fix:加入工具调用能力

This commit is contained in:
SengokuCola
2025-04-10 22:13:17 +08:00
parent de061024c1
commit 110f94353f
6 changed files with 627 additions and 265 deletions

Binary file not shown.

View File

@@ -47,8 +47,8 @@ class ChattingObservation(Observation):
new_messages = list( new_messages = list(
db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}}) db.messages.find({"chat_id": self.chat_id, "time": {"$gt": self.last_observe_time}})
.sort("time", 1) .sort("time", 1)
.limit(20) .limit(15)
) # 按时间正序排列,最多20 ) # 按时间正序排列,最多15
if not new_messages: if not new_messages:
return self.observe_info # 没有新消息,返回上次观察结果 return self.observe_info # 没有新消息,返回上次观察结果
@@ -63,8 +63,8 @@ class ChattingObservation(Observation):
# 将新消息添加到talking_message同时保持列表长度不超过20条 # 将新消息添加到talking_message同时保持列表长度不超过20条
self.talking_message.extend(new_messages) self.talking_message.extend(new_messages)
if len(self.talking_message) > 20: if len(self.talking_message) > 15:
self.talking_message = self.talking_message[-20:] # 只保留最新的20 self.talking_message = self.talking_message[-15:] # 只保留最新的15
self.translate_message_list_to_str() self.translate_message_list_to_str()
# 更新观察次数 # 更新观察次数

View File

@@ -16,6 +16,8 @@ import random
from src.plugins.chat.chat_stream import ChatStream from src.plugins.chat.chat_stream import ChatStream
from src.plugins.person_info.relationship_manager import relationship_manager from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.chat.utils import get_recent_group_speaker from src.plugins.chat.utils import get_recent_group_speaker
import json
from src.heart_flow.tool_use import ToolUser
subheartflow_config = LogConfig( subheartflow_config = LogConfig(
# 使用海马体专用样式 # 使用海马体专用样式
@@ -47,6 +49,7 @@ class SubHeartflow:
self.llm_model = LLM_request( self.llm_model = LLM_request(
model=global_config.llm_sub_heartflow, temperature=0.2, max_tokens=600, request_type="sub_heart_flow" model=global_config.llm_sub_heartflow, temperature=0.2, max_tokens=600, request_type="sub_heart_flow"
) )
self.main_heartflow_info = "" self.main_heartflow_info = ""
@@ -63,6 +66,8 @@ class SubHeartflow:
self.running_knowledges = [] self.running_knowledges = []
self.bot_name = global_config.BOT_NICKNAME self.bot_name = global_config.BOT_NICKNAME
self.tool_user = ToolUser()
def add_observation(self, observation: Observation): def add_observation(self, observation: Observation):
"""添加一个新的observation对象到列表中如果已存在相同id的observation则不添加""" """添加一个新的observation对象到列表中如果已存在相同id的observation则不添加"""
@@ -115,6 +120,7 @@ class SubHeartflow:
observation = self.observations[0] observation = self.observations[0]
await observation.observe() await observation.observe()
async def do_thinking_before_reply(self, message_txt:str, sender_name:str, chat_stream:ChatStream): async def do_thinking_before_reply(self, message_txt:str, sender_name:str, chat_stream:ChatStream):
current_thinking_info = self.current_mind current_thinking_info = self.current_mind
mood_info = self.current_state.mood mood_info = self.current_state.mood
@@ -123,6 +129,19 @@ class SubHeartflow:
chat_observe_info = observation.observe_info chat_observe_info = observation.observe_info
# print(f"chat_observe_info{chat_observe_info}") # print(f"chat_observe_info{chat_observe_info}")
# 首先尝试使用工具获取更多信息
tool_result = await self.tool_user.use_tool(message_txt, sender_name, chat_stream)
# 如果工具被使用且获得了结果,将收集到的信息合并到思考中
if tool_result.get("used_tools", False):
logger.info("使用工具收集了信息")
# 如果有收集到的信息,将其添加到当前思考中
if "collected_info" in tool_result:
collected_info = tool_result["collected_info"]
# 开始构建prompt # 开始构建prompt
prompt_personality = f"你的名字是{self.bot_name},你" prompt_personality = f"你的名字是{self.bot_name},你"
# person # person
@@ -158,38 +177,11 @@ class SubHeartflow:
f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。" f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
) )
