fix:加入工具调用能力
This commit is contained in:
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
@@ -47,8 +47,8 @@ class ChattingObservation(Observation):
|
||||
new_messages = list(
|
||||
db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
|
||||
.sort("time", 1)
|
||||
.limit(20)
|
||||
) # 按时间正序排列,最多20条
|
||||
.limit(15)
|
||||
) # 按时间正序排列,最多15条
|
||||
|
||||
if not new_messages:
|
||||
return self.observe_info # 没有新消息,返回上次观察结果
|
||||
@@ -63,8 +63,8 @@ class ChattingObservation(Observation):
|
||||
|
||||
# 将新消息添加到talking_message,同时保持列表长度不超过20条
|
||||
self.talking_message.extend(new_messages)
|
||||
if len(self.talking_message) > 20:
|
||||
self.talking_message = self.talking_message[-20:] # 只保留最新的20条
|
||||
if len(self.talking_message) > 15:
|
||||
self.talking_message = self.talking_message[-15:] # 只保留最新的15条
|
||||
self.translate_message_list_to_str()
|
||||
|
||||
# 更新观察次数
|
||||
|
||||
@@ -16,6 +16,8 @@ import random
|
||||
from src.plugins.chat.chat_stream import ChatStream
|
||||
from src.plugins.person_info.relationship_manager import relationship_manager
|
||||
from src.plugins.chat.utils import get_recent_group_speaker
|
||||
import json
|
||||
from src.heart_flow.tool_use import ToolUser
|
||||
|
||||
subheartflow_config = LogConfig(
|
||||
# 使用海马体专用样式
|
||||
@@ -48,6 +50,7 @@ class SubHeartflow:
|
||||
model=global_config.llm_sub_heartflow, temperature=0.2, max_tokens=600, request_type="sub_heart_flow"
|
||||
)
|
||||
|
||||
|
||||
self.main_heartflow_info = ""
|
||||
|
||||
self.last_reply_time = time.time()
|
||||
@@ -64,6 +67,8 @@ class SubHeartflow:
|
||||
|
||||
self.bot_name = global_config.BOT_NICKNAME
|
||||
|
||||
self.tool_user = ToolUser()
|
||||
|
||||
def add_observation(self, observation: Observation):
|
||||
"""添加一个新的observation对象到列表中,如果已存在相同id的observation则不添加"""
|
||||
# 查找是否存在相同id的observation
|
||||
@@ -115,6 +120,7 @@ class SubHeartflow:
|
||||
observation = self.observations[0]
|
||||
await observation.observe()
|
||||
|
||||
|
||||
async def do_thinking_before_reply(self, message_txt:str, sender_name:str, chat_stream:ChatStream):
|
||||
current_thinking_info = self.current_mind
|
||||
mood_info = self.current_state.mood
|
||||
@@ -123,6 +129,19 @@ class SubHeartflow:
|
||||
chat_observe_info = observation.observe_info
|
||||
# print(f"chat_observe_info:{chat_observe_info}")
|
||||
|
||||
# 首先尝试使用工具获取更多信息
|
||||
tool_result = await self.tool_user.use_tool(message_txt, sender_name, chat_stream)
|
||||
|
||||
# 如果工具被使用且获得了结果,将收集到的信息合并到思考中
|
||||
if tool_result.get("used_tools", False):
|
||||
logger.info("使用工具收集了信息")
|
||||
|
||||
# 如果有收集到的信息,将其添加到当前思考中
|
||||
if "collected_info" in tool_result:
|
||||
collected_info = tool_result["collected_info"]
|
||||
|
||||
|
||||
|
||||
# 开始构建prompt
|
||||
prompt_personality = f"你的名字是{self.bot_name},你"
|
||||
# person
|
||||
@@ -158,38 +177,11 @@ class SubHeartflow:
|
||||
f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
|
||||
)
|
||||
|
||||
# 调取记忆
|
||||
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
|
||||
text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
|
||||
)
|
||||
|
||||
if related_memory:
|
||||
related_memory_info = ""
|
||||
for memory in related_memory:
|
||||
related_memory_info += memory[1]
|
||||
else:
|
||||
related_memory_info = ""
|
||||
|
||||
related_info, grouped_results = await self.get_prompt_info(chat_observe_info + message_txt, 0.4)
|
||||
# print(related_info)
|
||||
for _topic, results in grouped_results.items():
|
||||
for result in results:
|
||||
# print(result)
|
||||
self.running_knowledges.append(result)
|
||||
|
||||
# print(f"相关记忆:{related_memory_info}")
|
||||
|
||||
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
|
||||
|
||||
prompt = ""
|
||||
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n"
|
||||
if tool_result.get("used_tools", False):
