feat:合并自我处理器和关系处理器

This commit is contained in:
SengokuCola
2025-06-21 15:46:53 +08:00
parent fd09550af9
commit 0f5fdc2ae5
10 changed files with 327 additions and 598 deletions

View File

@@ -7,6 +7,7 @@ import toml
from datetime import datetime
from collections import defaultdict
import os
import time
class LogIndex:
@@ -334,40 +335,33 @@ class VirtualLogDisplay:
def display_batch(self, start_index, end_index):
"""批量显示日志条目"""
batch_text = []
batch_tags = []
for i in range(start_index, end_index):
log_entry = self.log_index.get_entry_at_filtered_position(i)
if log_entry:
self.append_entry(log_entry, scroll=False)
def append_entry(self, log_entry, scroll=True):
"""将单个日志条目附加到文本小部件"""
# 检查在添加新内容之前视图是否已滚动到底部
should_scroll = scroll and self.text_widget.yview()[1] > 0.99
parts, tags = self.formatter.format_log_entry(log_entry)
# 合并部分为单行文本
line_text = " ".join(parts) + "\n"
batch_text.append(line_text)
# 记录标签信息(简化处理)
if tags and self.formatter.enable_level_colors:
level = log_entry.get("level", "info")
batch_tags.append(
(
"line",
len("".join(batch_text)) - len(line_text),
len("".join(batch_text)) - 1,
f"level_{level}",
)
)
# 获取插入前的末尾位置
start_pos = self.text_widget.index(tk.END + "-1c")
self.text_widget.insert(tk.END, line_text)
# 一次性插入所有文本
if batch_text:
start_pos = self.text_widget.index(tk.END)
all_text = "".join(batch_text)
self.text_widget.insert(tk.END, all_text)
# 为每个部分应用正确的标签
current_len = 0
for part, tag_name in zip(parts, tags):
start_index = f"{start_pos}+{current_len}c"
end_index = f"{start_pos}+{current_len + len(part)}c"
self.text_widget.tag_add(tag_name, start_index, end_index)
current_len += len(part) + 1 # 计入空格
# 应用标签(可选,为了性能可以考虑简化)
for tag_info in batch_tags:
tag_name = tag_info[3]
self.text_widget.tag_add(tag_name, f"{start_pos}+{tag_info[1]}c", f"{start_pos}+{tag_info[2]}c")
if should_scroll:
self.text_widget.see(tk.END)
class AsyncLogLoader:
@@ -459,6 +453,9 @@ class LogViewer:
# 初始化日志文件路径
self.current_log_file = Path("logs/app.log.jsonl")
self.last_file_size = 0
self.watching_thread = None
self.is_watching = tk.BooleanVar(value=True)
# 初始化异步加载器
self.async_loader = AsyncLogLoader(self.on_file_loaded)
@@ -548,6 +545,9 @@ class LogViewer:
ttk.Button(button_frame, text="选择文件", command=self.select_log_file).pack(side=tk.LEFT, padx=2)
ttk.Button(button_frame, text="刷新", command=self.refresh_log_file).pack(side=tk.LEFT, padx=2)
ttk.Checkbutton(button_frame, text="实时更新", variable=self.is_watching, command=self.toggle_watching).pack(
side=tk.LEFT, padx=2
)
# 过滤控制框架
filter_frame = ttk.Frame(self.control_frame)
@@ -583,16 +583,22 @@ class LogViewer:
return
self.log_index = log_index
try:
self.last_file_size = os.path.getsize(self.current_log_file)
except OSError:
self.last_file_size = 0
self.status_var.set(f"已加载 {log_index.total_entries} 条日志")
# 更新模块列表
self.modules = set(log_index.module_index.keys())
module_values = ["全部"] + sorted(list(self.modules))
self.module_combo["values"] = module_values
self.update_module_list()
# 应用过滤并显示
self.filter_logs()
# 如果开启了实时更新,则开始监视
if self.is_watching.get():
self.start_watching()
def on_loading_progress(self, progress, line_count):
"""加载进度回调"""
self.root.after(0, lambda: self.update_progress(progress, line_count))
@@ -604,6 +610,8 @@ class LogViewer:
def load_log_file_async(self):
"""异步加载日志文件"""
self.stop_watching() # 停止任何正在运行的监视器
if not self.current_log_file.exists():
self.status_var.set("文件不存在")
return
@@ -617,6 +625,7 @@ class LogViewer:
self.log_index = LogIndex()
self.modules.clear()
self.selected_modules.clear()
self.module_var.set("全部")
# 开始异步加载
self.async_loader.load_file_async(str(self.current_log_file), self.on_loading_progress)
@@ -672,6 +681,126 @@ class LogViewer:
"""刷新日志文件"""
self.load_log_file_async()
def toggle_watching(self):
"""切换实时更新状态"""
if self.is_watching.get():
self.start_watching()
else:
self.stop_watching()
def start_watching(self):
"""开始监视文件变化"""
if self.watching_thread and self.watching_thread.is_alive():
return # 已经在监视
if not self.current_log_file.exists():
self.is_watching.set(False)
messagebox.showwarning("警告", "日志文件不存在,无法开启实时更新。")
return
self.watching_thread = threading.Thread(target=self.watch_file_loop, daemon=True)
self.watching_thread.start()
def stop_watching(self):
"""停止监视文件变化"""
self.is_watching.set(False)
# 线程通过检查 is_watching 变量来停止,这里不需要强制干预
self.watching_thread = None
def watch_file_loop(self):
"""监视文件循环"""
while self.is_watching.get():
try:
if not self.current_log_file.exists():
self.root.after(
0,
lambda: messagebox.showwarning("警告", "日志文件丢失,已停止实时更新。"),
)
self.root.after(0, self.is_watching.set, False)
break
current_size = os.path.getsize(self.current_log_file)
if current_size > self.last_file_size:
new_entries = self.read_new_logs(self.last_file_size)
self.last_file_size = current_size
if new_entries:
self.root.after(0, self.append_new_logs, new_entries)
elif current_size < self.last_file_size:
# 文件被截断或替换
self.last_file_size = 0
self.root.after(0, self.refresh_log_file)
break # 刷新会重新启动监视(如果需要),所以结束当前循环
except Exception as e:
print(f"监视日志文件时出错: {e}")
self.root.after(0, self.is_watching.set, False)
break
time.sleep(1)
self.watching_thread = None
def read_new_logs(self, from_position):
"""读取新的日志条目并返回它们"""
new_entries = []
new_modules_found = False
with open(self.current_log_file, "r", encoding="utf-8") as f:
f.seek(from_position)
line_count = self.log_index.total_entries
for line in f:
if line.strip():
try:
log_entry = json.loads(line)
self.log_index.add_entry(line_count, log_entry)
new_entries.append(log_entry)
logger_name = log_entry.get("logger_name", "")
if logger_name and logger_name not in self.modules:
self.modules.add(logger_name)
new_modules_found = True
line_count += 1
except json.JSONDecodeError:
continue
if new_modules_found:
self.root.after(0, self.update_module_list)
return new_entries
def append_new_logs(self, new_entries):
"""将新日志附加到显示中"""
# 检查是否应附加或执行完全刷新(例如,如果过滤器处于活动状态)
selected_modules = (
self.selected_modules if (self.selected_modules and "全部" not in self.selected_modules) else None
)
level = self.level_var.get() if self.level_var.get() != "全部" else None
search_text = self.search_var.get().strip() if self.search_var.get().strip() else None
is_filtered = selected_modules or level or search_text
if is_filtered:
# 如果过滤器处于活动状态,我们必须执行完全刷新以应用它们
self.filter_logs()
return
# 如果没有过滤器,只需附加新日志
for entry in new_entries:
self.log_display.append_entry(entry)
# 更新状态
total_count = self.log_index.total_entries
self.status_var.set(f"显示 {total_count} 条日志")
def update_module_list(self):
"""更新模块下拉列表"""
current_selection = self.module_var.get()
self.modules = set(self.log_index.module_index.keys())
module_values = ["全部"] + sorted(list(self.modules))
self.module_combo["values"] = module_values
if current_selection in module_values:
self.module_var.set(current_selection)
else:
self.module_var.set("全部")
def main():
root = tk.Tk()