# 调取记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=chat_observe_info, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
)
if related_memory:
related_memory_info = ""
for memory in related_memory:
related_memory_info += memory[1]
else:
related_memory_info = ""
related_info, grouped_results = await self.get_prompt_info(chat_observe_info + message_txt, 0.4)
# print(related_info)
for _topic, results in grouped_results.items():
for result in results:
# print(result)
self.running_knowledges.append(result)
# print(f"相关记忆:{related_memory_info}")
schedule_info = bot_schedule.get_current_num_task(num=1, time_info=False)
prompt = "" prompt = ""
# prompt += f"麦麦的总体想法是:{self.main_heartflow_info}\n\n" if tool_result.get("used_tools", False):
prompt += f"{collected_info}\n"
prompt += f"{relation_prompt_all}\n" prompt += f"{relation_prompt_all}\n"
prompt += f"{prompt_personality}\n" prompt += f"{prompt_personality}\n"
# prompt += f"你刚刚在做的事情是:{schedule_info}\n"
# if related_memory_info:
# prompt += f"你想起来你之前见过的回忆:{related_memory_info}。\n以上是你的回忆不一定是目前聊天里的人说的也不一定是现在发生的事情请记住。\n"
# if related_info:
# prompt += f"你想起你知道:{related_info}\n"
prompt += f"刚刚你的想法是{current_thinking_info}。如果有新的内容,记得转换话题\n" prompt += f"刚刚你的想法是{current_thinking_info}。如果有新的内容,记得转换话题\n"
prompt += "-----------------------------------\n" prompt += "-----------------------------------\n"
prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n" prompt += f"现在你正在上网和qq群里的网友们聊天群里正在聊的话题是{chat_observe_info}\n"
@@ -211,7 +203,7 @@ class SubHeartflow:
logger.info(f"prompt:\n{prompt}\n") logger.info(f"prompt:\n{prompt}\n")
logger.info(f"麦麦的思考前脑内状态:{self.current_mind}") logger.info(f"麦麦的思考前脑内状态:{self.current_mind}")
return self.current_mind ,self.past_mind return self.current_mind, self.past_mind
async def do_thinking_after_reply(self, reply_content, chat_talking_prompt): async def do_thinking_after_reply(self, reply_content, chat_talking_prompt):
# print("麦麦回复之后脑袋转起来了") # print("麦麦回复之后脑袋转起来了")
@@ -310,224 +302,5 @@ class SubHeartflow:
self.past_mind.append(self.current_mind) self.past_mind.append(self.current_mind)
self.current_mind = response self.current_mind = response
async def get_prompt_info(self, message: str, threshold: float):
start_time = time.time()
related_info = ""
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
# 1. 先从LLM获取主题类似于记忆系统的做法
topics = []
# try:
# # 先尝试使用记忆系统的方法获取主题
# hippocampus = HippocampusManager.get_instance()._hippocampus
# topic_num = min(5, max(1, int(len(message) * 0.1)))
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
# # 提取关键词
# topics = re.findall(r"<([^>]+)>", topics_response[0])
# if not topics:
# topics = []
# else:
# topics = [
# topic.strip()
# for topic in ",".join(topics).replace("", ",").replace("、", ",").replace(" ", ",").split(",")
# if topic.strip()
# ]
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
# except Exception as e:
# logger.error(f"从LLM提取主题失败: {str(e)}")
# # 如果LLM提取失败使用jieba分词提取关键词作为备选
# words = jieba.cut(message)
# topics = [word for word in words if len(word) > 1][:5]
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
# 如果无法提取到主题,直接使用整个消息
if not topics:
logger.debug("未能提取到任何主题,使用整个消息进行查询")
embedding = await get_embedding(message, request_type="info_retrieval")
if not embedding:
logger.error("获取消息嵌入向量失败")
return ""
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}")
return related_info, {}
# 2. 对每个主题进行知识库查询
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
# 优化批量获取嵌入向量减少API调用
embeddings = {}
topics_batch = [topic for topic in topics if len(topic) > 0]
if message: # 确保消息非空
topics_batch.append(message)
# 批量获取嵌入向量
embed_start_time = time.time()
for text in topics_batch:
if not text or len(text.strip()) == 0:
continue
try:
embedding = await get_embedding(text, request_type="info_retrieval")
if embedding:
embeddings[text] = embedding
else:
logger.warning(f"获取'{text}'的嵌入向量失败")
except Exception as e:
