This commit is contained in:
Windpicker-owo
2025-07-26 18:55:53 +08:00
20 changed files with 269 additions and 1009 deletions

View File

@@ -39,33 +39,7 @@ def init_prompt():
Prompt("你正在和{sender_name}聊天,这是你们之前聊的内容:", "chat_target_private1")
Prompt("在群里聊天", "chat_target_group2")
Prompt("{sender_name}聊天", "chat_target_private2")
Prompt("\n你有以下这些**知识**\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
Prompt(
"""
{expression_habits_block}
{tool_info_block}
{knowledge_prompt}
{memory_block}
{relation_info_block}
{extra_info_block}
{chat_target}
{time_block}
{chat_info}
{reply_target_block}
{identity}
{action_descriptions}
你正在{chat_target_2},你现在的心情是:{mood_state}
现在请你读读之前的聊天记录,并给出回复
{config_expression_style}。注意不要复读你说过的话
{keywords_reaction_prompt}
{moderation_prompt}
不要浮夸,不要夸张修辞,不要输出多余内容(包括前后缀,冒号和引号,括号()表情包at或 @等 )。只输出回复内容""",
"default_generator_prompt",
)
Prompt(
"""
{expression_habits_block}
@@ -113,7 +87,8 @@ def init_prompt():
{core_dialogue_prompt}
{reply_target_block}
对方最新发送的内容:{message_txt}
你现在的心情是:{mood_state}
{config_expression_style}
注意不要复读你说过的话
@@ -177,7 +152,6 @@ class DefaultReplyer:
async def generate_reply_with_context(
self,
reply_data: Optional[Dict[str, Any]] = None,
reply_to: str = "",
extra_info: str = "",
available_actions: Optional[Dict[str, ActionInfo]] = None,
@@ -186,29 +160,24 @@ class DefaultReplyer:
) -> Tuple[bool, Optional[str], Optional[str]]:
"""
回复器 (Replier): 核心逻辑,负责生成回复文本。
(已整合原 HeartFCGenerator 的功能)
"""
prompt = None
if available_actions is None:
available_actions = {}
try:
if not reply_data:
reply_data = {
"reply_to": reply_to,
"extra_info": extra_info,
}
for key, value in reply_data.items():
if not value:
logger.debug(f"回复数据跳过{key},生成回复时将忽略。")
# 3. 构建 Prompt
with Timer("构建Prompt", {}): # 内部计时器,可选保留
prompt = await self.build_prompt_reply_context(
reply_data=reply_data, # 传递action_data
reply_to = reply_to,
extra_info=extra_info,
available_actions=available_actions,
enable_timeout=enable_timeout,
enable_tool=enable_tool,
)
if not prompt:
logger.warning("构建prompt失败跳过回复生成")
return False, None, None
# 4. 调用 LLM 生成回复
content = None
@@ -308,14 +277,13 @@ class DefaultReplyer:
traceback.print_exc()
return False, None
async def build_relation_info(self, reply_data=None):
async def build_relation_info(self, reply_to: str = ""):
if not global_config.relationship.enable_relationship:
return ""
relationship_fetcher = relationship_fetcher_manager.get_fetcher(self.chat_stream.stream_id)
if not reply_data:
if not reply_to:
return ""
reply_to = reply_data.get("reply_to", "")
sender, text = self._parse_reply_target(reply_to)
if not sender or not text:
return ""
@@ -407,7 +375,7 @@ class DefaultReplyer:
return memory_str
async def build_tool_info(self, chat_history, reply_data: Optional[Dict], enable_tool: bool = True):
async def build_tool_info(self, chat_history, reply_to: str = "", enable_tool: bool = True):
"""构建工具信息块
Args:
@@ -421,10 +389,9 @@ class DefaultReplyer:
if not enable_tool:
return ""
if not reply_data:
if not reply_to:
return ""
reply_to = reply_data.get("reply_to", "")
sender, text = self._parse_reply_target(reply_to)
if not text:
@@ -603,7 +570,8 @@ class DefaultReplyer:
async def build_prompt_reply_context(
self,
reply_data: Dict[str, Any],
reply_to: str,
extra_info: str = "",
available_actions: Optional[Dict[str, ActionInfo]] = None,
enable_timeout: bool = False,
enable_tool: bool = True,
@@ -628,8 +596,6 @@ class DefaultReplyer:
chat_id = chat_stream.stream_id
person_info_manager = get_person_info_manager()
is_group_chat = bool(chat_stream.group_info)
reply_to = reply_data.get("reply_to", "none")