|
||||
prompt += f"{collected_info}\n"
|
||||
prompt += f"{relation_prompt_all}\n"
|
||||
prompt += f"{prompt_personality}\n"
|
||||
# prompt += f"你刚刚在做的事情是:{schedule_info}\n"
|
||||
# if related_memory_info:
|
||||
# prompt += f"你想起来你之前见过的回忆:{related_memory_info}。\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
|
||||
# if related_info:
|
||||
# prompt += f"你想起你知道:{related_info}\n"
|
||||
prompt += f"刚刚你的想法是{current_thinking_info}。如果有新的内容,记得转换话题\n"
|
||||
prompt += "-----------------------------------\n"
|
||||
prompt += f"现在你正在上网,和qq群里的网友们聊天,群里正在聊的话题是:{chat_observe_info}\n"
|
||||
@@ -310,224 +302,5 @@ class SubHeartflow:
|
||||
self.past_mind.append(self.current_mind)
|
||||
self.current_mind = response
|
||||
|
||||
async def get_prompt_info(self, message: str, threshold: float):
|
||||
start_time = time.time()
|
||||
related_info = ""
|
||||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||
|
||||
# 1. 先从LLM获取主题,类似于记忆系统的做法
|
||||
topics = []
|
||||
# try:
|
||||
# # 先尝试使用记忆系统的方法获取主题
|
||||
# hippocampus = HippocampusManager.get_instance()._hippocampus
|
||||
# topic_num = min(5, max(1, int(len(message) * 0.1)))
|
||||
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
|
||||
|
||||
# # 提取关键词
|
||||
# topics = re.findall(r"<([^>]+)>", topics_response[0])
|
||||
# if not topics:
|
||||
# topics = []
|
||||
# else:
|
||||
# topics = [
|
||||
# topic.strip()
|
||||
# for topic in ",".join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
# if topic.strip()
|
||||
# ]
|
||||
|
||||
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
|
||||
# except Exception as e:
|
||||
# logger.error(f"从LLM提取主题失败: {str(e)}")
|
||||
# # 如果LLM提取失败,使用jieba分词提取关键词作为备选
|
||||
# words = jieba.cut(message)
|
||||
# topics = [word for word in words if len(word) > 1][:5]
|
||||
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
|
||||
|
||||
# 如果无法提取到主题,直接使用整个消息
|
||||
if not topics:
|
||||
logger.debug("未能提取到任何主题,使用整个消息进行查询")
|
||||
embedding = await get_embedding(message, request_type="info_retrieval")
|
||||
if not embedding:
|
||||
logger.error("获取消息嵌入向量失败")
|
||||
return ""
|
||||
|
||||
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
|
||||
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}秒")
|
||||
return related_info, {}
|
||||
|
||||
# 2. 对每个主题进行知识库查询
|
||||
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
|
||||
|
||||
# 优化:批量获取嵌入向量,减少API调用
|
||||
embeddings = {}
|
||||
topics_batch = [topic for topic in topics if len(topic) > 0]
|
||||
if message: # 确保消息非空
|
||||
topics_batch.append(message)
|
||||
|
||||
# 批量获取嵌入向量
|
||||
embed_start_time = time.time()
|
||||
for text in topics_batch:
|
||||
if not text or len(text.strip()) == 0:
|
||||
continue
|
||||
|
||||
try:
|
||||
embedding = await get_embedding(text, request_type="info_retrieval")
|
||||
if embedding:
|
||||
embeddings[text] = embedding
|
||||
else:
|
||||
logger.warning(f"获取'{text}'的嵌入向量失败")
|
||||
except Exception as e:
|
||||
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
|
||||
|
||||
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}秒")
|
||||
|
||||
if not embeddings:
|
||||
logger.error("所有嵌入向量获取失败")
|
||||
return ""
|
||||
|
||||
# 3. 对每个主题进行知识库查询
|
||||
all_results = []
|
||||
query_start_time = time.time()
|
||||
|
||||
# 首先添加原始消息的查询结果
|
||||
if message in embeddings:
|
||||
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
|
||||
if original_results:
|
||||
for result in original_results:
|
||||
result["topic"] = "原始消息"
|
||||
all_results.extend(original_results)
|
||||
logger.info(f"原始消息查询到{len(original_results)}条结果")
|
||||
|
||||
# 然后添加每个主题的查询结果
|
||||
for topic in topics:
|
||||
if not topic or topic not in embeddings:
|
||||
continue
|
||||
|
||||
try:
|
||||
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
|
||||
if topic_results:
