fix:加入工具调用能力
This commit is contained in:
@@ -342,6 +342,7 @@ class LLM_request:
|
||||
"message": {
|
||||
"content": accumulated_content,
|
||||
"reasoning_content": reasoning_content,
|
||||
# 流式输出可能没有工具调用,此处不需要添加tool_calls字段
|
||||
}
|
||||
}
|
||||
],
|
||||
@@ -366,6 +367,7 @@ class LLM_request:
|
||||
"message": {
|
||||
"content": accumulated_content,
|
||||
"reasoning_content": reasoning_content,
|
||||
# 流式输出可能没有工具调用,此处不需要添加tool_calls字段
|
||||
}
|
||||
}
|
||||
],
|
||||
@@ -384,7 +386,13 @@ class LLM_request:
|
||||
# 构造一个伪result以便调用自定义响应处理器或默认处理器
|
||||
result = {
|
||||
"choices": [
|
||||
{"message": {"content": content, "reasoning_content": reasoning_content}}
|
||||
{
|
||||
"message": {
|
||||
"content": content,
|
||||
"reasoning_content": reasoning_content,
|
||||
# 流式输出可能没有工具调用,此处不需要添加tool_calls字段
|
||||
}
|
||||
}
|
||||
],
|
||||
"usage": usage,
|
||||
}
|
||||
@@ -566,6 +574,9 @@ class LLM_request:
|
||||
reasoning_content = message.get("reasoning_content", "")
|
||||
if not reasoning_content:
|
||||
reasoning_content = reasoning
|
||||
|
||||
# 提取工具调用信息
|
||||
tool_calls = message.get("tool_calls", None)
|
||||
|
||||
# 记录token使用情况
|
||||
usage = result.get("usage", {})
|
||||
@@ -581,8 +592,12 @@ class LLM_request:
|
||||
request_type=request_type if request_type is not None else self.request_type,
|
||||
endpoint=endpoint,
|
||||
)
|
||||
|
||||
return content, reasoning_content
|
||||
|
||||
# 只有当tool_calls存在且不为空时才返回
|
||||
if tool_calls:
|
||||
return content, reasoning_content, tool_calls
|
||||
else:
|
||||
return content, reasoning_content
|
||||
|
||||
return "没有返回结果", ""
|
||||
|
||||
@@ -605,21 +620,33 @@ class LLM_request:
|
||||
return {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
|
||||
# 防止小朋友们截图自己的key
|
||||
|
||||
async def generate_response(self, prompt: str) -> Tuple[str, str, str]:
|
||||
async def generate_response(self, prompt: str) -> Tuple:
|
||||
"""根据输入的提示生成模型的异步响应"""
|
||||
|
||||
content, reasoning_content = await self._execute_request(endpoint="/chat/completions", prompt=prompt)
|
||||
return content, reasoning_content, self.model_name
|
||||
response = await self._execute_request(endpoint="/chat/completions", prompt=prompt)
|
||||
# 根据返回值的长度决定怎么处理
|
||||
if len(response) == 3:
|
||||
content, reasoning_content, tool_calls = response
|
||||
return content, reasoning_content, self.model_name, tool_calls
|
||||
else:
|
||||
content, reasoning_content = response
|
||||
return content, reasoning_content, self.model_name
|
||||
|
||||
async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple[str, str]:
|
||||
async def generate_response_for_image(self, prompt: str, image_base64: str, image_format: str) -> Tuple:
|
||||
"""根据输入的提示和图片生成模型的异步响应"""
|
||||
|
||||
content, reasoning_content = await self._execute_request(
|
||||
response = await self._execute_request(
|
||||
endpoint="/chat/completions", prompt=prompt, image_base64=image_base64, image_format=image_format
|
||||
)
|
||||
return content, reasoning_content
|
||||
# 根据返回值的长度决定怎么处理
|
||||
if len(response) == 3:
|
||||
content, reasoning_content, tool_calls = response
|
||||
return content, reasoning_content, tool_calls
|
||||
else:
|
||||
content, reasoning_content = response
|
||||
return content, reasoning_content
|
||||
|
||||
async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple[str, str]]:
|
||||
async def generate_response_async(self, prompt: str, **kwargs) -> Union[str, Tuple]:
|
||||
"""异步方式根据输入的提示生成模型的响应"""
|
||||
# 构建请求体
|
||||
data = {
|
||||
@@ -630,10 +657,11 @@ class LLM_request:
|
||||
**kwargs,
|
||||
}
|
||||
|
||||
content, reasoning_content = await self._execute_request(
|
||||
response = await self._execute_request(
|
||||
endpoint="/chat/completions", payload=data, prompt=prompt
|
||||
)
|
||||
return content, reasoning_content
|
||||
# 原样返回响应,不做处理
|
||||
return response
|
||||
|
||||
async def get_embedding(self, text: str) -> Union[list, None]:
|
||||
"""异步方法:获取文本的embedding向量
|
||||
|
||||
Reference in New Issue
Block a user