View File

@@ -23,7 +23,6 @@ from src.chat.heart_flow.observation.actions_observation import ActionObservatio
from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor
from src.chat.focus_chat.memory_activator import MemoryActivator
from src.chat.focus_chat.info_processors.base_processor import BaseProcessor
from src.chat.focus_chat.info_processors.self_processor import SelfProcessor
from src.chat.focus_chat.info_processors.expression_selector_processor import ExpressionSelectorProcessor
from src.chat.focus_chat.planners.planner_factory import PlannerFactory
from src.chat.focus_chat.planners.modify_actions import ActionModifier
@@ -45,7 +44,6 @@ PROCESSOR_CLASSES = {
"ChattingInfoProcessor": (ChattingInfoProcessor, None),
"ToolProcessor": (ToolProcessor, "tool_use_processor"),
"WorkingMemoryProcessor": (WorkingMemoryProcessor, "working_memory_processor"),
"SelfProcessor": (SelfProcessor, "self_identify_processor"),
"RelationshipProcessor": (RelationshipProcessor, "relation_processor"),
"ExpressionSelectorProcessor": (ExpressionSelectorProcessor, "expression_selector_processor"),
}
@@ -184,7 +182,6 @@ class HeartFChatting:
if name in [
"ToolProcessor",
"WorkingMemoryProcessor",
"SelfProcessor",
"RelationshipProcessor",
"ExpressionSelectorProcessor",
]:

View File

@@ -13,6 +13,7 @@ from typing import List
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.relation_info import RelationInfo
from src.person_info.person_info import PersonInfoManager
from json_repair import repair_json
from src.person_info.person_info import get_person_info_manager
import json
@@ -48,10 +49,11 @@ def init_prompt():
请不要重复调取相同的信息
{name_block}
请你阅读聊天记录,查看是否需要调取某个人的信息,这个人可以是出现在聊天记录中的,也可以是记录中提到的人。
请你阅读聊天记录,查看是否需要调取某个人的信息,这个人可以是出现在聊天记录中的,也可以是记录中提到的人,也可以是你自己({bot_name})
你不同程度上认识群聊里的人,以及他们谈论到的人,你可以根据聊天记录,回忆起有关他们的信息,帮助你参与聊天
1.你需要提供用户名和你想要提取的信息名称类型来进行调取
2.请注意,提取的信息类型一定要和用户有关,不要提取无关的信息
3.你也可以调取有关自己({bot_name})的信息
请以json格式输出例如
@@ -59,7 +61,7 @@ def init_prompt():
"用户A": "ta的昵称",
"用户B": "ta对你的态度",
"用户D": "你对ta的印象",
"person_name": "其他信息",
"{bot_name}": "身份",
"person_name": "其他信息",
}}
@@ -81,6 +83,18 @@ def init_prompt():
"""
Prompt(fetch_info_prompt, "fetch_person_info_prompt")
fetch_bot_info_prompt = """
你是{nickname},你的昵称有{alias_names}
以下是你对自己的了解,请你从中提取和"{info_type}"有关的信息如果无法提取请输出none
{person_impression_block}
{points_text_block}
请严格按照以下json输出格式不要输出多余内容
{{
"{info_type}": "有关你自己的{info_type}的信息内容"
}}
"""
Prompt(fetch_bot_info_prompt, "fetch_bot_info_prompt")
class RelationshipProcessor(BaseProcessor):
log_prefix = "关系"
@@ -549,6 +563,7 @@ class RelationshipProcessor(BaseProcessor):
prompt = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
name_block=name_block,
bot_name=global_config.bot.nickname,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_observe_info,
info_cache_block=info_cache_block,
@@ -567,17 +582,17 @@ class RelationshipProcessor(BaseProcessor):
person_info_manager = get_person_info_manager()
for person_name, info_type in content_json.items():
is_bot = person_name == global_config.bot.nickname or person_name in global_config.bot.alias_names
if is_bot:
person_id = person_info_manager.get_person_id("system", "bot_id")
logger.info(f"{self.log_prefix} 检测到对bot自身({person_name})的信息查询使用特殊ID。")
else:
person_id = person_info_manager.get_person_id_by_person_name(person_name)
if not person_id:
logger.warning(f"{self.log_prefix} 未找到用户 {person_name} 的ID跳过调取信息。")
continue
# 检查是否是bot自己如果是则跳过
user_id = person_info_manager.get_value_sync(person_id, "user_id")
if user_id == global_config.bot.qq_account:
logger.info(f"{self.log_prefix} 跳过调取bot自己({person_name})的信息。")
continue
self.info_fetching_cache.append(
{
"person_id": person_id,
@@ -747,42 +762,37 @@ class RelationshipProcessor(BaseProcessor):
# 首先检查 info_list 缓存
info_list = await person_info_manager.get_value(person_id, "info_list") or []
cached_info = None
person_name = await person_info_manager.get_value(person_id, "person_name")
print(f"info_list: {info_list}")
# print(f"info_list: {info_list}")
# 查找对应的 info_type
for info_item in info_list:
if info_item.get("info_type") == info_type:
cached_info = info_item.get("info_content")
logger.info(f"{self.log_prefix} [缓存命中] 从 info_list 中找到 {info_type} 信息: {cached_info}")
logger.debug(f"{self.log_prefix} info_list中找到 {person_name} {info_type} 信息: {cached_info}")
break
# 如果缓存中有信息,直接使用
if cached_info:
person_name = await person_info_manager.get_value(person_id, "person_name")
if person_id not in self.info_fetched_cache:
self.info_fetched_cache[person_id] = {}
if cached_info == "none":
unknow = True
else:
unknow = False
self.info_fetched_cache[person_id][info_type] = {
"info": cached_info,
"ttl": 8,
"ttl": 4,
"start_time": start_time,
"person_name": person_name,
"unknow": unknow,
"unknow": cached_info == "none",
}
logger.info(f"{self.log_prefix} [缓存使用] 直接使用缓存的 {person_name}{info_type}: {cached_info}")
logger.info(f"{self.log_prefix} 记得 {person_name}{info_type}: {cached_info}")
return
logger.info(f"{self.log_prefix} [缓存命中] 缓存中没有信息")
bot_person_id = PersonInfoManager.get_person_id("system", "bot_id")
is_bot = person_id == bot_person_id
try:
nickname_str = ",".join(global_config.bot.alias_names)
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
person_name = await person_info_manager.get_value(person_id, "person_name")
person_impression = await person_info_manager.get_value(person_id, "impression")
if person_impression:
@@ -804,13 +814,26 @@ class RelationshipProcessor(BaseProcessor):
self.info_fetched_cache[person_id] = {}
self.info_fetched_cache[person_id][info_type] = {
"info": "none",
"ttl": 8,
"ttl": 4,
"start_time": start_time,
"person_name": person_name,
"unknow": True,
}
logger.info(f"{self.log_prefix} 完全不认识 {person_name}")
await self._save_info_to_cache(person_id, info_type, "none")
return
if is_bot:
prompt = (await global_prompt_manager.get_prompt_async("fetch_bot_info_prompt")).format(
nickname=global_config.bot.nickname,
alias_names=",".join(global_config.bot.alias_names),
info_type=info_type,
person_impression_block=person_impression_block,
points_text_block=points_text_block,
)
else:
nickname_str = ",".join(global_config.bot.alias_names)
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
prompt = (await global_prompt_manager.get_prompt_async("fetch_person_info_prompt")).format(
name_block=name_block,
info_type=info_type,
@@ -821,14 +844,13 @@ class RelationshipProcessor(BaseProcessor):
)
except Exception:
logger.error(traceback.format_exc())
print(prompt)
return
try:
# 使用小模型进行即时提取
content, _ = await self.instant_llm_model.generate_response_async(prompt=prompt)
logger.info(f"{self.log_prefix} [LLM提取] {person_name}{info_type} 结果: {content}")
if content:
content_json = json.loads(repair_json(content))
@@ -851,17 +873,15 @@ class RelationshipProcessor(BaseProcessor):
await self._save_info_to_cache(person_id, info_type, info_content if not is_unknown else "none")
if not is_unknown:
logger.info(
f"{self.log_prefix} [LLM提取] 成功获取并缓存 {person_name}{info_type}: {info_content}"
)
logger.info(f"{self.log_prefix} 思考得到,{person_name}{info_type}: {content}")
else:
logger.info(f"{self.log_prefix} [LLM提取] {person_name}{info_type} 信息不明确")
logger.info(f"{self.log_prefix} 思考了也不知道{person_name}{info_type} 信息")
else:
logger.warning(
f"{self.log_prefix} [LLM提取] 小模型返回空结果,获取 {person_name}{info_type} 信息失败。"
f"{self.log_prefix} 小模型返回空结果,获取 {person_name}{info_type} 信息失败。"
)
except Exception as e:
logger.error(f"{self.log_prefix} [LLM提取] 执行小模型请求获取用户信息时出错: {e}")
logger.error(f"{self.log_prefix} 执行小模型请求获取用户信息时出错: {e}")
logger.error(traceback.format_exc())
async def _save_info_to_cache(self, person_id: str, info_type: str, info_content: str):

