加入了尚未完成或者说根本就没做de主动思考
This commit is contained in:
committed by
Windpicker-owo
parent
82ec73bf07
commit
111d23f608
0
src/plugins/built_in/proactive_thinker/__init__.py
Normal file
0
src/plugins/built_in/proactive_thinker/__init__.py
Normal file
25
src/plugins/built_in/proactive_thinker/_manifest.json
Normal file
25
src/plugins/built_in/proactive_thinker/_manifest.json
Normal file
@@ -0,0 +1,25 @@
|
||||
{
|
||||
"manifest_version": 1,
|
||||
"name": "MoFox-Bot主动思考",
|
||||
"version": "1.0.0",
|
||||
"description": "主动思考插件",
|
||||
"author": {
|
||||
"name": "MoFox-Studio",
|
||||
"url": "https://github.com/MoFox-Studio"
|
||||
},
|
||||
"license": "GPL-v3.0-or-later",
|
||||
|
||||
"host_application": {
|
||||
"min_version": "0.10.0"
|
||||
},
|
||||
"keywords": ["emoji", "reaction", "like", "表情", "回应", "点赞"],
|
||||
"categories": ["Chat", "Integration"],
|
||||
|
||||
"default_locale": "zh-CN",
|
||||
"locales_path": "_locales",
|
||||
|
||||
"plugin_info": {
|
||||
"is_built_in": "true",
|
||||
"plugin_type": "functional"
|
||||
}
|
||||
}
|
||||
45
src/plugins/built_in/proactive_thinker/plugin.py
Normal file
45
src/plugins/built_in/proactive_thinker/plugin.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from typing import List, Tuple, Union, Type, Optional
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.config.official_configs import AffinityFlowConfig
|
||||
from src.plugin_system.base.base_plugin import BasePlugin
|
||||
from src.plugin_system import (
|
||||
BasePlugin,
|
||||
ConfigField,
|
||||
register_plugin,
|
||||
plugin_manage_api,
|
||||
component_manage_api,
|
||||
ComponentInfo,
|
||||
ComponentType,
|
||||
EventHandlerInfo,
|
||||
EventType,
|
||||
BaseEventHandler,
|
||||
)
|
||||
from .proacive_thinker_event import ProactiveThinkerEventHandler
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
@register_plugin
|
||||
class ProactiveThinkerPlugin(BasePlugin):
|
||||
"""一个主动思考的插件,但现在还只是个空壳子"""
|
||||
plugin_name: str = "proactive_thinker"
|
||||
enable_plugin: bool = True
|
||||
dependencies: list[str] = []
|
||||
python_dependencies: list[str] = []
|
||||
config_file_name: str = "config.toml"
|
||||
config_schema: dict = {
|
||||
"plugin": {
|
||||
"enabled": ConfigField(bool, default=False, description="是否启用插件"),
|
||||
"config_version": ConfigField(type=str, default="1.1.0", description="配置文件版本"),
|
||||
},
|
||||
}
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def get_plugin_components(self) -> List[Tuple[EventHandlerInfo, Type[BaseEventHandler]]]:
|
||||
"""返回插件的EventHandler组件"""
|
||||
components: List[Tuple[EventHandlerInfo, Type[BaseEventHandler]]] = [
|
||||
(ProactiveThinkerEventHandler.get_handler_info(), ProactiveThinkerEventHandler)
|
||||
]
|
||||
return components
|
||||
|
||||
@@ -0,0 +1,23 @@
|
||||
from typing import List, Union, Type, Optional
|
||||
from src.common.logger import get_logger
|
||||
|
||||
logger = get_logger(__name__)
|
||||
from src.plugin_system import (
|
||||
EventType,
|
||||
BaseEventHandler,
|
||||
HandlerResult,
|
||||
)
|
||||
|
||||
|
||||
class ProactiveThinkerEventHandler(BaseEventHandler):
|
||||
"""主动思考需要的启动时触发的事件处理器"""
|
||||
|
||||
handler_name: str = "proactive_thinker_on_start"
|
||||
handler_description: str = "主动思考插件的启动事件处理器"
|
||||
init_subscribe: List[Union[EventType, str]] = [EventType.ON_START]
|
||||
|
||||
async def execute(self, kwargs: dict | None) -> "HandlerResult":
|
||||
"""执行事件处理"""
|
||||
logger.info("ProactiveThinkerPlugin on_start event triggered.")