extra_info_block = reply_data.get("extra_info", "") or reply_data.get("extra_info_block", "")
if global_config.mood.enable_mood:
chat_mood = mood_manager.get_mood_by_chat_id(chat_id)
@@ -638,6 +604,13 @@ class DefaultReplyer:
mood_prompt = ""
sender, target = self._parse_reply_target(reply_to)
person_info_manager = get_person_info_manager()
person_id = person_info_manager.get_person_id_by_person_name(sender)
user_id = person_info_manager.get_value_sync(person_id, "user_id")
platform = chat_stream.platform
if user_id == global_config.bot.qq_account and platform == global_config.bot.platform:
logger.warning("选取了自身作为回复对象跳过构建prompt")
return ""
target = replace_user_references_sync(target, chat_stream.platform, replace_bot_name=True)
@@ -656,21 +629,6 @@ class DefaultReplyer:
limit=global_config.chat.max_context_size * 2,
)
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_id,
timestamp=time.time(),
limit=global_config.chat.max_context_size,
)
chat_talking_prompt = build_readable_messages(
message_list_before_now,
replace_bot_name=True,
merge_messages=False,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=True,
show_actions=True,
)
message_list_before_short = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_id,
timestamp=time.time(),
@@ -690,10 +648,10 @@ class DefaultReplyer:
self._time_and_run_task(
self.build_expression_habits(chat_talking_prompt_short, target), "expression_habits"
),
self._time_and_run_task(self.build_relation_info(reply_data), "relation_info"),
self._time_and_run_task(self.build_relation_info(reply_to), "relation_info"),
self._time_and_run_task(self.build_memory_block(chat_talking_prompt_short, target), "memory_block"),
self._time_and_run_task(
self.build_tool_info(chat_talking_prompt_short, reply_data, enable_tool=enable_tool), "tool_info"
self.build_tool_info(chat_talking_prompt_short, reply_to, enable_tool=enable_tool), "tool_info"
),
self._time_and_run_task(get_prompt_info(target, threshold=0.38), "prompt_info"),
)
@@ -726,8 +684,8 @@ class DefaultReplyer:
keywords_reaction_prompt = await self.build_keywords_reaction_prompt(target)
if extra_info_block:
extra_info_block = f"以下是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策"
if extra_info:
extra_info_block = f"以下是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策\n{extra_info}\n以上是你在回复时需要参考的信息,现在请你阅读以下内容,进行决策"
else:
extra_info_block = ""
@@ -782,103 +740,63 @@ class DefaultReplyer:
# 根据sender通过person_info_manager反向查找person_id再获取user_id
person_id = person_info_manager.get_person_id_by_person_name(sender)
# 根据配置选择使用哪种 prompt 构建模式
if global_config.chat.use_s4u_prompt_mode and person_id:
# 使用 s4u 对话构建模式:分离当前对话对象和其他对话
try:
user_id_value = await person_info_manager.get_value(person_id, "user_id")
if user_id_value:
target_user_id = str(user_id_value)
except Exception as e:
logger.warning(f"无法从person_id {person_id} 获取user_id: {e}")
target_user_id = ""
# 使用 s4u 对话构建模式:分离当前对话对象和其他对话
try:
user_id_value = await person_info_manager.get_value(person_id, "user_id")
if user_id_value:
target_user_id = str(user_id_value)
except Exception as e:
logger.warning(f"无法从person_id {person_id} 获取user_id: {e}")
target_user_id = ""
# 构建分离的对话 prompt
core_dialogue_prompt, background_dialogue_prompt = self.build_s4u_chat_history_prompts(
message_list_before_now_long, target_user_id
)
# 构建分离的对话 prompt
core_dialogue_prompt, background_dialogue_prompt = self.build_s4u_chat_history_prompts(
message_list_before_now_long, target_user_id
)
self.build_mai_think_context(
chat_id=chat_id,
memory_block=memory_block,
relation_info=relation_info,
time_block=time_block,
chat_target_1=chat_target_1,
