v0.3.0 记忆和知识库

beta
This commit is contained in:
SengokuCola
2025-03-01 17:01:39 +08:00
parent 467056d928
commit 11f90d82f7
8 changed files with 798 additions and 68 deletions

View File

@@ -10,6 +10,8 @@ from .relationship_manager import relationship_manager
from ..schedule.schedule_generator import bot_schedule from ..schedule.schedule_generator import bot_schedule
from .willing_manager import willing_manager from .willing_manager import willing_manager
from ..memory_system.memory import memory_graph
# 获取驱动器 # 获取驱动器
driver = get_driver() driver = get_driver()
@@ -23,6 +25,8 @@ Database.initialize(
print("\033[1;32m[初始化配置和数据库完成]\033[0m") print("\033[1;32m[初始化配置和数据库完成]\033[0m")
# 导入其他模块 # 导入其他模块
from .bot import ChatBot from .bot import ChatBot
from .emoji_manager import emoji_manager from .emoji_manager import emoji_manager

View File

@@ -5,7 +5,7 @@ from .storage import MessageStorage
from .llm_generator import LLMResponseGenerator from .llm_generator import LLMResponseGenerator
from .message_stream import MessageStream, MessageStreamContainer from .message_stream import MessageStream, MessageStreamContainer
from .topic_identifier import topic_identifier from .topic_identifier import topic_identifier
from random import random from random import random, choice
from .emoji_manager import emoji_manager # 导入表情包管理器 from .emoji_manager import emoji_manager # 导入表情包管理器
import time import time
import os import os
@@ -15,6 +15,7 @@ from .message import Message_Thinking # 导入 Message_Thinking 类
from .relationship_manager import relationship_manager from .relationship_manager import relationship_manager
from .willing_manager import willing_manager # 导入意愿管理器 from .willing_manager import willing_manager # 导入意愿管理器
from .utils import is_mentioned_bot_in_txt, calculate_typing_time from .utils import is_mentioned_bot_in_txt, calculate_typing_time
from ..memory_system.memory import memory_graph
class ChatBot: class ChatBot:
def __init__(self, config: BotConfig): def __init__(self, config: BotConfig):
@@ -99,6 +100,11 @@ class ChatBot:
topic = topic_identifier.identify_topic_jieba(message.processed_plain_text) topic = topic_identifier.identify_topic_jieba(message.processed_plain_text)
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic}") print(f"\033[1;32m[主题识别]\033[0m 主题: {topic}")
if topic:
for current_topic in topic:
first_layer_items, second_layer_items = memory_graph.get_related_item(current_topic, depth=2)
if first_layer_items:
print(f"\033[1;32m[记忆检索-bot]\033[0m 有印象:{current_topic}")
await self.storage.store_message(message, topic[0] if topic else None) await self.storage.store_message(message, topic[0] if topic else None)

View File

@@ -133,8 +133,8 @@ llm_config.DEEP_SEEK_BASE_URL = os.getenv('DEEP_SEEK_BASE_URL')
if not global_config.enable_advance_output: if not global_config.enable_advance_output:
logger.remove() logger.remove()
logging.getLogger('nonebot').handlers.clear() # logging.getLogger('nonebot').handlers.clear()
console_handler = logging.StreamHandler() # console_handler = logging.StreamHandler()
console_handler.setLevel(logging.WARNING) # 只输出 WARNING 及以上级别 # console_handler.setLevel(logging.WARNING) # 只输出 WARNING 及以上级别
logging.getLogger('nonebot').addHandler(console_handler) # logging.getLogger('nonebot').addHandler(console_handler)
logging.getLogger('nonebot').setLevel(logging.WARNING) # logging.getLogger('nonebot').setLevel(logging.WARNING)