|
||||
# 返回 (是否执行成功, 是否需要继续处理, 可选的返回消息)
|
||||
return HandlerResult(success=True, continue_process=True, message=None)
|
||||
@@ -0,0 +1,199 @@
|
||||
# 主动聊天功能重构与设计方案
|
||||
|
||||
本文档旨在规划一个全新的、真正的“主动发起对话”功能。方案的核心是创建一个独立的、可配置的插件,并重构现有配置,使其更具模块化和可扩展性。
|
||||
|
||||
## 1. 配置文件重构 (`bot_config.toml`)
|
||||
|
||||
为了提高清晰度和模块化,我们将创建一个新的配置节 `[proactive_thinking]`。
|
||||
|
||||
### 1.1. 移除旧配置
|
||||
|
||||
以下配置项将从 `[chat]` 配置节中 **移除**:
|
||||
|
||||
```toml
|
||||
# mmc/config/bot_config.toml
|
||||
|
||||
# 从 line 132 开始移除以下所有行
|
||||
talk_frequency_adjust = [['', '8:00,1', '12:00,1.2', '18:00,1.5', '01:00,0.6'], ['qq:114514:group', '12:20,1', '16:10,2', '20:10,1', '00:10,0.3'], ['qq:1919810:private', '8:20,1', '12:10,2', '20:10,1.5', '00:10,0.2']]
|
||||
# ... (所有 talk_frequency_adjust 的注释) ...
|
||||
|
||||
# 主动思考功能配置(仅在focus模式下生效)
|
||||
|
||||
enable_proactive_thinking = false
|
||||
proactive_thinking_interval = 1500
|
||||
# ... (所有 proactive_thinking 的注释和相关配置) ...
|
||||
delta_sigma = 120
|
||||
# ... (所有 delta_sigma 的注释和相关配置) ...
|
||||
```
|
||||
|
||||
### 1.2. 新增 `[proactive_thinking]` 配置节
|
||||
|
||||
在 `bot_config.toml` 文件 **末尾**,添加以下全新配置节:
|
||||
|
||||
```toml
|
||||
# mmc/config/bot_config.toml
|
||||
|
||||
[proactive_thinking] # 主动思考(主动发起对话)功能配置
|
||||
# --- 总开关 ---
|
||||
enable = false # 是否启用主动发起对话功能
|
||||
|
||||
# --- 触发时机 ---
|
||||
# 基础触发间隔(秒),AI会围绕这个时间点主动发起对话
|
||||
interval = 1500 # 默认25分钟
|
||||
# 间隔随机化标准差(秒),让触发时间更自然。设为0则为固定间隔。
|
||||
interval_sigma = 120
|
||||
# 每日活跃度调整,格式:[["", "HH:MM,factor", ...], ["stream_id", ...]]
|
||||
# factor > 1.0 会缩短思考间隔,更活跃;factor < 1.0 会延长间隔。
|
||||
talk_frequency_adjust = [['', '8:00,1', '12:00,1.2', '18:00,1.5', '01:00,0.6']]
|
||||
|
||||
# --- 作用范围 ---
|
||||
enable_in_private = true # 是否允许在私聊中主动发起对话
|
||||
enable_in_group = true # 是否允许在群聊中主动发起对话
|
||||
# 私聊白名单,为空则对所有私聊生效
|
||||
# 格式: ["platform:user_id", ...] e.g., ["qq:123456"]
|
||||
enabled_private_chats = []
|
||||
# 群聊白名单,为空则对所有群聊生效
|
||||
# 格式: ["platform:group_id", ...] e.g., ["qq:7891011"]
|
||||
enabled_group_chats = []
|
||||
|
||||
# --- 冷启动配置 (针对私聊) ---
|
||||
# 对于白名单中不活跃的私聊,是否允许进行一次“冷启动”问候
|
||||
enable_cold_start = true
|
||||
# 冷启动后,该私聊的下一次主动思考需要等待的最小时间(秒)
|
||||
cold_start_cooldown = 86400 # 默认24小时
|
||||
```
|
||||
|
||||
## 2. 新插件架构设计 (`proactive_initiation_chatter`)
|
||||
|
||||
我们将创建一个全新的插件来实现此功能。
|
||||
|
||||
### 2.1. 文件结构
|
||||
|
||||
```
|
||||
mmc/src/plugins/built_in/proactive_initiation_chatter/
|
||||
├── __init__.py
|
||||
├── _manifest.json
|
||||
├── plugin.py # 插件主入口,负责启动和管理触发器
|
||||
├── trigger_manager.py # 核心触发器,内置于插件中
|
||||
├── initiation_chatter.py # Chatter实现,监听触发事件
|
||||
└── initiation_planner.py # 规划器,负责决定“说什么”
|
||||
```
|
||||
|
||||
### 2.2. 核心组件设计
|
||||
|
||||
#### `plugin.py` - `ProactiveInitiationPlugin`
|
||||
- **职责**: 作为插件的入口,它将在插件被加载时,读取 `[proactive_thinking]` 配置,并根据配置启动 `ProactiveTriggerManager`。
|