View File

@@ -1,184 +0,0 @@
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.observation import Observation
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from .base_processor import BaseProcessor
from typing import List, Dict
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.self_info import SelfInfo
from src.individuality.individuality import get_individuality
logger = get_logger("processor")
def init_prompt():
indentify_prompt = """
{time_now},以下是正在进行的聊天内容:
<聊天记录>
{chat_observe_info}
</聊天记录>
{name_block}
请你根据以上聊天记录,思考聊天记录中是否有人提到你自己相关的信息,或者有人询问你的相关信息。
请选择你需要查询的关键词来回答聊天中的问题。如果需要多个关键词,请用逗号隔开。
如果聊天中没有涉及任何关于你的问题请输出none。
现在请输出你要查询的关键词,注意只输出关键词就好,不要输出其他内容:
"""
Prompt(indentify_prompt, "indentify_prompt")
class SelfProcessor(BaseProcessor):
log_prefix = "自我认同"
def __init__(self, subheartflow_id: str):
super().__init__()
self.subheartflow_id = subheartflow_id
self.info_fetched_cache: Dict[str, Dict[str, any]] = {}
self.llm_model = LLMRequest(
model=global_config.model.utils_small,
request_type="focus.processor.self_identify",
)
name = get_chat_manager().get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] "
async def process_info(self, observations: List[Observation] = None, *infos) -> List[InfoBase]:
"""处理信息对象
Args:
*infos: 可变数量的InfoBase类型的信息对象
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
self_info_str = await self.self_indentify(observations)
if self_info_str:
self_info = SelfInfo()
self_info.set_self_info(self_info_str)
else:
self_info = None
return None
return [self_info]
async def self_indentify(
self,
observations: List[Observation] = None,
):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
参数:
observations: 观察信息
返回:
如果return_prompt为False:
tuple: (current_mind, past_mind) 当前想法和过去的想法列表
如果return_prompt为True:
tuple: (current_mind, past_mind, prompt) 当前想法、过去的想法列表和使用的prompt
"""
if observations is None:
observations = []
for observation in observations:
if isinstance(observation, ChattingObservation):
# 获取聊天元信息
is_group_chat = observation.is_group_chat
chat_target_info = observation.chat_target_info
chat_target_name = "对方" # 私聊默认名称
if not is_group_chat and chat_target_info:
# 优先使用person_name其次user_nickname最后回退到默认值
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or chat_target_name
)
# 获取聊天内容
chat_observe_info = observation.get_observe_info()
if isinstance(observation, HFCloopObservation):
pass
nickname_str = ""
for nicknames in global_config.bot.alias_names:
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
# 获取所有可用的关键词
individuality = get_individuality()
available_keywords = individuality.get_all_keywords()
available_keywords_str = "".join(available_keywords) if available_keywords else "暂无关键词"
prompt = (await global_prompt_manager.get_prompt_async("indentify_prompt")).format(
name_block=name_block,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_observe_info[-200:],
available_keywords=available_keywords_str,
bot_name=global_config.bot.nickname,
)
keyword = ""
try:
keyword, _ = await self.llm_model.generate_response_async(prompt=prompt)
# print(f"prompt: {prompt}\nkeyword: {keyword}")
if not keyword:
logger.warning(f"{self.log_prefix} LLM返回空结果自我识别失败。")
except Exception as e:
# 处理总体异常
logger.error(f"{self.log_prefix} 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
keyword = "我是谁,我从哪来,要到哪去"
# 解析关键词
keyword = keyword.strip()
if not keyword or keyword == "none":
keyword_set = []
else:
# 只保留非空关键词,去除多余空格
keyword_set = [k.strip() for k in keyword.split(",") if k.strip()]
# 从individuality缓存中查询关键词信息
for keyword in keyword_set:
if keyword not in self.info_fetched_cache:
# 直接从individuality的json缓存中获取关键词信息
fetched_info = individuality.get_keyword_info(keyword)
if fetched_info:
self.info_fetched_cache[keyword] = {
"info": fetched_info,
"ttl": 5,
}
logger.info(f"{self.log_prefix} 从个体特征缓存中获取关键词 '{keyword}' 的信息")
# 管理TTL生存时间
expired_keywords = []
for fetched_keyword, info in self.info_fetched_cache.items():
if info["ttl"] > 0:
info["ttl"] -= 1
else:
expired_keywords.append(fetched_keyword)
# 删除过期的关键词
for expired_keyword in expired_keywords:
del self.info_fetched_cache[expired_keyword]
fetched_info_str = ""
for keyword, info in self.info_fetched_cache.items():
fetched_info_str += f"你的:{keyword}信息是: {info['info']}\n"
return fetched_info_str
init_prompt()

