feat:合并自我处理器和关系处理器

This commit is contained in:
SengokuCola
2025-06-21 15:46:53 +08:00
parent fd09550af9
commit 0f5fdc2ae5
10 changed files with 327 additions and 598 deletions

View File

@@ -23,7 +23,6 @@ from src.chat.heart_flow.observation.actions_observation import ActionObservatio
from src.chat.focus_chat.info_processors.tool_processor import ToolProcessor
from src.chat.focus_chat.memory_activator import MemoryActivator
from src.chat.focus_chat.info_processors.base_processor import BaseProcessor
from src.chat.focus_chat.info_processors.self_processor import SelfProcessor
from src.chat.focus_chat.info_processors.expression_selector_processor import ExpressionSelectorProcessor
from src.chat.focus_chat.planners.planner_factory import PlannerFactory
from src.chat.focus_chat.planners.modify_actions import ActionModifier
@@ -45,7 +44,6 @@ PROCESSOR_CLASSES = {
"ChattingInfoProcessor": (ChattingInfoProcessor, None),
"ToolProcessor": (ToolProcessor, "tool_use_processor"),
"WorkingMemoryProcessor": (WorkingMemoryProcessor, "working_memory_processor"),
"SelfProcessor": (SelfProcessor, "self_identify_processor"),
"RelationshipProcessor": (RelationshipProcessor, "relation_processor"),
"ExpressionSelectorProcessor": (ExpressionSelectorProcessor, "expression_selector_processor"),
}
@@ -184,7 +182,6 @@ class HeartFChatting:
if name in [
"ToolProcessor",
"WorkingMemoryProcessor",
"SelfProcessor",
"RelationshipProcessor",
"ExpressionSelectorProcessor",
]:

View File

@@ -13,6 +13,7 @@ from typing import List
from typing import Dict
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.relation_info import RelationInfo
from src.person_info.person_info import PersonInfoManager
from json_repair import repair_json
from src.person_info.person_info import get_person_info_manager
import json
@@ -48,10 +49,11 @@ def init_prompt():
请不要重复调取相同的信息
{name_block}
请你阅读聊天记录,查看是否需要调取某个人的信息,这个人可以是出现在聊天记录中的,也可以是记录中提到的人。
请你阅读聊天记录,查看是否需要调取某个人的信息,这个人可以是出现在聊天记录中的,也可以是记录中提到的人,也可以是你自己({bot_name})
你不同程度上认识群聊里的人,以及他们谈论到的人,你可以根据聊天记录,回忆起有关他们的信息,帮助你参与聊天
1.你需要提供用户名和你想要提取的信息名称类型来进行调取
2.请注意,提取的信息类型一定要和用户有关,不要提取无关的信息
3.你也可以调取有关自己({bot_name})的信息
请以json格式输出例如
@@ -59,7 +61,7 @@ def init_prompt():
"用户A": "ta的昵称",
"用户B": "ta对你的态度",
"用户D": "你对ta的印象",
"person_name": "其他信息",
"{bot_name}": "身份",
"person_name": "其他信息",
}}
@@ -81,6 +83,18 @@ def init_prompt():
"""
Prompt(fetch_info_prompt, "fetch_person_info_prompt")
fetch_bot_info_prompt = """
你是{nickname},你的昵称有{alias_names}
以下是你对自己的了解,请你从中提取和"{info_type}"有关的信息如果无法提取请输出none
{person_impression_block}
{points_text_block}
请严格按照以下json输出格式不要输出多余内容
{{
"{info_type}": "有关你自己的{info_type}的信息内容"
}}
"""
Prompt(fetch_bot_info_prompt, "fetch_bot_info_prompt")
class RelationshipProcessor(BaseProcessor):
log_prefix = "关系"
@@ -549,6 +563,7 @@ class RelationshipProcessor(BaseProcessor):
prompt = (await global_prompt_manager.get_prompt_async("relationship_prompt")).format(
name_block=name_block,
bot_name=global_config.bot.nickname,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_observe_info,
info_cache_block=info_cache_block,
@@ -567,17 +582,17 @@ class RelationshipProcessor(BaseProcessor):
person_info_manager = get_person_info_manager()
for person_name, info_type in content_json.items():
person_id = person_info_manager.get_person_id_by_person_name(person_name)
is_bot = person_name == global_config.bot.nickname or person_name in global_config.bot.alias_names
if is_bot:
person_id = person_info_manager.get_person_id("system", "bot_id")
logger.info(f"{self.log_prefix} 检测到对bot自身({person_name})的信息查询使用特殊ID。")
else:
person_id = person_info_manager.get_person_id_by_person_name(person_name)
if not person_id:
logger.warning(f"{self.log_prefix} 未找到用户 {person_name} 的ID跳过调取信息。")
continue
# 检查是否是bot自己如果是则跳过
user_id = person_info_manager.get_value_sync(person_id, "user_id")
if user_id == global_config.bot.qq_account:
logger.info(f"{self.log_prefix} 跳过调取bot自己({person_name})的信息。")
continue
self.info_fetching_cache.append(
{
"person_id": person_id,
@@ -747,42 +762,37 @@ class RelationshipProcessor(BaseProcessor):
# 首先检查 info_list 缓存
info_list = await person_info_manager.get_value(person_id, "info_list") or []
cached_info = None
person_name = await person_info_manager.get_value(person_id, "person_name")
print(f"info_list: {info_list}")
# print(f"info_list: {info_list}")
# 查找对应的 info_type
for info_item in info_list:
if info_item.get("info_type") == info_type:
cached_info = info_item.get("info_content")
logger.info(f"{self.log_prefix} [缓存命中] 从 info_list 中找到 {info_type} 信息: {cached_info}")
logger.debug(f"{self.log_prefix} info_list中找到 {person_name} {info_type} 信息: {cached_info}")
break
# 如果缓存中有信息,直接使用
if cached_info:
person_name = await person_info_manager.get_value(person_id, "person_name")
if person_id not in self.info_fetched_cache:
self.info_fetched_cache[person_id] = {}
if cached_info == "none":
unknow = True
else:
unknow = False
self.info_fetched_cache[person_id][info_type] = {