View File

@@ -0,0 +1,186 @@
import os
import sys
import numpy as np
import requests
import time
# 添加项目根目录到 Python 路径
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
sys.path.append(root_path)
from src.common.database import Database
from src.plugins.chat.config import llm_config
# 直接配置数据库连接信息
Database.initialize(
"127.0.0.1", # MongoDB 主机
27017, # MongoDB 端口
"MegBot" # 数据库名称
)
class KnowledgeLibrary:
def __init__(self):
self.db = Database.get_instance()
self.raw_info_dir = "data/raw_info"
self._ensure_dirs()
def _ensure_dirs(self):
"""确保必要的目录存在"""
os.makedirs(self.raw_info_dir, exist_ok=True)
def get_embedding(self, text: str) -> list:
"""获取文本的embedding向量"""
url = "https://api.siliconflow.cn/v1/embeddings"
payload = {
"model": "BAAI/bge-m3",
"input": text,
"encoding_format": "float"
}
headers = {
"Authorization": f"Bearer {llm_config.SILICONFLOW_API_KEY}",
"Content-Type": "application/json"
}
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
print(f"获取embedding失败: {response.text}")
return None
return response.json()['data'][0]['embedding']
def process_files(self):
"""处理raw_info目录下的所有txt文件"""
for filename in os.listdir(self.raw_info_dir):
if filename.endswith('.txt'):
file_path = os.path.join(self.raw_info_dir, filename)
self.process_single_file(file_path)
def process_single_file(self, file_path: str):
"""处理单个文件"""
try:
# 检查文件是否已处理
if self.db.db.processed_files.find_one({"file_path": file_path}):
print(f"文件已处理过,跳过: {file_path}")
return
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# 按1024字符分段
segments = [content[i:i+300] for i in range(0, len(content), 300)]
# 处理每个分段
for segment in segments:
if not segment.strip(): # 跳过空段
continue
# 获取embedding
embedding = self.get_embedding(segment)
if not embedding:
continue
# 存储到数据库
doc = {
"content": segment,
"embedding": embedding,
"file_path": file_path,
"segment_length": len(segment)
}
# 使用文本内容的哈希值作为唯一标识
content_hash = hash(segment)
# 更新或插入文档
self.db.db.knowledges.update_one(
{"content_hash": content_hash},
{"$set": doc},
upsert=True
)
# 记录文件已处理
self.db.db.processed_files.insert_one({
"file_path": file_path,
"processed_time": time.time()
})
print(f"成功处理文件: {file_path}")
except Exception as e:
print(f"处理文件 {file_path} 时出错: {str(e)}")
def search_similar_segments(self, query: str, limit: int = 5) -> list:
"""搜索与查询文本相似的片段"""
query_embedding = self.get_embedding(query)
if not query_embedding:
return []
# 使用余弦相似度计算
pipeline = [
{
"$addFields": {
"dotProduct": {
"$reduce": {
"input": {"$range": [0, {"$size": "$embedding"}]},
"initialValue": 0,
"in": {
"$add": [
"$$value",
{"$multiply": [
{"$arrayElemAt": ["$embedding", "$$this"]},
{"$arrayElemAt": [query_embedding, "$$this"]}
]}
]
}
}
},
"magnitude1": {
"$sqrt": {
"$reduce": {
"input": "$embedding",
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]}
}
}
},
"magnitude2": {
"$sqrt": {
"$reduce": {
"input": query_embedding,
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]}
}
}
}
}
},
{
"$addFields": {
"similarity": {
"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]
}
}
},
{"$sort": {"similarity": -1}},
{"$limit": limit},
{"$project": {"content": 1, "similarity": 1, "file_path": 1}}
]
results = list(self.db.db.knowledges.aggregate(pipeline))
return results
# 创建单例实例
knowledge_library = KnowledgeLibrary()
if __name__ == "__main__":
# 测试知识库功能
print("开始处理知识库文件...")
knowledge_library.process_files()
# 测试搜索功能
test_query = "麦麦评价一下僕と花"
print(f"\n搜索与'{test_query}'相似的内容:")
results = knowledge_library.search_similar_segments(test_query)
for result in results:
print(f"相似度: {result['similarity']:.4f}")
print(f"内容: {result['content'][:100]}...")
print("-" * 50)