||||
- **启动逻辑 (参考 `maizone_refactored`)**:
|
||||
|
||||
#### `trigger_manager.py` - `ProactiveTriggerManager`
|
||||
- **职责**: 这是一个后台服务类,负责管理所有聊天流的触发计时器,并实现包括“冷启动”在内的所有复杂触发逻辑。
|
||||
- **核心逻辑 (参考 `SchedulerService`)**:
|
||||
- 维护一个异步主循环,定期检查所有符合条件的聊天流。
|
||||
- 根据配置的间隔和活跃度调整,计算下次触发时间。
|
||||
- 在触发时,调用 `InitiationPlanner` 来决定具体内容,并通过事件管理器派发 `ProactiveInitiationEvent` 或 `ColdStartInitiationEvent`。
|
||||
|
||||
---
|
||||
|
||||
## 3. 核心交互与依赖
|
||||
|
||||
新的 `proactive_initiation_chatter` 插件将与以下核心系统模块进行交互,以确保其决策的智能性和合规性:
|
||||
|
||||
- **`Config`**: `TriggerManager` 和 `Planner` 将从全局配置中读取 `[proactive_thinking]` 配置节,以获取所有行为参数。
|
||||
- **`EventManager`**: `TriggerManager` 将通过事件管理器派发 `ProactiveInitiationEvent` 和 `ColdStartInitiationEvent` 事件。`InitiationChatter` 则会监听这些事件以触发执行。
|
||||
- **`AsyncTaskManager`**: `ProactiveInitiationPlugin` 将使用此管理器来安全地在后台运行 `TriggerManager` 的主循环。
|
||||
- **`ChatManager` (from `chat_stream.py`)**: 这是实现“冷启动”的核心。`TriggerManager` 将调用 `chat_manager.get_or_create_stream()` 方法来按需“唤醒”或创建不活跃的聊天流实例及其附带的空上下文。
|
||||
- **`SleepManager`**: 在每次触发决策前,`TriggerManager` **必须**查询 `SleepManager` 以确认AI当前未处于睡眠状态。
|
||||
- **`ScheduleManager` / `MonthlyPlanManager`**: `InitiationPlanner` 的“待办任务驱动”策略会查询这些管理器,以获取可作为聊天话题的日程或计划。
|
||||
- **`MemoryManager` / `ContextManager`**: `InitiationPlanner` 的“记忆驱动”策略会查询长期记忆和短期上下文,以寻找关联性话题。
|
||||
- **`RelationshipManager`**: `InitiationPlanner` 可以查询关系分数,作为执行某些话题策略的门槛。
|
||||
|
||||
## 4. 插件清单文件 (`_manifest.json`)
|
||||
|
||||
插件的清单文件将定义其元数据和依赖。
|
||||
|
||||
```json
|
||||
{
|
||||
"manifest_version": 1,
|
||||
"name": "ProactiveInitiationChatter",
|
||||
"version": "1.0.0",
|
||||
"author": "Kilo Code",
|
||||
"description": "一个真正的主动发起对话插件,由内置的、可高度配置的触发器驱动。",
|
||||
"dependencies": [],
|
||||
"python_dependencies": []
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 5. 上下文获取与“唤醒”机制详解
|
||||
|
||||
本设计区分了“热启动”(针对活跃聊天)和“冷启动”(针对非活跃聊天)两种场景,并利用 `ChatManager` 的不同方法来优雅地处理。
|
||||
|
||||
### 热启动流程 (Hot Start - 针对活跃聊天)
|
||||
|
||||
这是最常见的场景。当一个聊天流近期有过对话,其实例存在于 `ChatManager` 的内存缓存中。
|
||||
|
||||
1. **获取现有上下文**: `ProactiveTriggerManager` 决定对一个活跃的 `stream_id` 发起对话时,它会调用 `chat_manager.get_stream(stream_id)`。
|
||||
2. **返回缓存实例**: `ChatManager` 会直接从内存中返回缓存的 `ChatStream` 实例。
|
||||
3. **传递丰富上下文**: 这个实例中包含了**完整的、包含近期对话历史**的 `stream_context`。
|
||||
4. **智能决策**: `TriggerManager` 将这个**充满信息**的上下文派发给 `InitiationPlanner`。`Planner` 因此可以优先使用“记忆驱动”等高级策略,生成与前文高度相关的话题,使对话显得自然、连贯。
|
||||
|
||||
### 冷启动流程 (Cold Start - “唤醒”非活跃聊天)
|
||||
|
||||
针对在白名单中,但当前未加载到内存的私聊。
|
||||
|
||||
**核心方法:** `ChatManager.get_or_create_stream(platform, user_info, group_info)`
|
||||
|
||||
**唤醒流程:**
|
||||
|
||||
1. `ProactiveTriggerManager` 在主循环中识别到一个需要“冷启动”的私聊 `stream_id`。
|
||||
2. `TriggerManager` 构造出必要的 `UserInfo` 对象。
|
||||
3. 它调用 `get_chat_manager()`,然后执行核心的唤醒调用:
|
||||
```python
|
||||
# (伪代码)
|
||||
chat_stream = await chat_manager.get_or_create_stream(...)