|
||||
# 添加主题标记
|
||||
for result in topic_results:
|
||||
result["topic"] = topic
|
||||
all_results.extend(topic_results)
|
||||
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
|
||||
except Exception as e:
|
||||
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
|
||||
|
||||
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
|
||||
|
||||
# 4. 去重和过滤
|
||||
process_start_time = time.time()
|
||||
unique_contents = set()
|
||||
filtered_results = []
|
||||
for result in all_results:
|
||||
content = result["content"]
|
||||
if content not in unique_contents:
|
||||
unique_contents.add(content)
|
||||
filtered_results.append(result)
|
||||
|
||||
# 5. 按相似度排序
|
||||
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
|
||||
|
||||
# 6. 限制总数量(最多10条)
|
||||
filtered_results = filtered_results[:10]
|
||||
logger.info(
|
||||
f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果"
|
||||
)
|
||||
|
||||
# 7. 格式化输出
|
||||
if filtered_results:
|
||||
format_start_time = time.time()
|
||||
grouped_results = {}
|
||||
for result in filtered_results:
|
||||
topic = result["topic"]
|
||||
if topic not in grouped_results:
|
||||
grouped_results[topic] = []
|
||||
grouped_results[topic].append(result)
|
||||
|
||||
# 按主题组织输出
|
||||
for topic, results in grouped_results.items():
|
||||
related_info += f"【主题: {topic}】\n"
|
||||
for _i, result in enumerate(results, 1):
|
||||
_similarity = result["similarity"]
|
||||
content = result["content"].strip()
|
||||
# 调试:为内容添加序号和相似度信息
|
||||
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
|
||||
related_info += f"{content}\n"
|
||||
related_info += "\n"
|
||||
|
||||
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}秒")
|
||||
|
||||
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}秒")
|
||||
return related_info, grouped_results
|
||||
|
||||
def get_info_from_db(
|
||||
self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
|
||||
) -> Union[str, list]:
|
||||
if not query_embedding:
|
||||
return "" if not return_raw else []
|
||||
# 使用余弦相似度计算
|
||||
pipeline = [
|
||||
{
|
||||
"$addFields": {
|
||||
"dotProduct": {
|
||||
"$reduce": {
|
||||
"input": {"$range": [0, {"$size": "$embedding"}]},
|
||||
"initialValue": 0,
|
||||
"in": {
|
||||
"$add": [
|
||||
"$$value",
|
||||
{
|
||||
"$multiply": [
|
||||
{"$arrayElemAt": ["$embedding", "$$this"]},
|
||||
{"$arrayElemAt": [query_embedding, "$$this"]},
|
||||
]
|
||||
},
|
||||
]
|
||||
},
|
||||
}
|
||||
},
|
||||
"magnitude1": {
|
||||
"$sqrt": {
|
||||
"$reduce": {
|
||||
"input": "$embedding",
|
||||
"initialValue": 0,
|
||||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||||
}
|
||||
}
|
||||
},
|
||||
"magnitude2": {
|
||||
"$sqrt": {
|
||||
"$reduce": {
|
||||
"input": query_embedding,
|
||||
"initialValue": 0,
|
||||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
|
||||
{
|
||||
"$match": {
|
||||
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
|
||||
}
|
||||
},
|
||||
{"$sort": {"similarity": -1}},
|
||||
{"$limit": limit},
|
||||
{"$project": {"content": 1, "similarity": 1}},
|
||||
]
|
||||
|
||||
results = list(db.knowledges.aggregate(pipeline))
|
||||
logger.debug(f"知识库查询结果数量: {len(results)}")
|
||||
|
||||
if not results:
|
||||
return "" if not return_raw else []
|
||||
|
||||
if return_raw:
|
||||
return results
|
||||
else:
|
||||
# 返回所有找到的内容,用换行分隔
|
||||
return "\n".join(str(result["content"]) for result in results)
|
||||
|
||||
|
||||
# subheartflow = SubHeartflow()
|
||||
|
||||
561
src/heart_flow/tool_use.py
Normal file
561
src/heart_flow/tool_use.py
Normal file
@@ -0,0 +1,561 @@
|
||||
from src.plugins.models.utils_model import LLM_request
|
||||
from src.plugins.config.config import global_config
|
||||
from src.plugins.chat.chat_stream import ChatStream
|
||||
from src.plugins.memory_system.Hippocampus import HippocampusManager