"info": cached_info,
"ttl": 8,
"ttl": 4,
"start_time": start_time,
"person_name": person_name,
"unknow": unknow,
"unknow": cached_info == "none",
}
logger.info(f"{self.log_prefix} [缓存使用] 直接使用缓存的 {person_name}{info_type}: {cached_info}")
logger.info(f"{self.log_prefix} 记得 {person_name}{info_type}: {cached_info}")
return
logger.info(f"{self.log_prefix} [缓存命中] 缓存中没有信息")
bot_person_id = PersonInfoManager.get_person_id("system", "bot_id")
is_bot = person_id == bot_person_id
try:
nickname_str = ",".join(global_config.bot.alias_names)
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
person_name = await person_info_manager.get_value(person_id, "person_name")
person_impression = await person_info_manager.get_value(person_id, "impression")
if person_impression:
@@ -804,31 +814,43 @@ class RelationshipProcessor(BaseProcessor):
self.info_fetched_cache[person_id] = {}
self.info_fetched_cache[person_id][info_type] = {
"info": "none",
"ttl": 8,
"ttl": 4,
"start_time": start_time,
"person_name": person_name,
"unknow": True,
}
logger.info(f"{self.log_prefix} 完全不认识 {person_name}")
await self._save_info_to_cache(person_id, info_type, "none")
return
prompt = (await global_prompt_manager.get_prompt_async("fetch_person_info_prompt")).format(
name_block=name_block,
info_type=info_type,
person_impression_block=person_impression_block,
person_name=person_name,
info_json_str=f'"{info_type}": "有关{info_type}的信息内容"',
points_text_block=points_text_block,
)
if is_bot:
prompt = (await global_prompt_manager.get_prompt_async("fetch_bot_info_prompt")).format(
nickname=global_config.bot.nickname,
alias_names=",".join(global_config.bot.alias_names),
info_type=info_type,
person_impression_block=person_impression_block,
points_text_block=points_text_block,
)
else:
nickname_str = ",".join(global_config.bot.alias_names)
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
prompt = (await global_prompt_manager.get_prompt_async("fetch_person_info_prompt")).format(
name_block=name_block,
info_type=info_type,
person_impression_block=person_impression_block,
person_name=person_name,
info_json_str=f'"{info_type}": "有关{info_type}的信息内容"',
points_text_block=points_text_block,
)
except Exception:
logger.error(traceback.format_exc())
print(prompt)
return
try:
# 使用小模型进行即时提取
content, _ = await self.instant_llm_model.generate_response_async(prompt=prompt)
logger.info(f"{self.log_prefix} [LLM提取] {person_name}{info_type} 结果: {content}")
if content:
content_json = json.loads(repair_json(content))
@@ -851,17 +873,15 @@ class RelationshipProcessor(BaseProcessor):
await self._save_info_to_cache(person_id, info_type, info_content if not is_unknown else "none")
if not is_unknown:
logger.info(
f"{self.log_prefix} [LLM提取] 成功获取并缓存 {person_name}{info_type}: {info_content}"
)
logger.info(f"{self.log_prefix} 思考得到,{person_name}{info_type}: {content}")
else:
logger.info(f"{self.log_prefix} [LLM提取] {person_name}{info_type} 信息不明确")
logger.info(f"{self.log_prefix} 思考了也不知道{person_name}{info_type} 信息")
else:
logger.warning(
f"{self.log_prefix} [LLM提取] 小模型返回空结果,获取 {person_name}{info_type} 信息失败。"
f"{self.log_prefix} 小模型返回空结果,获取 {person_name}{info_type} 信息失败。"
)
except Exception as e:
logger.error(f"{self.log_prefix} [LLM提取] 执行小模型请求获取用户信息时出错: {e}")
logger.error(f"{self.log_prefix} 执行小模型请求获取用户信息时出错: {e}")
logger.error(traceback.format_exc())
async def _save_info_to_cache(self, person_id: str, info_type: str, info_content: str):