|
||||
```
|
||||
4. 此调用会从数据库加载或全新创建一个 `ChatStream` 实例,该实例内部会自动创建一个**不包含任何历史消息的空上下文**。
|
||||
5. `TriggerManager` 将这个**空的 `StreamContext`** 连同 `ColdStartInitiationEvent` 事件一同派发出去,以触发通用的问候语。
|
||||
|
||||
此双轨制流程无需修改任何核心系统代码,仅通过合理调用现有接口即可实现,保证了方案的稳定性和兼容性。
|
||||
|
||||
---
|
||||
|
||||
这份经过强化的设计文档详细说明了配置文件的修改方案、新插件的内部架构以及与核心系统的交互模式。请您审阅。如果这份蓝图符合您的预期,我们就可以准备将此计划交付实施。
|
||||
|
||||
另外附加:我计划在 InitiationPlanner 中实现一个策略选择系统。每次被 TriggerManager 触发时,它会评估多种“主动聊天策略”的“适宜度分数”,然后选择分数最高的策略来执行。
|
||||
|
||||
以下是我初步设计的几种策略:
|
||||
|
||||
ColdStartGreetingStrategy (冷启动问候策略)
|
||||
|
||||
触发条件:仅在 TriggerManager 派发 ColdStartInitiationEvent 事件时触发。
|
||||
核心逻辑:生成一句通用的、友好的问候语,比如“你好呀!”或者“最近怎么样?”。这是为了“唤醒”那些很久没聊天的私聊对象。
|
||||
适宜度分数:固定高分(例如 1.0),确保在冷启动时优先执行。
|
||||
MemoryDrivenStrategy (记忆驱动策略)
|
||||
|
||||
触发条件:常规触发 (ProactiveInitiationEvent),且当前聊天流的上下文不为空。
|
||||
核心逻辑:
|
||||
查询 MemoryManager,获取关于当前聊天对象的长期记忆或近期摘要。
|
||||
查询 ContextManager,分析最近的几条对话,寻找可以延续的话题。
|
||||
利用 LLM 生成一个与上下文或记忆相关的话题。例如:“我们上次聊到的那个项目,后来进展如何了?”
|
||||
适宜度分数计算 (借鉴AFC):
|
||||
context_relevance_score (上下文相关性):上下文越丰富、越接近现在,分数越高。
|
||||
relationship_score (关系分):从 RelationshipManager 获取,关系越好,越适合深入聊记忆话题。
|
||||
final_score = (context_relevance_score * 权重) + (relationship_score * 权重)
|
||||
TaskDrivenStrategy (任务/日程驱动策略)
|
||||
|
||||
触发条件:常规触发。
|
||||
核心逻辑:
|
||||
查询 ScheduleManager 或 MonthlyPlanManager,看看今天或最近有没有“待办事项”或“计划”。
|
||||
如果有,可以围绕这个任务发起对话。例如:“我看到日程表上说今天要去图书馆,准备好了吗?”
|
||||
适宜度分数计算:
|
||||
task_urgency_score (任务紧急度):任务越紧急,分数越高。
|
||||
task_relevance_score (任务相关度):如果任务与当前聊天对象有关,分数更高。
|
||||
final_score = (task_urgency_score * 权重) + (task_relevance_score * 权重)
|
||||
GenericTopicStrategy (通用话题策略)
|
||||
|
||||
触发条件:作为所有其他策略都无法执行时的“兜底”策略。
|
||||
核心逻辑:从一个预设的话题库(或者让 LLM 随机生成)中挑选一个通用的话题,比如“今天天气不错,适合出门散步呢”或者“最近有什么有趣的新闻吗?”。
|
||||
适宜度分数:固定低分(例如 0.1),确保它是最后的选择。
|
||||
Reference in New Issue
Block a user