|
||||
from src.common.database import db
|
||||
import time
|
||||
import json
|
||||
from src.common.logger import get_module_logger
|
||||
from src.plugins.chat.utils import get_embedding
|
||||
from typing import Union
|
||||
logger = get_module_logger("tool_use")
|
||||
|
||||
|
||||
class ToolUser:
|
||||
def __init__(self):
|
||||
self.llm_model_tool = LLM_request(
|
||||
model=global_config.llm_heartflow, temperature=0.2, max_tokens=1000, request_type="tool_use"
|
||||
)
|
||||
|
||||
async def _build_tool_prompt(self, message_txt:str, sender_name:str, chat_stream:ChatStream):
|
||||
"""构建工具使用的提示词
|
||||
|
||||
Args:
|
||||
message_txt: 用户消息文本
|
||||
sender_name: 发送者名称
|
||||
chat_stream: 聊天流对象
|
||||
|
||||
Returns:
|
||||
str: 构建好的提示词
|
||||
"""
|
||||
from src.plugins.config.config import global_config
|
||||
|
||||
new_messages = list(
|
||||
db.messages.find({"chat_id": chat_stream.stream_id, "time": {"$gt": time.time()}})
|
||||
.sort("time", 1)
|
||||
.limit(15)
|
||||
)
|
||||
new_messages_str = ""
|
||||
for msg in new_messages:
|
||||
if "detailed_plain_text" in msg:
|
||||
new_messages_str += f"{msg['detailed_plain_text']}"
|
||||
|
||||
# 这些信息应该从调用者传入,而不是从self获取
|
||||
bot_name = global_config.BOT_NICKNAME
|
||||
prompt = ""
|
||||
prompt += "你正在思考如何回复群里的消息。\n"
|
||||
prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
|
||||
prompt += f"注意你就是{bot_name},{bot_name}指的就是你。"
|
||||
prompt += "你现在需要对群里的聊天内容进行回复,现在请你思考,你是否需要额外的信息,或者一些工具来帮你回复,比如回忆或者搜寻已有的知识,或者了解你现在正在做什么,请输出你需要的工具,或者你需要的额外信息。"
|
||||
|
||||
return prompt
|
||||
|
||||
def _define_tools(self):
|
||||
"""定义可用的工具列表
|
||||
|
||||
Returns:
|
||||
list: 工具定义列表
|
||||
"""
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "search_knowledge",
|
||||
"description": "从知识库中搜索相关信息",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "搜索查询关键词"
|
||||
},
|
||||
"threshold": {
|
||||
"type": "number",
|
||||
"description": "相似度阈值,0.0到1.0之间"
|
||||
}
|
||||
},
|
||||
"required": ["query"]
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_memory",
|
||||
"description": "从记忆系统中获取相关记忆",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"text": {
|
||||
"type": "string",
|
||||
"description": "要查询的相关文本"
|
||||
},
|
||||
"max_memory_num": {
|
||||
"type": "integer",
|
||||
"description": "最大返回记忆数量"
|
||||
}
|
||||
},
|
||||
"required": ["text"]
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_task",
|
||||
"description": "获取当前正在做的事情/最近的任务",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"num": {
|
||||
"type": "integer",
|
||||
"description": "要获取的任务数量"
|
||||
},
|
||||
"time_info": {
|
||||
"type": "boolean",
|
||||
"description": "是否包含时间信息"
|
||||
}
|
||||
},
|
||||
"required": []
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
return tools
|
||||
|
||||
async def _execute_tool_call(self, tool_call, message_txt:str):
|
||||
"""执行特定的工具调用
|
||||
|
||||
Args:
|
||||
tool_call: 工具调用对象
|
||||
message_txt: 原始消息文本
|
||||
|
||||
Returns:
|
||||
dict: 工具调用结果
|
||||
"""
|
||||
try:
|
||||
function_name = tool_call["function"]["name"]
|
||||
function_args = json.loads(tool_call["function"]["arguments"])
|
||||
|
||||
if function_name == "search_knowledge":
|
||||
return await self._execute_search_knowledge(tool_call, function_args, message_txt)
|
||||
elif function_name == "get_memory":
|
||||
return await self._execute_get_memory(tool_call, function_args, message_txt)
|
||||
elif function_name == "get_current_task":
|
||||
return await self._execute_get_current_task(tool_call, function_args)
|
||||
|
||||
logger.warning(f"未知工具名称: {function_name}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"执行工具调用时发生错误: {str(e)}")
|
||||
return None
|
||||
|
||||
async def _execute_search_knowledge(self, tool_call, function_args, message_txt:str):
|
||||
"""执行知识库搜索工具
|
||||
|
||||