View File

@@ -25,34 +25,10 @@ install(extra_lines=3)
def init_prompt():
# Prompt(
# """
# {time_block}
# {indentify_block}你现在正在参与以下的聊天,以下是具体的聊天内容:
# {chat_content_block}
# {self_info_block}
# {relation_info_block}
# {cycle_info_block}
# {moderation_prompt}
# 注意除了下面动作选项之外你在群聊里不能做其他任何事情这是你能力的边界现在请你选择合适的action:
# {action_options_text}
# 请以动作的输出要求,以严格的 JSON 格式输出,且仅包含 JSON 内容。
# 请输出你提取的JSON不要有任何其他文字或解释
# """,
# "simple_planner_prompt",
# )
Prompt(
"""
{time_block}
{indentify_block}你现在正在B站进行直播你是一个虚拟主播以下是直播间内容和电脑屏幕内容:
{indentify_block}你现在正在参与以下的聊天,以下是具体的聊天内容:
{chat_content_block}
@@ -62,7 +38,7 @@ def init_prompt():
{cycle_info_block}
{moderation_prompt}
注意,除了下面动作选项之外,你在直播间里不能做其他任何事情这是你能力的边界现在请你选择合适的action:
注意,除了下面动作选项之外,你在群聊里不能做其他任何事情这是你能力的边界现在请你选择合适的action:
{action_options_text}

View File

@@ -167,12 +167,6 @@ class FocusChatConfig(ConfigBase):
class FocusChatProcessorConfig(ConfigBase):
"""专注聊天处理器配置类"""
mind_processor: bool = False
"""是否启用思维处理器"""
self_identify_processor: bool = True
"""是否启用自我识别处理器"""
relation_processor: bool = True
"""是否启用关系识别处理器"""

