海马体
# 海马体
class Hippocampus:
def __init__(self, memory_graph: Memory_graph):
self.memory_graph = memory_graph
@@ -941,59 +905,67 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
async def main():
# 初始化数据库
logger.info("正在初始化数据库连接...")
db = Database.get_instance()
Database.initialize(
uri=os.getenv("MONGODB_URI"),
host=os.getenv("MONGODB_HOST", "127.0.0.1"),
port=int(os.getenv("MONGODB_PORT", "27017")),
db_name=os.getenv("DATABASE_NAME", "MegBot"),
username=os.getenv("MONGODB_USERNAME"),
password=os.getenv("MONGODB_PASSWORD"),
auth_source=os.getenv("MONGODB_AUTH_SOURCE"),
)
start_time = time.time()
test_pare = {'do_build_memory':False,'do_forget_topic':False,'do_visualize_graph':True,'do_query':False,'do_merge_memory':False}
# 创建记忆图
memory_graph = Memory_graph()
# 创建海马体
hippocampus = Hippocampus(memory_graph)
# 从数据库同步数据
hippocampus.sync_memory_from_db()
end_time = time.time()
logger.info(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")
# 构建记忆
if test_pare['do_build_memory']:
logger.info("开始构建记忆...")
chat_size = 20
await hippocampus.operation_build_memory(chat_size=chat_size)
end_time = time.time()
logger.info(f"\033[32m[构建记忆耗时: {end_time - start_time:.2f} 秒,chat_size={chat_size},chat_count = 16]\033[0m")
if test_pare['do_forget_topic']:
logger.info("开始遗忘记忆...")
await hippocampus.operation_forget_topic(percentage=0.1)
end_time = time.time()
logger.info(f"\033[32m[遗忘记忆耗时: {end_time - start_time:.2f} 秒]\033[0m")
if test_pare['do_merge_memory']:
logger.info("开始合并记忆...")
await hippocampus.operation_merge_memory(percentage=0.1)
end_time = time.time()
logger.info(f"\033[32m[合并记忆耗时: {end_time - start_time:.2f} 秒]\033[0m")
if test_pare['do_visualize_graph']:
# 展示优化后的图形
logger.info("生成记忆图谱可视化...")
print("\n生成优化后的记忆图谱:")
visualize_graph_lite(memory_graph)
if test_pare['do_query']:
# 交互式查询
while True:
query = input("\n请输入新的查询概念(输入'退出'以结束):")
if query.lower() == '退出':
break
items_list = memory_graph.get_related_item(query)
if items_list:
first_layer, second_layer = items_list
@@ -1008,9 +980,6 @@ async def main():
else:
print("未找到相关记忆。")
if __name__ == "__main__":
import asyncio
asyncio.run(main())

View File

@@ -69,13 +69,14 @@ class Database:
def __init__(self):
if not Database.db:
Database.initialize(
host=os.getenv("MONGODB_HOST"),
port=int(os.getenv("MONGODB_PORT")),
db_name=os.getenv("DATABASE_NAME"),
username=os.getenv("MONGODB_USERNAME"),
password=os.getenv("MONGODB_PASSWORD"),
auth_source=os.getenv("MONGODB_AUTH_SOURCE")
)
uri=os.getenv("MONGODB_URI"),
host=os.getenv("MONGODB_HOST", "127.0.0.1"),
port=int(os.getenv("MONGODB_PORT", "27017")),
db_name=os.getenv("DATABASE_NAME", "MegBot"),
username=os.getenv("MONGODB_USERNAME"),
password=os.getenv("MONGODB_PASSWORD"),
auth_source=os.getenv("MONGODB_AUTH_SOURCE"),
)
@classmethod
def initialize(cls, host, port, db_name, username=None, password=None, auth_source="admin"):

View File

@@ -1,3 +1,4 @@
import os
import datetime
import json
from typing import Dict, Union
@@ -14,15 +15,15 @@ driver = get_driver()
config = driver.config
Database.initialize(
host=config.MONGODB_HOST,
port=int(config.MONGODB_PORT),
db_name=config.DATABASE_NAME,
username=config.MONGODB_USERNAME,
password=config.MONGODB_PASSWORD,
auth_source=config.MONGODB_AUTH_SOURCE
uri=os.getenv("MONGODB_URI"),
host=os.getenv("MONGODB_HOST", "127.0.0.1"),
port=int(os.getenv("MONGODB_PORT", "27017")),
db_name=os.getenv("DATABASE_NAME", "MegBot"),
username=os.getenv("MONGODB_USERNAME"),
password=os.getenv("MONGODB_PASSWORD"),
auth_source=os.getenv("MONGODB_AUTH_SOURCE"),
)
class ScheduleGenerator:
def __init__(self):
# 根据global_config.llm_normal这一字典配置指定模型
@@ -176,6 +177,6 @@ class ScheduleGenerator:
# print(scheduler.tomorrow_schedule)
# if __name__ == "__main__":
# main()
# main()
bot_schedule = ScheduleGenerator()