Args:
|
||||
tool_call: 工具调用对象
|
||||
function_args: 工具参数
|
||||
message_txt: 原始消息文本
|
||||
|
||||
Returns:
|
||||
dict: 工具调用结果
|
||||
"""
|
||||
try:
|
||||
query = function_args.get("query", message_txt)
|
||||
threshold = function_args.get("threshold", 0.4)
|
||||
|
||||
# 调用知识库搜索
|
||||
embedding = await get_embedding(query, request_type="info_retrieval")
|
||||
if embedding:
|
||||
knowledge_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
|
||||
return {
|
||||
"tool_call_id": tool_call["id"],
|
||||
"role": "tool",
|
||||
"name": "search_knowledge",
|
||||
"content": f"知识库搜索结果: {knowledge_info}"
|
||||
}
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"知识库搜索工具执行失败: {str(e)}")
|
||||
return None
|
||||
|
||||
async def _execute_get_memory(self, tool_call, function_args, message_txt:str):
|
||||
"""执行记忆获取工具
|
||||
|
||||
Args:
|
||||
tool_call: 工具调用对象
|
||||
function_args: 工具参数
|
||||
message_txt: 原始消息文本
|
||||
|
||||
Returns:
|
||||
dict: 工具调用结果
|
||||
"""
|
||||
try:
|
||||
text = function_args.get("text", message_txt)
|
||||
max_memory_num = function_args.get("max_memory_num", 2)
|
||||
|
||||
# 调用记忆系统
|
||||
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
|
||||
text=text,
|
||||
max_memory_num=max_memory_num,
|
||||
max_memory_length=2,
|
||||
max_depth=3,
|
||||
fast_retrieval=False
|
||||
)
|
||||
|
||||
memory_info = ""
|
||||
if related_memory:
|
||||
for memory in related_memory:
|
||||
memory_info += memory[1] + "\n"
|
||||
|
||||
return {
|
||||
"tool_call_id": tool_call["id"],
|
||||
"role": "tool",
|
||||
"name": "get_memory",
|
||||
"content": f"记忆系统结果: {memory_info if memory_info else '没有找到相关记忆'}"
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"记忆获取工具执行失败: {str(e)}")
|
||||
return None
|
||||
|
||||
async def _execute_get_current_task(self, tool_call, function_args):
|
||||
"""执行获取当前任务工具
|
||||
|
||||
Args:
|
||||
tool_call: 工具调用对象
|
||||
function_args: 工具参数
|
||||
|
||||
Returns:
|
||||
dict: 工具调用结果
|
||||
"""
|
||||
try:
|
||||
from src.plugins.schedule.schedule_generator import bot_schedule
|
||||
|
||||
# 获取参数,如果没有提供则使用默认值
|
||||
num = function_args.get("num", 1)
|
||||
time_info = function_args.get("time_info", False)
|
||||
|
||||
# 调用日程系统获取当前任务
|
||||
current_task = bot_schedule.get_current_num_task(num=num, time_info=time_info)
|
||||
|
||||
# 格式化返回结果
|
||||
if current_task:
|
||||
task_info = current_task
|
||||
else:
|
||||
task_info = "当前没有正在进行的任务"
|
||||
|
||||
return {
|
||||
"tool_call_id": tool_call["id"],
|
||||
"role": "tool",
|
||||
"name": "get_current_task",
|
||||
"content": f"当前任务信息: {task_info}"
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"获取当前任务工具执行失败: {str(e)}")
|
||||
return None
|
||||
|
||||
async def use_tool(self, message_txt:str, sender_name:str, chat_stream:ChatStream):
|
||||
"""使用工具辅助思考,判断是否需要额外信息
|
||||
|
||||
Args:
|
||||
message_txt: 用户消息文本
|
||||
sender_name: 发送者名称
|
||||
chat_stream: 聊天流对象
|
||||
|
||||
Returns:
|
||||
dict: 工具使用结果
|
||||
"""
|
||||
try:
|
||||
# 构建提示词
|
||||
prompt = await self._build_tool_prompt(message_txt, sender_name, chat_stream)
|
||||
|
||||
# 定义可用工具
|
||||
tools = self._define_tools()
|
||||
|
||||
# 使用llm_model_tool发送带工具定义的请求
|
||||
payload = {
|
||||
"model": self.llm_model_tool.model_name,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"max_tokens": global_config.max_response_length,
|
||||
"tools": tools,
|
||||
"temperature": 0.2
|
||||
}
|
||||
|
||||
logger.debug(f"发送工具调用请求,模型: {self.llm_model_tool.model_name}")
|
||||
# 发送请求获取模型是否需要调用工具
|
||||
response = await self.llm_model_tool._execute_request(
|
||||
endpoint="/chat/completions",
|
||||
payload=payload,
|
||||
prompt=prompt
|
||||
)
|
||||
|
||||
# 根据返回值数量判断是否有工具调用
|
||||
if len(response) == 3:
|
||||
content, reasoning_content, tool_calls = response
|
||||
logger.info(f"工具思考: {tool_calls}")