View File

@@ -14,37 +14,13 @@ from src.manager.async_task_manager import AsyncTask
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.common.logger import get_logger
from src.person_info.person_info import get_person_info_manager
install(extra_lines=3)
logger = get_logger("individuality")
def init_prompt():
"""初始化用于关键词提取的prompts"""
extract_keywords_prompt = """
请分析以下对{bot_name}的描述,提取出其中的独立关键词。每个关键词应该是可以用来从某一角度概括的方面,例如:
性格,身高,喜好,外貌,身份,兴趣,爱好,习惯,等等..........
描述内容:
{personality_sides}
要求:
1. 选择关键词,对{bot_name}的某一方面进行概括
2. 用json格式输出以下是示例格式
{{
"性格":"性格开朗",
"兴趣":"喜欢唱歌",
"身份":"大学生",
}}
以上是一个例子,你可以输出多个关键词,现在请你根据描述内容进行总结{bot_name}输出json格式
请输出json格式不要输出任何解释或其他内容
"""
Prompt(extract_keywords_prompt, "extract_keywords_prompt")
class Individuality:
"""个体特征管理类"""
@@ -55,11 +31,8 @@ class Individuality:
self.express_style: PersonalityExpression = PersonalityExpression()
self.name = ""
# 关键词缓存相关
self.keyword_info_cache: dict = {} # {keyword: [info_list]}
self.fetch_info_file_path = "data/personality/fetch_info.json"
self.meta_info_file_path = "data/personality/meta_info.json"
self.bot_person_id = ""
self.meta_info_file_path = "data/personality/meta.json"
async def initialize(
self,
@@ -76,6 +49,13 @@ class Individuality:
personality_sides: 人格侧面描述
identity_detail: 身份细节描述
"""
person_info_manager = get_person_info_manager()
self.bot_person_id = person_info_manager.get_person_id("system", "bot_id")
self.name = bot_nickname
# 检查配置变化,如果变化则清空
await self._check_config_and_clear_if_changed(bot_nickname, personality_core, personality_sides, identity_detail)
# 初始化人格
self.personality = Personality.initialize(
bot_nickname=bot_nickname, personality_core=personality_core, personality_sides=personality_sides
@@ -84,13 +64,31 @@ class Individuality:
# 初始化身份
self.identity = Identity(identity_detail=identity_detail)
# 将所有人设写入impression
impression_parts = []
if personality_core:
impression_parts.append(f"核心人格: {personality_core}")
if personality_sides:
impression_parts.append(f"人格侧面: {''.join(personality_sides)}")
if identity_detail:
impression_parts.append(f"身份: {''.join(identity_detail)}")
impression_text = "".join(impression_parts)
if impression_text:
impression_text += ""
if impression_text:
update_data = {
"platform": "system",
"user_id": "bot_id",
"person_name": self.name,
"nickname": self.name,
}
await person_info_manager.update_one_field(self.bot_person_id, "impression", impression_text, data=update_data)
logger.info(f"已将完整人设更新到bot的impression中")
await self.express_style.extract_and_store_personality_expressions()
self.name = bot_nickname
# 预处理关键词和生成信息缓存
await self._preprocess_personality_keywords(personality_sides, identity_detail)
def to_dict(self) -> dict:
"""将个体特征转换为字典格式"""
return {
@@ -257,227 +255,64 @@ class Individuality:
return self.personality.neuroticism
return None
def _get_config_hash(self, personality_sides: list, identity_detail: list) -> str:
def _get_config_hash(self, bot_nickname: str, personality_core: str, personality_sides: list, identity_detail: list) -> str:
"""获取当前personality和identity配置的哈希值"""
# 将配置转换为字符串并排序,确保一致性
config_str = json.dumps(
{"personality_sides": sorted(personality_sides), "identity_detail": sorted(identity_detail)}, sort_keys=True
)
config_data = {
"nickname": bot_nickname,
"personality_core": personality_core,
"personality_sides": sorted(personality_sides),
"identity_detail": sorted(identity_detail)
}
config_str = json.dumps(config_data, sort_keys=True)
return hashlib.md5(config_str.encode("utf-8")).hexdigest()
async def _check_config_and_clear_if_changed(
self, bot_nickname: str, personality_core: str, personality_sides: list, identity_detail: list
):
"""检查配置是否发生变化如果变化则清空info_list"""
person_info_manager = get_person_info_manager()
current_hash = self._get_config_hash(bot_nickname, personality_core, personality_sides, identity_detail)
meta_info = self._load_meta_info()
stored_hash = meta_info.get("config_hash")
if current_hash != stored_hash:
logger.info("检测到人格配置发生变化,将清空原有的关键词缓存。")
# 清空数据库中的info_list
update_data = {
"platform": "system",
"user_id": "bot_id",
"person_name": self.name,
"nickname": self.name,
}
await person_info_manager.update_one_field(self.bot_person_id, "info_list", [], data=update_data)
# 更新元信息文件,重置计数器
new_meta_info = {"config_hash": current_hash}
self._save_meta_info(new_meta_info)
def _load_meta_info(self) -> dict:
"""从JSON文件中加载元信息"""
if os.path.exists(self.meta_info_file_path):
try:
with open(self.meta_info_file_path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception as e:
print(f"读取meta_info文件失败: {e}")
except (json.JSONDecodeError, IOError) as e:
logger.error(f"读取meta_info文件失败: {e}, 将创建新文件。")
return {}
return {}
def _save_meta_info(self, meta_info: dict):
"""将元信息保存到JSON文件"""
try:
# 确保目录存在
os.makedirs(os.path.dirname(self.meta_info_file_path), exist_ok=True)
with open(self.meta_info_file_path, "w", encoding="utf-8") as f:
json.dump(meta_info, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"保存meta_info文件失败: {e}")
except IOError as e:
logger.error(f"保存meta_info文件失败: {e}")
def _check_config_change_and_clear(self, personality_sides: list, identity_detail: list):
"""检查配置是否发生变化如果变化则清空fetch_info.json"""
current_config_hash = self._get_config_hash(personality_sides, identity_detail)
meta_info = self._load_meta_info()
stored_config_hash = meta_info.get("config_hash", "")
if current_config_hash != stored_config_hash:
logger.info("检测到personality或identity配置发生变化清空fetch_info数据")
# 清空fetch_info文件
if os.path.exists(self.fetch_info_file_path):
try:
os.remove(self.fetch_info_file_path)
logger.info("已清空fetch_info文件")
except Exception as e:
logger.error(f"清空fetch_info文件失败: {e}")
# 更新元信息
meta_info["config_hash"] = current_config_hash
self._save_meta_info(meta_info)
logger.info("已更新配置哈希值")
def _load_fetch_info_from_file(self) -> dict:
"""从JSON文件中加载已保存的fetch_info数据"""
if os.path.exists(self.fetch_info_file_path):
try:
with open(self.fetch_info_file_path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception as e:
logger.error(f"读取fetch_info文件失败: {e}")
return {}
return {}
def _save_fetch_info_to_file(self, fetch_info_data: dict):
"""将fetch_info数据保存到JSON文件"""
try:
# 确保目录存在
os.makedirs(os.path.dirname(self.fetch_info_file_path), exist_ok=True)
with open(self.fetch_info_file_path, "w", encoding="utf-8") as f:
json.dump(fetch_info_data, f, ensure_ascii=False, indent=2)
except Exception as e:
logger.error(f"保存fetch_info文件失败: {e}")
async def _preprocess_personality_keywords(self, personality_sides: list, identity_detail: list):
"""预处理personality关键词提取关键词并生成缓存"""
try:
logger.info("开始预处理personality关键词...")
# 检查配置变化
self._check_config_change_and_clear(personality_sides, identity_detail)
# 加载已有的预处理数据(如果存在)
fetch_info_data = self._load_fetch_info_from_file()