View File

@@ -6,6 +6,9 @@ import os
from .utils import get_embedding, combine_messages, get_recent_group_detailed_plain_text from .utils import get_embedding, combine_messages, get_recent_group_detailed_plain_text
from ...common.database import Database from ...common.database import Database
from .config import global_config from .config import global_config
from .topic_identifier import topic_identifier
from ..memory_system.memory import memory_graph
from random import choice
# 获取当前文件的绝对路径 # 获取当前文件的绝对路径
current_dir = os.path.dirname(os.path.abspath(__file__)) current_dir = os.path.dirname(os.path.abspath(__file__))
@@ -35,6 +38,59 @@ class PromptBuilder:
Returns: Returns:
str: 构建好的prompt str: 构建好的prompt
""" """
memory_prompt = ''
start_time = time.time() # 记录开始时间
topic = topic_identifier.identify_topic_jieba(message_txt)
# print(f"\033[1;32m[pb主题识别]\033[0m 主题: {topic}")
all_first_layer_items = [] # 存储所有第一层记忆
all_second_layer_items = {} # 用字典存储每个topic的第二层记忆
overlapping_second_layer = set() # 存储重叠的第二层记忆
if topic:
# 遍历所有topic
for current_topic in topic:
first_layer_items, second_layer_items = memory_graph.get_related_item(current_topic, depth=2)
if first_layer_items:
print(f"\033[1;32m[pb记忆检索]\033[0m 主题 '{current_topic}' 的第一层记忆: {first_layer_items}")
# 记录第一层数据
all_first_layer_items.extend(first_layer_items)
# 记录第二层数据
all_second_layer_items[current_topic] = second_layer_items
# 检查是否有重叠的第二层数据
for other_topic, other_second_layer in all_second_layer_items.items():
if other_topic != current_topic:
# 找到重叠的记忆
overlap = set(second_layer_items) & set(other_second_layer)
if overlap:
print(f"\033[1;32m[pb记忆检索]\033[0m 发现主题 '{current_topic}''{other_topic}' 有共同的第二层记忆: {overlap}")
overlapping_second_layer.update(overlap)
# 合并所有需要的记忆
if all_first_layer_items:
print(f"\033[1;32m[pb记忆检索]\033[0m 合并所有需要的记忆1: {all_first_layer_items}")
if overlapping_second_layer:
print(f"\033[1;32m[pb记忆检索]\033[0m 合并所有需要的记忆2: {list(overlapping_second_layer)}")
all_memories = all_first_layer_items + list(overlapping_second_layer)
if all_memories: # 只在列表非空时选择随机项
random_item = choice(all_memories)
memory_prompt = f"看到这些聊天,你想起来{random_item}\n"
else:
memory_prompt = "" # 如果没有记忆,则返回空字符串
end_time = time.time() # 记录结束时间
print(f"\033[1;32m[回忆耗时]\033[0m 耗时: {(end_time - start_time):.3f}") # 输出耗时
#先禁用关系 #先禁用关系
if 0 > 30: if 0 > 30:
relation_prompt = "关系特别特别好,你很喜欢喜欢他" relation_prompt = "关系特别特别好,你很喜欢喜欢他"
@@ -55,12 +111,17 @@ class PromptBuilder:
prompt_date = f'''今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n''' prompt_date = f'''今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n'''
#知识构建 #知识构建
start_time = time.time()
prompt_info = '' prompt_info = ''
promt_info_prompt = '' promt_info_prompt = ''
prompt_info = self.get_prompt_info(message_txt,threshold=0.5) prompt_info = self.get_prompt_info(message_txt,threshold=0.5)
if prompt_info: if prompt_info:
prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n''' prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n'''
promt_info_prompt = '你有一些[知识],在上面可以参考。' promt_info_prompt = '你有一些[知识],在上面可以参考。'
end_time = time.time()
print(f"\033[1;32m[知识检索]\033[0m 耗时: {(end_time - start_time):.3f}")
# print(f"\033[1;34m[调试]\033[0m 获取知识库内容结果: {prompt_info}") # print(f"\033[1;34m[调试]\033[0m 获取知识库内容结果: {prompt_info}")
@@ -69,11 +130,13 @@ class PromptBuilder:
chat_talking_prompt = '' chat_talking_prompt = ''
if group_id: if group_id:
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True) chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True)
chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}"
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}") # print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
#激活prompt构建 #激活prompt构建
activate_prompt = '' activate_prompt = ''
activate_prompt = f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2}" activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2}"
#检测机器人相关词汇 #检测机器人相关词汇
bot_keywords = ['人机', 'bot', '机器', '入机', 'robot', '机器人'] bot_keywords = ['人机', 'bot', '机器', '入机', 'robot', '机器人']
@@ -87,13 +150,12 @@ class PromptBuilder:
prompt_personality = '' prompt_personality = ''
personality_choice = random.random() personality_choice = random.random()
if personality_choice < 4/6: # 第一种人格 if personality_choice < 4/6: # 第一种人格
prompt_personality = f'''你的网名叫{global_config.BOT_NICKNAME}是一个学习地质的女大学生喜欢摄影你会刷贴吧你正在浏览qq群,{promt_info_prompt}, prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME}是一个学习地质的女大学生喜欢摄影你会刷贴吧你正在浏览qq群,{promt_info_prompt},
{activate_prompt}
现在请你给出日常且口语化的回复,平淡一些,尽量简短一些。{is_bot_prompt} 现在请你给出日常且口语化的回复,平淡一些,尽量简短一些。{is_bot_prompt}
请注意把握群里的聊天内容,不要回复的太有条理,可以有个性。''' 请注意把握群里的聊天内容,不要回复的太有条理,可以有个性。'''
elif personality_choice < 1: # 第二种人格 elif personality_choice < 1: # 第二种人格
prompt_personality = f'''你的网名叫{global_config.BOT_NICKNAME},是一个女大学生,你有黑色头发,你会刷小红书, 你正在浏览qq群,{promt_info_prompt}, prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},是一个女大学生,你有黑色头发,你会刷小红书, 你正在浏览qq群,{promt_info_prompt},
{activate_prompt}
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{is_bot_prompt} 现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{is_bot_prompt}
请你表达自己的见解和观点。可以有个性。''' 请你表达自己的见解和观点。可以有个性。'''
@@ -108,7 +170,7 @@ class PromptBuilder:
#额外信息要求 #额外信息要求
extra_info = '''但是记得回复平淡一些,简短一些,不要过多提及自身的背景, 记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容''' extra_info = '''但是记得回复平淡一些,简短一些,记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容'''
@@ -116,7 +178,10 @@ class PromptBuilder:
prompt = "" prompt = ""
prompt += f"{prompt_info}\n" prompt += f"{prompt_info}\n"
prompt += f"{prompt_date}\n" prompt += f"{prompt_date}\n"
prompt += f"{chat_talking_prompt}\n" prompt += f"{chat_talking_prompt}\n"
# prompt += f"{memory_prompt}\n"
# prompt += f"{activate_prompt}\n" # prompt += f"{activate_prompt}\n"
prompt += f"{prompt_personality}\n" prompt += f"{prompt_personality}\n"
prompt += f"{prompt_ger}\n" prompt += f"{prompt_ger}\n"