|
||||
|
||||
# 检查响应中工具调用是否有效
|
||||
if not tool_calls:
|
||||
logger.info("模型返回了空的tool_calls列表")
|
||||
return {"used_tools": False, "thinking": self.current_mind}
|
||||
|
||||
logger.info(f"模型请求调用{len(tool_calls)}个工具")
|
||||
tool_results = []
|
||||
collected_info = ""
|
||||
|
||||
# 执行所有工具调用
|
||||
for tool_call in tool_calls:
|
||||
result = await self._execute_tool_call(tool_call, message_txt)
|
||||
if result:
|
||||
tool_results.append(result)
|
||||
# 将工具结果添加到收集的信息中
|
||||
collected_info += f"\n{result['name']}返回结果: {result['content']}\n"
|
||||
|
||||
# 如果有工具结果,直接返回收集的信息
|
||||
if collected_info:
|
||||
logger.info(f"工具调用收集到信息: {collected_info}")
|
||||
return {
|
||||
"used_tools": True,
|
||||
"collected_info": collected_info,
|
||||
"thinking": self.current_mind # 保持原始思考不变
|
||||
}
|
||||
else:
|
||||
# 没有工具调用
|
||||
content, reasoning_content = response
|
||||
logger.info("模型没有请求调用任何工具")
|
||||
|
||||
# 如果没有工具调用或处理失败,直接返回原始思考
|
||||
return {
|
||||
"used_tools": False,
|
||||
"thinking": self.current_mind
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"工具调用过程中出错: {str(e)}")
|
||||
return {
|
||||
"used_tools": False,
|
||||
"error": str(e),
|
||||
"thinking": self.current_mind
|
||||
}
|
||||
|
||||
|
||||
|
||||
async def get_prompt_info(self, message: str, threshold: float):
|
||||
start_time = time.time()
|
||||
related_info = ""
|
||||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||
|
||||
# 1. 先从LLM获取主题,类似于记忆系统的做法
|
||||
topics = []
|
||||
# try:
|
||||
# # 先尝试使用记忆系统的方法获取主题
|
||||
# hippocampus = HippocampusManager.get_instance()._hippocampus
|
||||
# topic_num = min(5, max(1, int(len(message) * 0.1)))
|
||||
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
|
||||
|
||||
# # 提取关键词
|
||||
# topics = re.findall(r"<([^>]+)>", topics_response[0])
|
||||
# if not topics:
|
||||
# topics = []
|
||||
# else:
|
||||
# topics = [
|
||||
# topic.strip()
|
||||
# for topic in ",".join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||||
# if topic.strip()
|
||||
# ]
|
||||
|
||||
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
|
||||
# except Exception as e:
|
||||
# logger.error(f"从LLM提取主题失败: {str(e)}")
|
||||
# # 如果LLM提取失败,使用jieba分词提取关键词作为备选
|
||||
# words = jieba.cut(message)
|
||||
# topics = [word for word in words if len(word) > 1][:5]
|
||||
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
|
||||
|
||||
# 如果无法提取到主题,直接使用整个消息
|
||||
if not topics:
|
||||
logger.debug("未能提取到任何主题,使用整个消息进行查询")
|
||||
embedding = await get_embedding(message, request_type="info_retrieval")
|
||||
if not embedding:
|
||||
logger.error("获取消息嵌入向量失败")
|
||||
return ""
|
||||
|
||||
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
|
||||
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}秒")
|
||||
return related_info, {}
|
||||
|
||||
# 2. 对每个主题进行知识库查询
|
||||
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
|
||||
|
||||
# 优化:批量获取嵌入向量,减少API调用
|
||||
embeddings = {}
|
||||
topics_batch = [topic for topic in topics if len(topic) > 0]
|
||||
if message: # 确保消息非空
|
||||
topics_batch.append(message)
|
||||
|
||||
# 批量获取嵌入向量
|
||||
embed_start_time = time.time()
|
||||
for text in topics_batch:
|
||||
if not text or len(text.strip()) == 0:
|
||||
continue
|
||||
|
||||
try:
|
||||
embedding = await get_embedding(text, request_type="info_retrieval")
|
||||
if embedding:
|
||||
embeddings[text] = embedding
|
||||
else:
|
||||
logger.warning(f"获取'{text}'的嵌入向量失败")
|
||||
except Exception as e:
|
||||
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
|
||||
|
||||
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}秒")
|
||||
|
||||
if not embeddings:
|
||||
logger.error("所有嵌入向量获取失败")
|
||||
return ""
|
||||
|
||||
# 3. 对每个主题进行知识库查询
|
||||
all_results = []
|
||||
query_start_time = time.time()
|
||||
|
||||
# 首先添加原始消息的查询结果
|
||||