logger.info(f"加载已有数据,现有关键词数量: {len(fetch_info_data)}")
# 构建完整描述personality + identity
personality_sides_str = ""
for personality_side in personality_sides:
personality_sides_str += f"{personality_side}"
# 添加identity内容
for detail in identity_detail:
personality_sides_str += f"{detail}"
if not personality_sides_str:
logger.info("没有personality和identity配置跳过预处理")
return
# 提取关键词
extract_prompt = (await global_prompt_manager.get_prompt_async("extract_keywords_prompt")).format(
personality_sides=personality_sides_str, bot_name=self.name
)
llm_model = LLMRequest(
model=global_config.model.utils_small,
request_type="individuality.keyword_extract",
)
keywords_result, _ = await llm_model.generate_response_async(prompt=extract_prompt)
logger.info(f"LLM返回的原始关键词结果: '{keywords_result}'")
if not keywords_result or keywords_result.strip() == "none":
logger.info("未提取到有效关键词")
return
# 使用json_repair修复并解析JSON
keyword_dict = json.loads(repair_json(keywords_result))
logger.info(f"成功解析JSON格式的关键词: {keyword_dict}")
# 从字典中提取关键词列表,跳过"keywords"键
keyword_set = []
for key, _value in keyword_dict.items():
if key.lower() != "keywords" and key.strip():
keyword_set.append(key.strip())
logger.info(f"最终提取的关键词列表: {keyword_set}")
logger.info(f"共提取到 {len(keyword_set)} 个关键词")
# 处理每个关键词的信息
updated_count = 0
new_count = 0
for keyword in keyword_set:
try:
logger.info(f"正在处理关键词: '{keyword}' (长度: {len(keyword)})")
# 检查是否已存在该关键词
if keyword in fetch_info_data:
logger.info(f"关键词 '{keyword}' 已存在,将添加新信息...")
action_type = "追加"
else:
logger.info(f"正在为新关键词 '{keyword}' 生成信息...")
action_type = "新增"
fetch_info_data[keyword] = [] # 初始化为空列表
# 从JSON结果中获取关键词的信息
existing_info_from_json = keyword_dict.get(keyword, "")
if (
existing_info_from_json
and existing_info_from_json.strip()
and existing_info_from_json != keyword
):
# 如果JSON中有有效信息且不只是重复关键词本身直接使用
logger.info(f"从JSON结果中获取到关键词 '{keyword}' 的信息: '{existing_info_from_json}'")
if existing_info_from_json not in fetch_info_data[keyword]:
fetch_info_data[keyword].append(existing_info_from_json)
if action_type == "追加":
updated_count += 1
else:
new_count += 1
logger.info(f"{action_type}关键词 '{keyword}' 的信息成功")
else:
logger.info(f"关键词 '{keyword}' 的信息已存在,跳过重复添加")
else:
logger.info(f"关键词 '{keyword}' 在JSON中没有有效信息跳过")
except Exception as e:
logger.error(f"为关键词 '{keyword}' 生成信息时出错: {e}")
continue
# 保存合并后的数据到文件和内存缓存
if updated_count > 0 or new_count > 0:
self._save_fetch_info_to_file(fetch_info_data)
logger.info(
f"预处理完成,新增 {new_count} 个关键词,追加 {updated_count} 个关键词信息,总计 {len(fetch_info_data)} 个关键词"
)
else:
logger.info("预处理完成,但没有生成任何新的有效信息")
# 将数据加载到内存缓存
self.keyword_info_cache = fetch_info_data
logger.info(f"关键词缓存已加载,共 {len(self.keyword_info_cache)} 个关键词")
# 注册定时任务(延迟执行,避免阻塞初始化)
import asyncio
asyncio.create_task(self._register_keyword_update_task_delayed())
except Exception as e:
logger.error(f"预处理personality关键词时出错: {e}")
traceback.print_exc()
async def _register_keyword_update_task_delayed(self):
"""延迟注册关键词更新定时任务"""
try:
# 等待一小段时间确保系统完全初始化
import asyncio
await asyncio.sleep(5)
from src.manager.async_task_manager import async_task_manager
logger = get_logger("individuality")
# 创建定时任务
task = KeywordUpdateTask(
personality_sides=list(global_config.personality.personality_sides),
identity_detail=list(global_config.identity.identity_detail),
individuality_instance=self,
)
# 注册任务
await async_task_manager.add_task(task)
logger.info("关键词更新定时任务已注册")
except Exception as e:
logger.error(f"注册关键词更新定时任务失败: {e}")
traceback.print_exc()
def get_keyword_info(self, keyword: str) -> str:
async def get_keyword_info(self, keyword: str) -> str:
"""获取指定关键词的信息
Args:
@@ -486,13 +321,36 @@ class Individuality:
Returns:
str: 随机选择的一条信息,如果没有则返回空字符串
"""
if keyword in self.keyword_info_cache and self.keyword_info_cache[keyword]:
return random.choice(self.keyword_info_cache[keyword])
person_info_manager = get_person_info_manager()
info_list_json = await person_info_manager.get_value(self.bot_person_id, "info_list")
if info_list_json:
try:
# get_value might return a pre-deserialized list if it comes from a cache,
# or a JSON string if it comes from DB.
info_list = json.loads(info_list_json) if isinstance(info_list_json, str) else info_list_json
for item in info_list:
if isinstance(item, dict) and item.get("info_type") == keyword:
return item.get("info_content", "")
except (json.JSONDecodeError, TypeError):
logger.error(f"解析info_list失败: {info_list_json}")
return ""
return ""
def get_all_keywords(self) -> list:
async def get_all_keywords(self) -> list:
"""获取所有已缓存的关键词列表"""
return list(self.keyword_info_cache.keys())
person_info_manager = get_person_info_manager()
info_list_json = await person_info_manager.get_value(self.bot_person_id, "info_list")
keywords = []
if info_list_json:
try:
info_list = json.loads(info_list_json) if isinstance(info_list_json, str) else info_list_json
for item in info_list:
if isinstance(item, dict) and "info_type" in item:
keywords.append(item["info_type"])
except (json.JSONDecodeError, TypeError):
logger.error(f"解析info_list失败: {info_list_json}")
return keywords
individuality = None
@@ -503,66 +361,3 @@ def get_individuality():
if individuality is None:
individuality = Individuality()
return individuality
class KeywordUpdateTask(AsyncTask):
"""关键词更新定时任务"""
def __init__(self, personality_sides: list, identity_detail: list, individuality_instance):
# 调用父类构造函数
super().__init__(
task_name="keyword_update_task",
wait_before_start=3600, # 1小时后开始
run_interval=3600, # 每小时运行一次
)
self.personality_sides = personality_sides
self.identity_detail = identity_detail
self.individuality_instance = individuality_instance
# 任务控制参数
self.max_runs = 20
self.current_runs = 0
self.original_config_hash = individuality_instance._get_config_hash(personality_sides, identity_detail)
async def run(self):
"""执行任务"""
try:
from src.common.logger import get_logger
logger = get_logger("individuality.task")
# 检查是否超过最大运行次数
if self.current_runs >= self.max_runs:
logger.info(f"关键词更新任务已达到最大运行次数({self.max_runs}),停止执行")
# 设置为0间隔来停止循环任务
self.run_interval = 0
return
# 检查配置是否发生变化
current_config_hash = self.individuality_instance._get_config_hash(
self.personality_sides, self.identity_detail
)
if current_config_hash != self.original_config_hash:
logger.info("检测到personality或identity配置发生变化停止定时任务")
# 设置为0间隔来停止循环任务
self.run_interval = 0
return
self.current_runs += 1
logger.info(f"开始执行关键词更新任务 (第{self.current_runs}/{self.max_runs}次)")
# 执行关键词预处理
await self.individuality_instance._preprocess_personality_keywords(
self.personality_sides, self.identity_detail
)
logger.info(f"关键词更新任务完成 (第{self.current_runs}/{self.max_runs}次)")
except Exception as e:
logger.error(f"关键词更新任务执行失败: {e}")
traceback.print_exc()
# 初始化prompt模板
init_prompt()