View File

@@ -2,6 +2,7 @@ import os
import requests import requests
from dotenv import load_dotenv from dotenv import load_dotenv
from typing import Tuple, Union from typing import Tuple, Union
import time
# 加载环境变量 # 加载环境变量
load_dotenv() load_dotenv()
@@ -32,16 +33,34 @@ class LLMModel:
# 发送请求到完整的chat/completions端点 # 发送请求到完整的chat/completions端点
api_url = f"{self.base_url.rstrip('/')}/chat/completions" api_url = f"{self.base_url.rstrip('/')}/chat/completions"
try: max_retries = 3
response = requests.post(api_url, headers=headers, json=data) base_wait_time = 15 # 基础等待时间(秒)
response.raise_for_status() # 检查响应状态
for retry in range(max_retries):
result = response.json() try:
if "choices" in result and len(result["choices"]) > 0: response = requests.post(api_url, headers=headers, json=data)
content = result["choices"][0]["message"]["content"]
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "") if response.status_code == 429:
return content, reasoning_content # 返回内容和推理内容 wait_time = base_wait_time * (2 ** retry) # 指数退避
return "没有返回结果", "" # 返回两个值 print(f"遇到请求限制(429),等待{wait_time}秒后重试...")
time.sleep(wait_time)
except requests.exceptions.RequestException as e: continue
return f"请求失败: {str(e)}", "" # 返回错误信息和空字符串
response.raise_for_status() # 检查其他响应状态
result = response.json()
if "choices" in result and len(result["choices"]) > 0:
content = result["choices"][0]["message"]["content"]
reasoning_content = result["choices"][0]["message"].get("reasoning_content", "")
return content, reasoning_content
return "没有返回结果", ""
except requests.exceptions.RequestException as e:
if retry < max_retries - 1: # 如果还有重试机会
wait_time = base_wait_time * (2 ** retry)
print(f"请求失败,等待{wait_time}秒后重试... 错误: {str(e)}")
time.sleep(wait_time)
else:
return f"请求失败: {str(e)}", ""
return "达到最大重试次数,请求仍然失败", ""