if message in embeddings:
|
||||
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
|
||||
if original_results:
|
||||
for result in original_results:
|
||||
result["topic"] = "原始消息"
|
||||
all_results.extend(original_results)
|
||||
logger.info(f"原始消息查询到{len(original_results)}条结果")
|
||||
|
||||
# 然后添加每个主题的查询结果
|
||||
for topic in topics:
|
||||
if not topic or topic not in embeddings:
|
||||
continue
|
||||
|
||||
try:
|
||||
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
|
||||
if topic_results:
|
||||
# 添加主题标记
|
||||
for result in topic_results:
|
||||
result["topic"] = topic
|
||||
all_results.extend(topic_results)
|
||||
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
|
||||
except Exception as e:
|
||||
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
|
||||
|
||||
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
|
||||
|
||||
# 4. 去重和过滤
|
||||
process_start_time = time.time()
|
||||
unique_contents = set()
|
||||
filtered_results = []
|
||||
for result in all_results:
|
||||
content = result["content"]
|
||||
if content not in unique_contents:
|
||||
unique_contents.add(content)
|
||||
filtered_results.append(result)
|
||||
|
||||
# 5. 按相似度排序
|
||||
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
|
||||
|
||||
# 6. 限制总数量(最多10条)
|
||||
filtered_results = filtered_results[:10]
|
||||
logger.info(
|
||||
f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果"
|
||||
)
|
||||
|
||||
# 7. 格式化输出
|
||||
if filtered_results:
|
||||
format_start_time = time.time()
|
||||
grouped_results = {}
|
||||
for result in filtered_results:
|
||||
topic = result["topic"]
|
||||
if topic not in grouped_results:
|
||||
grouped_results[topic] = []
|
||||
grouped_results[topic].append(result)
|
||||
|
||||
# 按主题组织输出
|
||||
for topic, results in grouped_results.items():
|
||||
related_info += f"【主题: {topic}】\n"
|
||||
for _i, result in enumerate(results, 1):
|
||||
_similarity = result["similarity"]
|
||||
content = result["content"].strip()
|
||||
# 调试:为内容添加序号和相似度信息
|
||||
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
|
||||
related_info += f"{content}\n"
|
||||
related_info += "\n"
|
||||
|
||||
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}秒")
|
||||
|
||||
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}秒")
|
||||
return related_info, grouped_results
|
||||
|
||||
def get_info_from_db(
|
||||
self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
|
||||
) -> Union[str, list]:
|
||||
if not query_embedding:
|
||||
return "" if not return_raw else []
|
||||
# 使用余弦相似度计算
|
||||
pipeline = [
|
||||
{
|
||||
"$addFields": {
|
||||
"dotProduct": {
|
||||
"$reduce": {
|
||||
"input": {"$range": [0, {"$size": "$embedding"}]},
|
||||
"initialValue": 0,
|
||||
"in": {
|
||||
"$add": [
|
||||
"$$value",
|
||||
{
|
||||
"$multiply": [
|
||||
{"$arrayElemAt": ["$embedding", "$$this"]},
|
||||
{"$arrayElemAt": [query_embedding, "$$this"]},
|
||||
]
|
||||
},
|
||||
]
|
||||
},
|
||||
}
|
||||
},
|
||||
"magnitude1": {
|
||||
"$sqrt": {
|
||||
"$reduce": {
|
||||
"input": "$embedding",
|
||||
"initialValue": 0,
|
||||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||||
}
|
||||
}
|
||||
},
|
||||
"magnitude2": {
|
||||
"$sqrt": {
|
||||
"$reduce": {
|
||||
"input": query_embedding,
|
||||
"initialValue": 0,
|
||||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
|
||||
{
|
||||
"$match": {
|
||||
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
|
||||
}
|
||||
},
|
||||
{"$sort": {"similarity": -1}},
|
||||
{"$limit": limit},
|
||||
{"$project": {"content": 1, "similarity": 1}},
|
||||
]
|
||||
|
||||
results = list(db.knowledges.aggregate(pipeline))
|
||||
logger.debug(f"知识库查询结果数量: {len(results)}")
|
||||
|
||||
if not results:
|
||||
return "" if not return_raw else []
|
||||
|
||||
if return_raw:
|
||||
return results
|
||||