View File

@@ -1,184 +0,0 @@
from src.chat.heart_flow.observation.chatting_observation import ChattingObservation
from src.chat.heart_flow.observation.observation import Observation
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger import get_logger
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from .base_processor import BaseProcessor
from typing import List, Dict
from src.chat.heart_flow.observation.hfcloop_observation import HFCloopObservation
from src.chat.focus_chat.info.info_base import InfoBase
from src.chat.focus_chat.info.self_info import SelfInfo
from src.individuality.individuality import get_individuality
logger = get_logger("processor")
def init_prompt():
indentify_prompt = """
{time_now},以下是正在进行的聊天内容:
<聊天记录>
{chat_observe_info}
</聊天记录>
{name_block}
请你根据以上聊天记录,思考聊天记录中是否有人提到你自己相关的信息,或者有人询问你的相关信息。
请选择你需要查询的关键词来回答聊天中的问题。如果需要多个关键词,请用逗号隔开。
如果聊天中没有涉及任何关于你的问题请输出none。
现在请输出你要查询的关键词,注意只输出关键词就好,不要输出其他内容:
"""
Prompt(indentify_prompt, "indentify_prompt")
class SelfProcessor(BaseProcessor):
log_prefix = "自我认同"
def __init__(self, subheartflow_id: str):
super().__init__()
self.subheartflow_id = subheartflow_id
self.info_fetched_cache: Dict[str, Dict[str, any]] = {}
self.llm_model = LLMRequest(
model=global_config.model.utils_small,
request_type="focus.processor.self_identify",
)
name = get_chat_manager().get_stream_name(self.subheartflow_id)
self.log_prefix = f"[{name}] "
async def process_info(self, observations: List[Observation] = None, *infos) -> List[InfoBase]:
"""处理信息对象
Args:
*infos: 可变数量的InfoBase类型的信息对象
Returns:
List[InfoBase]: 处理后的结构化信息列表
"""
self_info_str = await self.self_indentify(observations)
if self_info_str:
self_info = SelfInfo()
self_info.set_self_info(self_info_str)
else:
self_info = None
return None
return [self_info]
async def self_indentify(
self,
observations: List[Observation] = None,
):
"""
在回复前进行思考,生成内心想法并收集工具调用结果
参数:
observations: 观察信息
返回:
如果return_prompt为False:
tuple: (current_mind, past_mind) 当前想法和过去的想法列表
如果return_prompt为True:
tuple: (current_mind, past_mind, prompt) 当前想法、过去的想法列表和使用的prompt
"""
if observations is None:
observations = []
for observation in observations:
if isinstance(observation, ChattingObservation):
# 获取聊天元信息
is_group_chat = observation.is_group_chat
chat_target_info = observation.chat_target_info
chat_target_name = "对方" # 私聊默认名称
if not is_group_chat and chat_target_info:
# 优先使用person_name其次user_nickname最后回退到默认值
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or chat_target_name
)
# 获取聊天内容
chat_observe_info = observation.get_observe_info()
if isinstance(observation, HFCloopObservation):
pass
nickname_str = ""
for nicknames in global_config.bot.alias_names:
nickname_str += f"{nicknames},"
name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。"
# 获取所有可用的关键词
individuality = get_individuality()
available_keywords = individuality.get_all_keywords()
available_keywords_str = "".join(available_keywords) if available_keywords else "暂无关键词"
prompt = (await global_prompt_manager.get_prompt_async("indentify_prompt")).format(
name_block=name_block,
time_now=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
chat_observe_info=chat_observe_info[-200:],
available_keywords=available_keywords_str,
bot_name=global_config.bot.nickname,
)
keyword = ""
try:
keyword, _ = await self.llm_model.generate_response_async(prompt=prompt)
# print(f"prompt: {prompt}\nkeyword: {keyword}")
if not keyword:
logger.warning(f"{self.log_prefix} LLM返回空结果自我识别失败。")
except Exception as e:
# 处理总体异常
logger.error(f"{self.log_prefix} 执行LLM请求或处理响应时出错: {e}")
logger.error(traceback.format_exc())
keyword = "我是谁,我从哪来,要到哪去"
# 解析关键词
keyword = keyword.strip()
if not keyword or keyword == "none":
keyword_set = []
else:
# 只保留非空关键词,去除多余空格
keyword_set = [k.strip() for k in keyword.split(",") if k.strip()]
# 从individuality缓存中查询关键词信息
for keyword in keyword_set:
if keyword not in self.info_fetched_cache:
# 直接从individuality的json缓存中获取关键词信息
fetched_info = individuality.get_keyword_info(keyword)
if fetched_info:
self.info_fetched_cache[keyword] = {
"info": fetched_info,
"ttl": 5,
}
logger.info(f"{self.log_prefix} 从个体特征缓存中获取关键词 '{keyword}' 的信息")
# 管理TTL生存时间
expired_keywords = []
for fetched_keyword, info in self.info_fetched_cache.items():
if info["ttl"] > 0:
info["ttl"] -= 1
else:
expired_keywords.append(fetched_keyword)
# 删除过期的关键词
for expired_keyword in expired_keywords:
del self.info_fetched_cache[expired_keyword]
fetched_info_str = ""
for keyword, info in self.info_fetched_cache.items():
fetched_info_str += f"你的:{keyword}信息是: {info['info']}\n"
return fetched_info_str
init_prompt()

View File

@@ -25,34 +25,10 @@ install(extra_lines=3)
def init_prompt():
# Prompt(
# """
# {time_block}
# {indentify_block}你现在正在参与以下的聊天,以下是具体的聊天内容:
# {chat_content_block}
# {self_info_block}
# {relation_info_block}
# {cycle_info_block}
# {moderation_prompt}
# 注意除了下面动作选项之外你在群聊里不能做其他任何事情这是你能力的边界现在请你选择合适的action:
# {action_options_text}
# 请以动作的输出要求,以严格的 JSON 格式输出,且仅包含 JSON 内容。
# 请输出你提取的JSON不要有任何其他文字或解释
# """,
# "simple_planner_prompt",
# )
Prompt(
"""
{time_block}
{indentify_block}你现在正在B站进行直播你是一个虚拟主播以下是直播间内容和电脑屏幕内容:
{indentify_block}你现在正在参与以下的聊天,以下是具体的聊天内容:
{chat_content_block}
@@ -62,7 +38,7 @@ def init_prompt():
{cycle_info_block}
{moderation_prompt}
注意,除了下面动作选项之外,你在直播间里不能做其他任何事情这是你能力的边界现在请你选择合适的action:
注意,除了下面动作选项之外,你在群聊里不能做其他任何事情这是你能力的边界现在请你选择合适的action:
{action_options_text}