View File

@@ -0,0 +1,376 @@
# -*- coding: utf-8 -*-
import sys
import jieba
from llm_module import LLMModel
import networkx as nx
import matplotlib.pyplot as plt
import math
from collections import Counter
import datetime
import random
import time
# from chat.config import global_config
import sys
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
from src.common.database import Database # 使用正确的导入语法
class Memory_graph:
def __init__(self):
self.G = nx.Graph() # 使用 networkx 的图结构
self.db = Database.get_instance()
def connect_dot(self, concept1, concept2):
self.G.add_edge(concept1, concept2)
def add_dot(self, concept, memory):
if concept in self.G:
# 如果节点已存在,将新记忆添加到现有列表中
if 'memory_items' in self.G.nodes[concept]:
if not isinstance(self.G.nodes[concept]['memory_items'], list):
# 如果当前不是列表,将其转换为列表
self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
self.G.nodes[concept]['memory_items'].append(memory)
else:
self.G.nodes[concept]['memory_items'] = [memory]
else:
# 如果是新节点,创建新的记忆列表
self.G.add_node(concept, memory_items=[memory])
def get_dot(self, concept):
# 检查节点是否存在于图中
if concept in self.G:
# 从图中获取节点数据
node_data = self.G.nodes[concept]
# print(node_data)
# 创建新的Memory_dot对象
return concept,node_data
return None
def get_related_item(self, topic, depth=1):
if topic not in self.G:
return [], []
first_layer_items = []
second_layer_items = []
# 获取相邻节点
neighbors = list(self.G.neighbors(topic))
# print(f"第一层: {topic}")
# 获取当前节点的记忆项
node_data = self.get_dot(topic)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
first_layer_items.extend(memory_items)
else:
first_layer_items.append(memory_items)
# 只在depth=2时获取第二层记忆
if depth >= 2:
# 获取相邻节点的记忆项
for neighbor in neighbors:
# print(f"第二层: {neighbor}")
node_data = self.get_dot(neighbor)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
second_layer_items.extend(memory_items)
else:
second_layer_items.append(memory_items)
return first_layer_items, second_layer_items
def store_memory(self):
for node in self.G.nodes():
dot_data = {
"concept": node
}
self.db.db.store_memory_dots.insert_one(dot_data)
@property
def dots(self):
# 返回所有节点对应的 Memory_dot 对象
return [self.get_dot(node) for node in self.G.nodes()]
def get_random_chat_from_db(self, length: int, timestamp: str):
# 从数据库中根据时间戳获取离其最近的聊天记录
chat_text = ''
closest_record = self.db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
if closest_record:
closest_time = closest_record['time']
group_id = closest_record['group_id'] # 获取groupid
# 获取该时间戳之后的length条消息且groupid相同
chat_record = list(self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
for record in chat_record:
time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
chat_text += f'[{time_str}] {record["user_nickname"] or "用户" + str(record["user_id"])}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
return chat_text
return [] # 如果没有找到记录,返回空列表
def save_graph_to_db(self):
# 清空现有的图数据
self.db.db.graph_data.delete_many({})
# 保存节点
for node in self.G.nodes(data=True):
node_data = {
'concept': node[0],
'memory_items': node[1].get('memory_items', []) # 默认为空列表
}
self.db.db.graph_data.nodes.insert_one(node_data)
# 保存边
for edge in self.G.edges():
edge_data = {
'source': edge[0],
'target': edge[1]
}
self.db.db.graph_data.edges.insert_one(edge_data)
def load_graph_from_db(self):
# 清空当前图
self.G.clear()
# 加载节点
nodes = self.db.db.graph_data.nodes.find()
for node in nodes:
memory_items = node.get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
self.G.add_node(node['concept'], memory_items=memory_items)
# 加载边
edges = self.db.db.graph_data.edges.find()
for edge in edges:
self.G.add_edge(edge['source'], edge['target'])
def calculate_information_content(text):
"""计算文本的信息量(熵)"""
# 统计字符频率
char_count = Counter(text)
total_chars = len(text)
# 计算熵
entropy = 0
for count in char_count.values():
probability = count / total_chars
entropy -= probability * math.log2(probability)
return entropy
# Database.initialize(
# global_config.MONGODB_HOST,
# global_config.MONGODB_PORT,
# global_config.DATABASE_NAME
# )
# memory_graph = Memory_graph()
# llm_model = LLMModel()
# llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
# memory_graph.load_graph_from_db()
def main():
# 初始化数据库
Database.initialize(
"127.0.0.1",
27017,
"MegBot"
)
memory_graph = Memory_graph()
# 创建LLM模型实例
llm_model = LLMModel()
llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
# 使用当前时间戳进行测试
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
chat_size =40
for _ in range(100): # 循环10次
random_time = current_timestamp - random.randint(1, 3600*39) # 随机时间