else:
|
||||
# 返回所有找到的内容,用换行分隔
|
||||
return "\n".join(str(result["content"]) for result in results)
|
||||
@@ -342,6 +342,7 @@ class LLM_request:
|
||||
"message": {
|
||||
"content": accumulated_content,
|
||||
"reasoning_content": reasoning_content,
|
||||
# 流式输出可能没有工具调用,此处不需要添加tool_calls字段
|
||||
}
|
||||
}
|
||||
],
|
||||
@@ -366,6 +367,7 @@ class LLM_request:
|
||||
"message": {
|
||||
"content": accumulated_content,
|
||||
"reasoning_content": reasoning_content,
|
||||
# 流式输出可能没有工具调用,此处不需要添加tool_calls字段
|
||||
}
|
||||
}
|
||||
],
|
||||
@@ -384,7 +386,13 @@ class LLM_request:
|
||||
# 构造一个伪result以便调用自定义响应处理器或默认处理器
|
||||
result = {
|
||||
"choices": [
|
||||
{"message": {"content": content, "reasoning_content": reasoning_content}}
|
||||
{
|
||||
"message": {
|
||||
"content": content,
|
||||
"reasoning_content": reasoning_content,
|
||||
# 流式输出可能没有工具调用,此处不需要添加tool_calls字段
|
||||
}
|
||||
}
|
||||
],
|
||||
"usage": usage,
|
||||
}
|
||||
@@ -567,6 +575,9 @@ class LLM_request:
|
||||
if not reasoning_content:
|
||||
reasoning_content = reasoning
|
||||
|
||||
# 提取工具调用信息
|
||||
tool_calls = message.get("tool_calls", None)
|
||||
|
||||
# 记录token使用情况
|
||||
usage = result.get("usage", {})
|
||||
if usage:
|
||||
@@ -582,6 +593,10 @@ class LLM_request:
|
||||
endpoint=endpoint,
|
||||
)
|
||||
|
||||
# 只有当tool_calls存在且不为空时才返回
|
||||
if tool_calls:
|
||||
return content, reasoning_content, tool_calls
|
||||
else:
|
||||
return content, reasoning_content
|
||||
|
||||
return "没有返回结果", ""
|
||||
@@ -605,21 +620,33 @@ class LLM_request:
|
||||
return {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
|
||||
# 防止小朋友们截图自己的key
|
||||
|
||||
async def generate_response(self, prompt: str) -> Tuple[str, str, str]:
|
||||
async def generate_response(self, prompt: str) -> Tuple:
|
||||
"""根据输入的提示生成模型的异步响应"""
|
||||
|
||||
content, reasoning_content = await self._execute_request(endpoint="/chat/completions", prompt=prompt)
|
||||
response = await self._execute_request(endpoint="/chat/completions", prompt=prompt)
|
||||
# 根据返回值的长度决定怎么处理
|
||||
if len(response) == 3:
|
||||
content, reasoning_content, tool_calls = response
|
||||
return content, reasoning_content, self.model_name, tool_calls
|
||||
else:
|
||||
content, reasoning_content = response
|
||||
return content, reasoning_content, self.model_name
|
||||
|
||||
async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple[str, str]:
|
||||
async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple:
|
||||
"""根据输入的提示和图片生成模型的异步响应"""
|
||||
|
||||
content, reasoning_content = await self._execute_request(
|
||||
response = await self._execute_request(
|
||||
endpoint="/chat/completions", prompt=prompt, image_base64=image_base64, image_format=image_format
|
||||
)
|
||||
# 根据返回值的长度决定怎么处理
|
||||
if len(response) == 3:
|
||||
content, reasoning_content, tool_calls = response
|
||||
return content, reasoning_content, tool_calls
|
||||
else:
|
||||
content, reasoning_content = response
|
||||
return content, reasoning_content
|
||||
|
||||
async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple[str, str]]:
|
||||
async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple]:
|
||||
"""异步方式根据输入的提示生成模型的响应"""
|
||||
# 构建请求体
|
||||
data = {
|
||||
@@ -630,10 +657,11 @@ class LLM_request:
|
||||
**kwargs,
|
||||
}
|
||||
|
||||
content, reasoning_content = await self._execute_request(
|
||||
response = await self._execute_request(
|
||||
endpoint="/chat/completions", payload=data, prompt=prompt
|
||||
)
|
||||
return content, reasoning_content
|
||||
# 原样返回响应,不做处理
|
||||
return response
|
||||
|
||||
async def get_embedding(self, text: str) -> Union[list, None]:
|
||||
"""异步方法:获取文本的embedding向量
|
||||
|
||||
0
src/tool_use/tool_use.py
Normal file
0
src/tool_use/tool_use.py
Normal file
Reference in New Issue
Block a user