chat_target_2=chat_target_2,
mood_prompt=mood_prompt,
identity_block=identity_block,
sender=sender,
target=target,
chat_info=f"""
self.build_mai_think_context(
chat_id=chat_id,
memory_block=memory_block,
relation_info=relation_info,
time_block=time_block,
chat_target_1=chat_target_1,
chat_target_2=chat_target_2,
mood_prompt=mood_prompt,
identity_block=identity_block,
sender=sender,
target=target,
chat_info=f"""
{background_dialogue_prompt}
--------------------------------
{time_block}
这是你和{sender}的对话,你们正在交流中:
{core_dialogue_prompt}""",
)
)
# 使用 s4u 风格的模板
template_name = "s4u_style_prompt"
# 使用 s4u 风格的模板
template_name = "s4u_style_prompt"
return await global_prompt_manager.format_prompt(
template_name,
expression_habits_block=expression_habits_block,
tool_info_block=tool_info,
knowledge_prompt=prompt_info,
memory_block=memory_block,
relation_info_block=relation_info,
extra_info_block=extra_info_block,
identity=identity_block,
action_descriptions=action_descriptions,
sender_name=sender,
mood_state=mood_prompt,
background_dialogue_prompt=background_dialogue_prompt,
time_block=time_block,
core_dialogue_prompt=core_dialogue_prompt,
reply_target_block=reply_target_block,
message_txt=target,
config_expression_style=global_config.expression.expression_style,
keywords_reaction_prompt=keywords_reaction_prompt,
moderation_prompt=moderation_prompt_block,
)
else:
self.build_mai_think_context(
chat_id=chat_id,
memory_block=memory_block,
relation_info=relation_info,
time_block=time_block,
chat_target_1=chat_target_1,
chat_target_2=chat_target_2,
mood_prompt=mood_prompt,
identity_block=identity_block,
sender=sender,
target=target,
chat_info=chat_talking_prompt,
)
# 使用原有的模式
return await global_prompt_manager.format_prompt(
template_name,
expression_habits_block=expression_habits_block,
chat_target=chat_target_1,
chat_info=chat_talking_prompt,
memory_block=memory_block,
tool_info_block=tool_info,
knowledge_prompt=prompt_info,
extra_info_block=extra_info_block,
relation_info_block=relation_info,
time_block=time_block,
reply_target_block=reply_target_block,
moderation_prompt=moderation_prompt_block,
keywords_reaction_prompt=keywords_reaction_prompt,
identity=identity_block,
target_message=target,
sender_name=sender,
config_expression_style=global_config.expression.expression_style,
action_descriptions=action_descriptions,
chat_target_2=chat_target_2,
mood_state=mood_prompt,
)
return await global_prompt_manager.format_prompt(
template_name,
expression_habits_block=expression_habits_block,
tool_info_block=tool_info,
knowledge_prompt=prompt_info,
memory_block=memory_block,
relation_info_block=relation_info,
extra_info_block=extra_info_block,
identity=identity_block,
action_descriptions=action_descriptions,
sender_name=sender,
mood_state=mood_prompt,
background_dialogue_prompt=background_dialogue_prompt,
time_block=time_block,
core_dialogue_prompt=core_dialogue_prompt,
reply_target_block=reply_target_block,
message_txt=target,
config_expression_style=global_config.expression.expression_style,
keywords_reaction_prompt=keywords_reaction_prompt,
moderation_prompt=moderation_prompt_block,
)
async def build_prompt_rewrite_context(
self,
@@ -1079,9 +997,7 @@ async def get_prompt_info(message: str, threshold: float):
logger.debug(f"获取知识库内容,相关信息:{related_info[:100]}...,信息长度: {len(related_info)}")
# 格式化知识信息
formatted_prompt_info = await global_prompt_manager.format_prompt(
"knowledge_prompt", prompt_info=related_info
)
formatted_prompt_info = f"你有以下这些**知识**\n{related_info}\n请你**记住上面的知识**,之后可能会用到。\n"
return formatted_prompt_info
else:
logger.debug("从LPMM知识库获取知识失败可能是从未导入过知识返回空知识...")