print(f"随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = memory_graph.get_random_chat_from_db(chat_size, random_time)
chat_text.append(chat_) # 拼接所有text
# time.sleep(1)
for i, input_text in enumerate(chat_text, 1):
progress = (i / len(chat_text)) * 100
bar_length = 30
filled_length = int(bar_length * i // len(chat_text))
bar = '' * filled_length + '-' * (bar_length - filled_length)
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(chat_text)})")
# print(input_text)
first_memory = set()
first_memory = memory_compress(input_text, llm_model_small, llm_model_small, rate=2.5)
time.sleep(5)
#将记忆加入到图谱中
for topic, memory in first_memory:
topics = segment_text(topic)
print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}")
for split_topic in topics:
memory_graph.add_dot(split_topic,memory)
for split_topic in topics:
for other_split_topic in topics:
if split_topic != other_split_topic:
memory_graph.connect_dot(split_topic, other_split_topic)
# memory_graph.store_memory()
# 展示两种不同的可视化方式
print("\n按连接数量着色的图谱:")
visualize_graph(memory_graph, color_by_memory=False)
print("\n按记忆数量着色的图谱:")
visualize_graph(memory_graph, color_by_memory=True)
memory_graph.save_graph_to_db()
# memory_graph.load_graph_from_db()
while True:
query = input("请输入新的查询概念(输入'退出'以结束):")
if query.lower() == '退出':
break
items_list = memory_graph.get_related_item(query)
if items_list:
# print(items_list)
for memory_item in items_list:
print(memory_item)
else:
print("未找到相关记忆。")
while True:
query = input("请输入问题:")
if query.lower() == '退出':
break
topic_prompt = find_topic(query, 3)
topic_response = llm_model.generate_response(topic_prompt)
# 检查 topic_response 是否为元组
if isinstance(topic_response, tuple):
topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
else:
topics = topic_response.split(",")
print(topics)
for keyword in topics:
items_list = memory_graph.get_related_item(keyword)
if items_list:
print(items_list)
def memory_compress(input_text, llm_model, llm_model_small, rate=1):
information_content = calculate_information_content(input_text)
print(f"文本的信息量(熵): {information_content:.4f} bits")
topic_num = max(1, min(5, int(information_content * rate / 4)))
print(topic_num)
topic_prompt = find_topic(input_text, topic_num)
topic_response = llm_model.generate_response(topic_prompt)
# 检查 topic_response 是否为元组
if isinstance(topic_response, tuple):
topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
else:
topics = topic_response.split(",")
print(topics)
compressed_memory = set()
for topic in topics:
topic_what_prompt = topic_what(input_text,topic)
topic_what_response = llm_model_small.generate_response(topic_what_prompt)
compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
return compressed_memory
def segment_text(text):
seg_text = list(jieba.cut(text))
return seg_text
def find_topic(text, topic_num):
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
return prompt
def topic_what(text, topic):
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
return prompt
def visualize_graph(memory_graph: Memory_graph, color_by_memory: bool = False):
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
G = memory_graph.G
# 保存图到本地
nx.write_gml(G, "memory_graph.gml") # 保存为 GML 格式
# 根据连接条数或记忆数量设置节点颜色
node_colors = []
nodes = list(G.nodes()) # 获取图中实际的节点列表
if color_by_memory:
# 计算每个节点的记忆数量
memory_counts = []
for node in nodes:
memory_items = G.nodes[node].get('memory_items', [])
if isinstance(memory_items, list):
count = len(memory_items)
else:
count = 1 if memory_items else 0
memory_counts.append(count)
max_memories = max(memory_counts) if memory_counts else 1
for count in memory_counts:
# 使用不同的颜色方案:红色表示记忆多,蓝色表示记忆少
if max_memories > 0:
intensity = min(1.0, count / max_memories)
color = (intensity, 0, 1.0 - intensity) # 从蓝色渐变到红色
else:
color = (0, 0, 1) # 如果没有记忆,则为蓝色
node_colors.append(color)
else:
# 使用原来的连接数量着色方案
max_degree = max(G.degree(), key=lambda x: x[1])[1] if G.degree() else 1
for node in nodes:
degree = G.degree(node)
if max_degree > 0:
red = min(1.0, degree / max_degree)
blue = 1.0 - red
color = (red, 0, blue)
else:
color = (0, 0, 1)
node_colors.append(color)
# 绘制图形
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, k=1, iterations=50)
nx.draw(G, pos,
with_labels=True,
node_color=node_colors,
node_size=2000,
font_size=10,
font_family='SimHei',
font_weight='bold')
title = '记忆图谱可视化 - ' + ('按记忆数量着色' if color_by_memory else '按连接数量着色')
plt.title(title, fontsize=16, fontfamily='SimHei')
plt.show()
if __name__ == "__main__":
main()