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}")
if not embeddings:
logger.error("所有嵌入向量获取失败")
return ""
# 3. 对每个主题进行知识库查询
all_results = []
query_start_time = time.time()
# 首先添加原始消息的查询结果
if message in embeddings:
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
if original_results:
for result in original_results:
result["topic"] = "原始消息"
all_results.extend(original_results)
logger.info(f"原始消息查询到{len(original_results)}条结果")
# 然后添加每个主题的查询结果
for topic in topics:
if not topic or topic not in embeddings:
continue
try:
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
if topic_results:
# 添加主题标记
for result in topic_results:
result["topic"] = topic
all_results.extend(topic_results)
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
except Exception as e:
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
# 4. 去重和过滤
process_start_time = time.time()
unique_contents = set()
filtered_results = []
for result in all_results:
content = result["content"]
if content not in unique_contents:
unique_contents.add(content)
filtered_results.append(result)
# 5. 按相似度排序
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
# 6. 限制总数量最多10条
filtered_results = filtered_results[:10]
logger.info(
f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果"
)
# 7. 格式化输出
if filtered_results:
format_start_time = time.time()
grouped_results = {}
for result in filtered_results:
topic = result["topic"]
if topic not in grouped_results:
grouped_results[topic] = []
grouped_results[topic].append(result)
# 按主题组织输出
for topic, results in grouped_results.items():
related_info += f"【主题: {topic}\n"
for _i, result in enumerate(results, 1):
_similarity = result["similarity"]
content = result["content"].strip()
# 调试:为内容添加序号和相似度信息
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
related_info += f"{content}\n"
related_info += "\n"
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}")
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}")
return related_info, grouped_results
def get_info_from_db(
self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
) -> Union[str, list]:
if not query_embedding:
return "" if not return_raw else []
# 使用余弦相似度计算
pipeline = [
{
"$addFields": {
"dotProduct": {
"$reduce": {
"input": {"$range": [0, {"$size": "$embedding"}]},
"initialValue": 0,
"in": {
"$add": [
"$$value",
{
"$multiply": [
{"$arrayElemAt": ["$embedding", "$$this"]},
{"$arrayElemAt": [query_embedding, "$$this"]},
]
},
]
},
}
},
"magnitude1": {
"$sqrt": {
"$reduce": {
"input": "$embedding",
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
}
}
},
"magnitude2": {
"$sqrt": {
"$reduce": {
"input": query_embedding,
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
}
}
},
}
},
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
{
"$match": {
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
}
},
{"$sort": {"similarity": -1}},
{"$limit": limit},
{"$project": {"content": 1, "similarity": 1}},
]
results = list(db.knowledges.aggregate(pipeline))
logger.debug(f"知识库查询结果数量: {len(results)}")
if not results:
return "" if not return_raw else []
if return_raw:
return results
else:
# 返回所有找到的内容,用换行分隔
return "\n".join(str(result["content"]) for result in results)
# subheartflow = SubHeartflow() # subheartflow = SubHeartflow()

561
src/heart_flow/tool_use.py Normal file
View File

@@ -0,0 +1,561 @@
from src.plugins.models.utils_model import LLM_request
from src.plugins.config.config import global_config
from src.plugins.chat.chat_stream import ChatStream
from src.plugins.memory_system.Hippocampus import HippocampusManager
from src.common.database import db
import time
import json
from src.common.logger import get_module_logger
from src.plugins.chat.utils import get_embedding
from typing import Union
logger = get_module_logger("tool_use")
class ToolUser:
def __init__(self):
self.llm_model_tool = LLM_request(
model=global_config.llm_heartflow, temperature=0.2, max_tokens=1000, request_type="tool_use"