View File

@@ -47,6 +47,7 @@ person_info_default = {
"info_list": None,
"points": None,
"forgotten_points": None,
"config_hash": None,
}

View File

@@ -128,7 +128,7 @@ class NoReplyAction(BaseAction):
_waiting_stages = [10, 60, 600] # 第1、2、3次的等待时间
# 动作参数定义
action_parameters = {}
action_parameters = {"reason": "不回复的原因"}
# 动作使用场景
action_require = ["你发送了消息,目前无人回复"]
@@ -143,6 +143,8 @@ class NoReplyAction(BaseAction):
NoReplyAction._consecutive_count += 1
count = NoReplyAction._consecutive_count
reason = self.action_data.get("reason", "")
# 计算本次等待时间
if count <= len(self._waiting_stages):
# 前3次使用预设时间
@@ -153,7 +155,7 @@ class NoReplyAction(BaseAction):
# 第4次及以后使用WAITING_TIME_THRESHOLD
timeout = self.waiting_timeout
logger.info(f"{self.log_prefix} 选择不回复(第{count}次连续),等待新消息中... (超时: {timeout}秒)")
logger.info(f"{self.log_prefix} 选择不回复(第{count}次连续),等待新消息中... (超时: {timeout}秒),原因: {reason}")
# 等待新消息或达到时间上限
result = await self.wait_for_new_message(timeout)

View File

@@ -1,5 +1,5 @@
[inner]
version = "2.24.0"
version = "2.25.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请在修改后将version的值进行变更
@@ -102,7 +102,6 @@ compressed_length = 8 # 不能大于observation_context_size,心流上下文压
compress_length_limit = 4 #最多压缩份数,超过该数值的压缩上下文会被删除
[focus_chat_processor] # 专注聊天处理器打开可以实现更多功能但是会增加token消耗
self_identify_processor = true # 是否启用自我识别处理器
relation_processor = true # 是否启用关系识别处理器
tool_use_processor = false # 是否启用工具使用处理器
working_memory_processor = false # 是否启用工作记忆处理器,消耗量大