View File

@@ -1,7 +1,7 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sys import sys
import jieba import jieba
from llm_module import LLMModel from .llm_module import LLMModel
import networkx as nx import networkx as nx
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import math import math
@@ -9,9 +9,9 @@ from collections import Counter
import datetime import datetime
import random import random
import time import time
from ..chat.config import global_config
import sys import sys
sys.path.append("C:/GitHub/MegMeg-bot") # 添加项目根目录到 Python 路径 sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
from src.common.database import Database # 使用正确的导入语法 from src.common.database import Database # 使用正确的导入语法
class Memory_graph: class Memory_graph:
@@ -23,44 +23,67 @@ class Memory_graph:
self.G.add_edge(concept1, concept2) self.G.add_edge(concept1, concept2)
def add_dot(self, concept, memory): def add_dot(self, concept, memory):
self.G.add_node(concept, memory_items=memory) if concept in self.G:
# 如果节点已存在,将新记忆添加到现有列表中
if 'memory_items' in self.G.nodes[concept]:
if not isinstance(self.G.nodes[concept]['memory_items'], list):
# 如果当前不是列表,将其转换为列表
self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
self.G.nodes[concept]['memory_items'].append(memory)
else:
self.G.nodes[concept]['memory_items'] = [memory]
else:
# 如果是新节点,创建新的记忆列表
self.G.add_node(concept, memory_items=[memory])
def get_dot(self, concept): def get_dot(self, concept):
# 检查节点是否存在于图中 # 检查节点是否存在于图中
if concept in self.G: if concept in self.G:
# 从图中获取节点数据 # 从图中获取节点数据
node_data = self.G.nodes[concept] node_data = self.G.nodes[concept]
print(node_data) # print(node_data)
# 创建新的Memory_dot对象 # 创建新的Memory_dot对象
return concept,node_data return concept,node_data
return None return None
def get_related_item(self, topic, depth=1): def get_related_item(self, topic, depth=1):
if topic not in self.G: if topic not in self.G:
return set() return [], []
items_set = set() first_layer_items = []
second_layer_items = []
# 获取相邻节点 # 获取相邻节点
neighbors = list(self.G.neighbors(topic)) neighbors = list(self.G.neighbors(topic))
print(f"第一层: {topic}") # print(f"第一层: {topic}")
# 获取当前节点的记忆项 # 获取当前节点的记忆项
node_data = self.get_dot(topic) node_data = self.get_dot(topic)
if node_data: if node_data:
concept, data = node_data concept, data = node_data
if 'memory_items' in data: if 'memory_items' in data:
items_set.add(data['memory_items']) memory_items = data['memory_items']
if isinstance(memory_items, list):
first_layer_items.extend(memory_items)
else:
first_layer_items.append(memory_items)
# 获取相邻节点的记忆 # 只在depth=2时获取第二层记忆
for neighbor in neighbors: if depth >= 2:
print(f"第二层: {neighbor}") # 获取相邻节点的记忆项
node_data = self.get_dot(neighbor) for neighbor in neighbors:
if node_data: # print(f"第二层: {neighbor}")
concept, data = node_data node_data = self.get_dot(neighbor)
if 'memory_items' in data: if node_data:
items_set.add(data['memory_items']) concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
second_layer_items.extend(memory_items)
else:
second_layer_items.append(memory_items)
return items_set return first_layer_items, second_layer_items
def store_memory(self): def store_memory(self):
for node in self.G.nodes(): for node in self.G.nodes():
@@ -100,7 +123,7 @@ class Memory_graph:
for node in self.G.nodes(data=True): for node in self.G.nodes(data=True):
node_data = { node_data = {
'concept': node[0], 'concept': node[0],
'memory_items': node[1].get('memory_items', None) 'memory_items': node[1].get('memory_items', []) # 默认为空列表
} }
self.db.db.graph_data.nodes.insert_one(node_data) self.db.db.graph_data.nodes.insert_one(node_data)
# 保存边 # 保存边
@@ -117,7 +140,10 @@ class Memory_graph:
# 加载节点 # 加载节点
nodes = self.db.db.graph_data.nodes.find() nodes = self.db.db.graph_data.nodes.find()
for node in nodes: for node in nodes:
self.G.add_node(node['concept'], memory_items=node['memory_items']) memory_items = node.get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
self.G.add_node(node['concept'], memory_items=memory_items)
# 加载边 # 加载边
edges = self.db.db.graph_data.edges.find() edges = self.db.db.graph_data.edges.find()
for edge in edges: for edge in edges:
@@ -138,6 +164,26 @@ def calculate_information_content(text):
return entropy return entropy
start_time = time.time()
Database.initialize(
global_config.MONGODB_HOST,
global_config.MONGODB_PORT,
global_config.DATABASE_NAME
)
memory_graph = Memory_graph()
llm_model = LLMModel()
llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