)
async def _build_tool_prompt(self, message_txt:str, sender_name:str, chat_stream:ChatStream):
"""构建工具使用的提示词
Args:
message_txt: 用户消息文本
sender_name: 发送者名称
chat_stream: 聊天流对象
Returns:
str: 构建好的提示词
"""
from src.plugins.config.config import global_config
new_messages = list(
db.messages.find({"chat_id": chat_stream.stream_id, "time": {"$gt": time.time()}})
.sort("time", 1)
.limit(15)
)
new_messages_str = ""
for msg in new_messages:
if "detailed_plain_text" in msg:
new_messages_str += f"{msg['detailed_plain_text']}"
# 这些信息应该从调用者传入而不是从self获取
bot_name = global_config.BOT_NICKNAME
prompt = ""
prompt += "你正在思考如何回复群里的消息。\n"
prompt += f"你注意到{sender_name}刚刚说:{message_txt}\n"
prompt += f"注意你就是{bot_name}{bot_name}指的就是你。"
prompt += "你现在需要对群里的聊天内容进行回复,现在请你思考,你是否需要额外的信息,或者一些工具来帮你回复,比如回忆或者搜寻已有的知识,或者了解你现在正在做什么,请输出你需要的工具,或者你需要的额外信息。"
return prompt
def _define_tools(self):
"""定义可用的工具列表
Returns:
list: 工具定义列表
"""
tools = [
{
"type": "function",
"function": {
"name": "search_knowledge",
"description": "从知识库中搜索相关信息",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "搜索查询关键词"
},
"threshold": {
"type": "number",
"description": "相似度阈值0.0到1.0之间"
}
},
"required": ["query"]
}
}
},
{
"type": "function",
"function": {
"name": "get_memory",
"description": "从记忆系统中获取相关记忆",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "要查询的相关文本"
},
"max_memory_num": {
"type": "integer",
"description": "最大返回记忆数量"
}
},
"required": ["text"]
}
}
},
{
"type": "function",
"function": {
"name": "get_current_task",
"description": "获取当前正在做的事情/最近的任务",
"parameters": {
"type": "object",
"properties": {
"num": {
"type": "integer",
"description": "要获取的任务数量"
},
"time_info": {
"type": "boolean",
"description": "是否包含时间信息"
}
},
"required": []
}
}
}
]
return tools
async def _execute_tool_call(self, tool_call, message_txt:str):
"""执行特定的工具调用
Args:
tool_call: 工具调用对象
message_txt: 原始消息文本
Returns:
dict: 工具调用结果
"""
try:
function_name = tool_call["function"]["name"]
function_args = json.loads(tool_call["function"]["arguments"])
if function_name == "search_knowledge":
return await self._execute_search_knowledge(tool_call, function_args, message_txt)
elif function_name == "get_memory":
return await self._execute_get_memory(tool_call, function_args, message_txt)
elif function_name == "get_current_task":
return await self._execute_get_current_task(tool_call, function_args)
logger.warning(f"未知工具名称: {function_name}")
return None
except Exception as e:
logger.error(f"执行工具调用时发生错误: {str(e)}")
return None
async def _execute_search_knowledge(self, tool_call, function_args, message_txt:str):
"""执行知识库搜索工具
Args:
tool_call: 工具调用对象
function_args: 工具参数
message_txt: 原始消息文本
Returns:
dict: 工具调用结果
"""
try:
query = function_args.get("query", message_txt)
threshold = function_args.get("threshold", 0.4)
# 调用知识库搜索
embedding = await get_embedding(query, request_type="info_retrieval")
if embedding:
knowledge_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
return {
"tool_call_id": tool_call["id"],
"role": "tool",
"name": "search_knowledge",
"content": f"知识库搜索结果: {knowledge_info}"
}
return None
except Exception as e:
logger.error(f"知识库搜索工具执行失败: {str(e)}")
return None
async def _execute_get_memory(self, tool_call, function_args, message_txt:str):
"""执行记忆获取工具
Args:
tool_call: 工具调用对象
function_args: 工具参数
message_txt: 原始消息文本
Returns:
dict: 工具调用结果
"""
try:
text = function_args.get("text", message_txt)
max_memory_num = function_args.get("max_memory_num", 2)
# 调用记忆系统
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
text=text,
max_memory_num=max_memory_num,
max_memory_length=2,
max_depth=3,
fast_retrieval=False
)
memory_info = ""
if related_memory:
for memory in related_memory:
memory_info += memory[1] + "\n"
return {
"tool_call_id": tool_call["id"],
"role": "tool",
"name": "get_memory",
"content": f"记忆系统结果: {memory_info if memory_info else '没有找到相关记忆'}"
}