memory_graph.load_graph_from_db()
end_time = time.time()
print(f"加载海马体耗时: {end_time - start_time:.2f}")
def main(): def main():
# 初始化数据库 # 初始化数据库
Database.initialize( Database.initialize(
@@ -155,13 +201,14 @@ def main():
current_timestamp = datetime.datetime.now().timestamp() current_timestamp = datetime.datetime.now().timestamp()
chat_text = [] chat_text = []
chat_size =30 chat_size =40
for _ in range(60): # 循环10次 for _ in range(100): # 循环10次
random_time = current_timestamp - random.randint(1, 3600*3) # 随机时间 random_time = current_timestamp - random.randint(1, 3600*39) # 随机时间
print(f"随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}") print(f"随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = memory_graph.get_random_chat_from_db(chat_size, random_time) chat_ = memory_graph.get_random_chat_from_db(chat_size, random_time)
chat_text.append(chat_) # 拼接所有text chat_text.append(chat_) # 拼接所有text
time.sleep(5)
@@ -173,7 +220,7 @@ def main():
#将记忆加入到图谱中 #将记忆加入到图谱中
for topic, memory in first_memory: for topic, memory in first_memory:
topics = segment_text(topic) topics = segment_text(topic)
print(f"话题: {topic},节点: {topics}, 记忆: {memory}") print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}")
for split_topic in topics: for split_topic in topics:
memory_graph.add_dot(split_topic,memory) memory_graph.add_dot(split_topic,memory)
for split_topic in topics: for split_topic in topics:
@@ -182,7 +229,13 @@ def main():
memory_graph.connect_dot(split_topic, other_split_topic) memory_graph.connect_dot(split_topic, other_split_topic)
# memory_graph.store_memory() # memory_graph.store_memory()
visualize_graph(memory_graph)
# 展示两种不同的可视化方式
print("\n按连接数量着色的图谱:")
visualize_graph(memory_graph, color_by_memory=False)
print("\n按记忆数量着色的图谱:")
visualize_graph(memory_graph, color_by_memory=True)
memory_graph.save_graph_to_db() memory_graph.save_graph_to_db()
# memory_graph.load_graph_from_db() # memory_graph.load_graph_from_db()
@@ -252,45 +305,66 @@ def topic_what(text, topic):
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好' prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
return prompt return prompt
def visualize_graph(memory_graph: Memory_graph): def visualize_graph(memory_graph: Memory_graph, color_by_memory: bool = False):
# 设置中文字体 # 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
G = memory_graph.G G = memory_graph.G
# 保存图到本地 # 保存图到本地
nx.write_gml(G, "memory_graph.gml") # 保存为 GML 格式 nx.write_gml(G, "memory_graph.gml") # 保存为 GML 格式
# 根据连接条数设置节点颜色 # 根据连接条数或记忆数量设置节点颜色
node_colors = [] node_colors = []
nodes = list(G.nodes()) # 获取图中实际的节点列表 nodes = list(G.nodes()) # 获取图中实际的节点列表
max_degree = max(G.degree(), key=lambda x: x[1])[1] if G.degree() else 1 # 获取最大连接数
for node in nodes: if color_by_memory:
degree = G.degree(node) # 获取节点的度 # 计算每个节点的记忆数量
# 计算颜色,使用渐变效果 memory_counts = []
if max_degree > 0: for node in nodes:
red = min(1.0, degree / max_degree) # 红色分量随连接数增加而增加 memory_items = G.nodes[node].get('memory_items', [])
blue = 1.0 - red # 蓝色分量随连接数增加而减少 if isinstance(memory_items, list):
color = (red, 0, blue) count = len(memory_items)
else: else:
color = (0, 0, 1) # 如果没有连接,则为蓝色 count = 1 if memory_items else 0
node_colors.append(color) memory_counts.append(count)
max_memories = max(memory_counts) if memory_counts else 1
for count in memory_counts:
# 使用不同的颜色方案:红色表示记忆多,蓝色表示记忆少
if max_memories > 0:
intensity = min(1.0, count / max_memories)
color = (intensity, 0, 1.0 - intensity) # 从蓝色渐变到红色
else:
color = (0, 0, 1) # 如果没有记忆,则为蓝色
node_colors.append(color)
else:
# 使用原来的连接数量着色方案
max_degree = max(G.degree(), key=lambda x: x[1])[1] if G.degree() else 1
for node in nodes:
degree = G.degree(node)
if max_degree > 0:
red = min(1.0, degree / max_degree)
blue = 1.0 - red
color = (red, 0, blue)
else:
color = (0, 0, 1)
node_colors.append(color)
# 绘制图形 # 绘制图形
plt.figure(figsize=(12, 8)) plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, k=1, iterations=50) # 使用弹簧布局,调整参数使布局更合理 pos = nx.spring_layout(G, k=1, iterations=50)
nx.draw(G, pos, nx.draw(G, pos,
with_labels=True, with_labels=True,
node_color=node_colors, node_color=node_colors,
node_size=2000, node_size=2000,
font_size=10, font_size=10,
font_family='SimHei', # 设置节点标签的字体 font_family='SimHei',
font_weight='bold') font_weight='bold')
plt.title('记忆图谱可视化', fontsize=16, fontfamily='SimHei') title = '记忆图谱可视化 - ' + ('按记忆数量着色' if color_by_memory else '按连接数量着色')
plt.title(title, fontsize=16, fontfamily='SimHei')
plt.show() plt.show()
if __name__ == "__main__": if __name__ == "__main__":