except Exception as e:
logger.error(f"记忆获取工具执行失败: {str(e)}")
return None
async def _execute_get_current_task(self, tool_call, function_args):
"""执行获取当前任务工具
Args:
tool_call: 工具调用对象
function_args: 工具参数
Returns:
dict: 工具调用结果
"""
try:
from src.plugins.schedule.schedule_generator import bot_schedule
# 获取参数,如果没有提供则使用默认值
num = function_args.get("num", 1)
time_info = function_args.get("time_info", False)
# 调用日程系统获取当前任务
current_task = bot_schedule.get_current_num_task(num=num, time_info=time_info)
# 格式化返回结果
if current_task:
task_info = current_task
else:
task_info = "当前没有正在进行的任务"
return {
"tool_call_id": tool_call["id"],
"role": "tool",
"name": "get_current_task",
"content": f"当前任务信息: {task_info}"
}
except Exception as e:
logger.error(f"获取当前任务工具执行失败: {str(e)}")
return None
async def use_tool(self, message_txt:str, sender_name:str, chat_stream:ChatStream):
"""使用工具辅助思考,判断是否需要额外信息
Args:
message_txt: 用户消息文本
sender_name: 发送者名称
chat_stream: 聊天流对象
Returns:
dict: 工具使用结果
"""
try:
# 构建提示词
prompt = await self._build_tool_prompt(message_txt, sender_name, chat_stream)
# 定义可用工具
tools = self._define_tools()
# 使用llm_model_tool发送带工具定义的请求
payload = {
"model": self.llm_model_tool.model_name,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": global_config.max_response_length,
"tools": tools,
"temperature": 0.2
}
logger.debug(f"发送工具调用请求,模型: {self.llm_model_tool.model_name}")
# 发送请求获取模型是否需要调用工具
response = await self.llm_model_tool._execute_request(
endpoint="/chat/completions",
payload=payload,
prompt=prompt
)
# 根据返回值数量判断是否有工具调用
if len(response) == 3:
content, reasoning_content, tool_calls = response
logger.info(f"工具思考: {tool_calls}")
# 检查响应中工具调用是否有效
if not tool_calls:
logger.info("模型返回了空的tool_calls列表")
return {"used_tools": False, "thinking": self.current_mind}
logger.info(f"模型请求调用{len(tool_calls)}个工具")
tool_results = []
collected_info = ""
# 执行所有工具调用
for tool_call in tool_calls:
result = await self._execute_tool_call(tool_call, message_txt)
if result:
tool_results.append(result)
# 将工具结果添加到收集的信息中
collected_info += f"\n{result['name']}返回结果: {result['content']}\n"
# 如果有工具结果,直接返回收集的信息
if collected_info:
logger.info(f"工具调用收集到信息: {collected_info}")
return {
"used_tools": True,
"collected_info": collected_info,
"thinking": self.current_mind # 保持原始思考不变
}
else:
# 没有工具调用
content, reasoning_content = response
logger.info("模型没有请求调用任何工具")
# 如果没有工具调用或处理失败,直接返回原始思考
return {
"used_tools": False,
"thinking": self.current_mind
}
except Exception as e:
logger.error(f"工具调用过程中出错: {str(e)}")
return {
"used_tools": False,
"error": str(e),
"thinking": self.current_mind
}
async def get_prompt_info(self, message: str, threshold: float):
start_time = time.time()
related_info = ""
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
# 1. 先从LLM获取主题类似于记忆系统的做法
topics = []
# try:
# # 先尝试使用记忆系统的方法获取主题
# hippocampus = HippocampusManager.get_instance()._hippocampus
# topic_num = min(5, max(1, int(len(message) * 0.1)))
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
# # 提取关键词
# topics = re.findall(r"<([^>]+)>", topics_response[0])
# if not topics:
# topics = []
# else:
# topics = [
# topic.strip()
# for topic in ",".join(topics).replace("", ",").replace("、", ",").replace(" ", ",").split(",")
# if topic.strip()
# ]
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
# except Exception as e:
# logger.error(f"从LLM提取主题失败: {str(e)}")
# # 如果LLM提取失败使用jieba分词提取关键词作为备选
# words = jieba.cut(message)
# topics = [word for word in words if len(word) > 1][:5]
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
# 如果无法提取到主题,直接使用整个消息
if not topics:
logger.debug("未能提取到任何主题,使用整个消息进行查询")
embedding = await get_embedding(message, request_type="info_retrieval")
if not embedding:
logger.error("获取消息嵌入向量失败")
return ""
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}")
return related_info, {}
# 2. 对每个主题进行知识库查询
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
# 优化批量获取嵌入向量减少API调用
embeddings = {}
topics_batch = [topic for topic in topics if len(topic) > 0]
if message: # 确保消息非空
topics_batch.append(message)
# 批量获取嵌入向量
embed_start_time = time.time()
for text in topics_batch:
if not text or len(text.strip()) == 0:
continue
try:
embedding = await get_embedding(text, request_type="info_retrieval")
if embedding:
embeddings[text] = embedding
else:
logger.warning(f"获取'{text}'的嵌入向量失败")
except Exception as e:
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}")
if not embeddings:
logger.error("所有嵌入向量获取失败")
return ""
# 3. 对每个主题进行知识库查询
all_results = []
query_start_time = time.time()
# 首先添加原始消息的查询结果
if message in embeddings:
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
if original_results:
for result in original_results:
result["topic"] = "原始消息"
all_results.extend(original_results)
logger.info(f"原始消息查询到{len(original_results)}条结果")
# 然后添加每个主题的查询结果
for topic in topics:
if not topic or topic not in embeddings:
continue
try:
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
if topic_results:
# 添加主题标记
for result in topic_results:
result["topic"] = topic
all_results.extend(topic_results)
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
except Exception as e:
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
# 4. 去重和过滤
process_start_time = time.time()
unique_contents = set()
filtered_results = []
for result in all_results:
content = result["content"]
if content not in unique_contents:
unique_contents.add(content)
filtered_results.append(result)
# 5. 按相似度排序
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
# 6. 限制总数量最多10条
filtered_results = filtered_results[:10]
logger.info(
f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果"
)
# 7. 格式化输出
if filtered_results:
format_start_time = time.time()
grouped_results = {}
for result in filtered_results:
topic = result["topic"]
if topic not in grouped_results:
grouped_results[topic] = []
grouped_results[topic].append(result)
# 按主题组织输出
for topic, results in grouped_results.items():
related_info += f"【主题: {topic}\n"
for _i, result in enumerate(results, 1):
_similarity = result["similarity"]
content = result["content"].strip()
# 调试:为内容添加序号和相似度信息
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
related_info += f"{content}\n"
related_info += "\n"
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}")
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}")
return related_info, grouped_results
def get_info_from_db(
self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
) -> Union[str, list]:
if not query_embedding:
return "" if not return_raw else []
# 使用余弦相似度计算
pipeline = [
{
"$addFields": {
"dotProduct": {
"$reduce": {
"input": {"$range": [0, {"$size": "$embedding"}]},
"initialValue": 0,
"in": {
"$add": [
"$$value",
{
"$multiply": [
{"$arrayElemAt": ["$embedding", "$$this"]},
{"$arrayElemAt": [query_embedding, "$$this"]},
]
},
]
},
}
},
"magnitude1": {
"$sqrt": {
"$reduce": {
"input": "$embedding",
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
}
}
},
"magnitude2": {
"$sqrt": {
"$reduce": {
"input": query_embedding,
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
}
}
},
}
},
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
{
"$match": {
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
}
},
{"$sort": {"similarity": -1}},
{"$limit": limit},
{"$project": {"content": 1, "similarity": 1}},
]
results = list(db.knowledges.aggregate(pipeline))
logger.debug(f"知识库查询结果数量: {len(results)}")
if not results:
return "" if not return_raw else []
if return_raw:
return results
else:
# 返回所有找到的内容,用换行分隔
return "\n".join(str(result["content"]) for result in results)

View File

@@ -342,6 +342,7 @@ class LLM_request:
"message": { "message": {
"content": accumulated_content, "content": accumulated_content,
"reasoning_content": reasoning_content, "reasoning_content": reasoning_content,
# 流式输出可能没有工具调用此处不需要添加tool_calls字段
} }
} }
], ],
@@ -366,6 +367,7 @@ class LLM_request:
"message": { "message": {
"content": accumulated_content, "content": accumulated_content,
"reasoning_content": reasoning_content, "reasoning_content": reasoning_content,
# 流式输出可能没有工具调用此处不需要添加tool_calls字段
} }
} }
], ],
@@ -384,7 +386,13 @@ class LLM_request:
# 构造一个伪result以便调用自定义响应处理器或默认处理器 # 构造一个伪result以便调用自定义响应处理器或默认处理器
result = { result = {
"choices": [ "choices": [
{"message": {"content": content, "reasoning_content": reasoning_content}} {
"message": {
"content": content,
"reasoning_content": reasoning_content,
# 流式输出可能没有工具调用此处不需要添加tool_calls字段
}
}
], ],
"usage": usage, "usage": usage,
} }
@@ -566,6 +574,9 @@ class LLM_request:
reasoning_content = message.get("reasoning_content", "") reasoning_content = message.get("reasoning_content", "")
if not reasoning_content: if not reasoning_content:
reasoning_content = reasoning reasoning_content = reasoning
# 提取工具调用信息
tool_calls = message.get("tool_calls", None)
# 记录token使用情况 # 记录token使用情况
usage = result.get("usage", {}) usage = result.get("usage", {})
@@ -581,8 +592,12 @@ class LLM_request:
request_type=request_type if request_type is not None else self.request_type, request_type=request_type if request_type is not None else self.request_type,
endpoint=endpoint, endpoint=endpoint,
) )
return content, reasoning_content # 只有当tool_calls存在且不为空时才返回
if tool_calls:
return content, reasoning_content, tool_calls
else:
return content, reasoning_content
return "没有返回结果", "" return "没有返回结果", ""
@@ -605,21 +620,33 @@ class LLM_request:
return {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"} return {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
# 防止小朋友们截图自己的key # 防止小朋友们截图自己的key
async def generate_response(self, prompt: str) -> Tuple[str, str, str]: async def generate_response(self, prompt: str) -> Tuple:
"""根据输入的提示生成模型的异步响应""" """根据输入的提示生成模型的异步响应"""
content, reasoning_content = await self._execute_request(endpoint="/chat/completions", prompt=prompt) response = await self._execute_request(endpoint="/chat/completions", prompt=prompt)
return content, reasoning_content, self.model_name # 根据返回值的长度决定怎么处理
if len(response) == 3:
content, reasoning_content, tool_calls = response
return content, reasoning_content, self.model_name, tool_calls
else:
content, reasoning_content = response
return content, reasoning_content, self.model_name
async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple[str, str]: async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple:
"""根据输入的提示和图片生成模型的异步响应""" """根据输入的提示和图片生成模型的异步响应"""
content, reasoning_content = await self._execute_request( response = await self._execute_request(
endpoint="/chat/completions", prompt=prompt, image_base64=image_base64, image_format=image_format endpoint="/chat/completions", prompt=prompt, image_base64=image_base64, image_format=image_format
) )
return content, reasoning_content # 根据返回值的长度决定怎么处理
if len(response) == 3:
content, reasoning_content, tool_calls = response
return content, reasoning_content, tool_calls
else:
content, reasoning_content = response
return content, reasoning_content
async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple[str, str]]: async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple]:
"""异步方式根据输入的提示生成模型的响应""" """异步方式根据输入的提示生成模型的响应"""
# 构建请求体 # 构建请求体
data = { data = {
@@ -630,10 +657,11 @@ class LLM_request:
**kwargs, **kwargs,
} }
content, reasoning_content = await self._execute_request( response = await self._execute_request(
endpoint="/chat/completions", payload=data, prompt=prompt endpoint="/chat/completions", payload=data, prompt=prompt
) )
return content, reasoning_content # 原样返回响应,不做处理
return response
async def get_embedding(self, text: str) -> Union[list, None]: async def get_embedding(self, text: str) -> Union[list, None]:
"""异步方法获取文本的embedding向量 """异步方法获取文本的embedding向量

0
src/tool_use/tool_use.py Normal file
View File