Merge remote-tracking branch 'upstream/debug' into tc_refractor
This commit is contained in:
3
.github/workflows/docker-image.yml
vendored
3
.github/workflows/docker-image.yml
vendored
@@ -5,6 +5,7 @@ on:
|
||||
branches:
|
||||
- main
|
||||
- debug # 新增 debug 分支触发
|
||||
- stable-dev
|
||||
tags:
|
||||
- 'v*'
|
||||
workflow_dispatch:
|
||||
@@ -34,6 +35,8 @@ jobs:
|
||||
echo "tags=${{ secrets.DOCKERHUB_USERNAME }}/maimbot:main,${{ secrets.DOCKERHUB_USERNAME }}/maimbot:latest" >> $GITHUB_OUTPUT
|
||||
elif [ "${{ github.ref }}" == "refs/heads/debug" ]; then
|
||||
echo "tags=${{ secrets.DOCKERHUB_USERNAME }}/maimbot:debug" >> $GITHUB_OUTPUT
|
||||
elif [ "${{ github.ref }}" == "refs/heads/stable-dev" ]; then
|
||||
echo "tags=${{ secrets.DOCKERHUB_USERNAME }}/maimbot:stable-dev" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Build and Push Docker Image
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -193,9 +193,8 @@ cython_debug/
|
||||
# jieba
|
||||
jieba.cache
|
||||
|
||||
|
||||
# vscode
|
||||
/.vscode
|
||||
# .vscode
|
||||
!.vscode/settings.json
|
||||
|
||||
# direnv
|
||||
/.direnv
|
||||
30
README.md
30
README.md
@@ -3,7 +3,7 @@
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||

|
||||

|
||||

|
||||
|
||||
@@ -29,15 +29,21 @@
|
||||
</a>
|
||||
</div>
|
||||
|
||||
> ⚠️ **注意事项**
|
||||
> [!WARNING]
|
||||
> - 项目处于活跃开发阶段,代码可能随时更改
|
||||
> - 文档未完善,有问题可以提交 Issue 或者 Discussion
|
||||
> - QQ机器人存在被限制风险,请自行了解,谨慎使用
|
||||
> - 由于持续迭代,可能存在一些已知或未知的bug
|
||||
> - 由于开发中,可能消耗较多token
|
||||
|
||||
**交流群**: 766798517 一群人较多,建议加下面的(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||
**交流群**: 571780722 另一个群(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||
## 💬交流群
|
||||
- [一群](https://qm.qq.com/q/VQ3XZrWgMs) 766798517 ,建议加下面的(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||
- [二群](https://qm.qq.com/q/RzmCiRtHEW) 571780722 (开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||
- [三群](https://qm.qq.com/q/wlH5eT8OmQ) 1035228475(开发和建议相关讨论)不一定有空回复,会优先写文档和代码
|
||||
|
||||
**其他平台版本**
|
||||
|
||||
- (由 [CabLate](https://github.com/cablate) 贡献) [Telegram 与其他平台(未来可能会有)的版本](https://github.com/cablate/MaiMBot/tree/telegram) - [集中讨论串](https://github.com/SengokuCola/MaiMBot/discussions/149)
|
||||
|
||||
##
|
||||
<div align="left">
|
||||
@@ -46,11 +52,16 @@
|
||||
|
||||
### 部署方式
|
||||
|
||||
如果你不知道Docker是什么,建议寻找相关教程或使用手动部署
|
||||
- 📦 **Windows 一键傻瓜式部署**:请运行项目根目录中的 `run.bat`,部署完成后请参照后续配置指南进行配置
|
||||
|
||||
- [📦 Windows 手动部署指南 ](docs/manual_deploy_windows.md)
|
||||
|
||||
- [📦 Linux 手动部署指南 ](docs/manual_deploy_linux.md)
|
||||
|
||||
如果你不知道Docker是什么,建议寻找相关教程或使用手动部署 **(现在不建议使用docker,更新慢,可能不适配)**
|
||||
|
||||
- [🐳 Docker部署指南](docs/docker_deploy.md)
|
||||
|
||||
- [📦 手动部署指南](docs/manual_deploy.md)
|
||||
|
||||
### 配置说明
|
||||
- [🎀 新手配置指南](docs/installation_cute.md) - 通俗易懂的配置教程,适合初次使用的猫娘
|
||||
@@ -129,9 +140,10 @@
|
||||
|
||||
|
||||
## 📌 注意事项
|
||||
SengokuCola纯编程外行,面向cursor编程,很多代码史一样多多包涵
|
||||
|
||||
> ⚠️ **警告**:本应用生成内容来自人工智能模型,由 AI 生成,请仔细甄别,请勿用于违反法律的用途,AI生成内容不代表本人观点和立场。
|
||||
SengokuCola纯编程外行,面向cursor编程,很多代码史一样多多包涵
|
||||
> [!WARNING]
|
||||
> 本应用生成内容来自人工智能模型,由 AI 生成,请仔细甄别,请勿用于违反法律的用途,AI生成内容不代表本人观点和立场。
|
||||
|
||||
## 致谢
|
||||
[nonebot2](https://github.com/nonebot/nonebot2): 跨平台 Python 异步聊天机器人框架
|
||||
@@ -142,7 +154,7 @@ SengokuCola纯编程外行,面向cursor编程,很多代码史一样多多包
|
||||
感谢各位大佬!
|
||||
|
||||
<a href="https://github.com/SengokuCola/MaiMBot/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=SengokuCola/MaiMBot&time=true" />
|
||||
<img src="https://contrib.rocks/image?repo=SengokuCola/MaiMBot" />
|
||||
</a>
|
||||
|
||||
|
||||
|
||||
277
bot.py
277
bot.py
@@ -1,88 +1,233 @@
|
||||
import asyncio
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
|
||||
import nonebot
|
||||
import time
|
||||
|
||||
import uvicorn
|
||||
from dotenv import load_dotenv
|
||||
from loguru import logger
|
||||
from nonebot.adapters.onebot.v11 import Adapter
|
||||
import platform
|
||||
|
||||
'''彩蛋'''
|
||||
from colorama import Fore, init
|
||||
# 获取没有加载env时的环境变量
|
||||
env_mask = {key: os.getenv(key) for key in os.environ}
|
||||
|
||||
init()
|
||||
text = "多年以后,面对AI行刑队,张三将会回想起他2023年在会议上讨论人工智能的那个下午"
|
||||
rainbow_colors = [Fore.RED, Fore.YELLOW, Fore.GREEN, Fore.CYAN, Fore.BLUE, Fore.MAGENTA]
|
||||
rainbow_text = ""
|
||||
for i, char in enumerate(text):
|
||||
rainbow_text += rainbow_colors[i % len(rainbow_colors)] + char
|
||||
print(rainbow_text)
|
||||
'''彩蛋'''
|
||||
uvicorn_server = None
|
||||
|
||||
# 初次启动检测
|
||||
if not os.path.exists("config/bot_config.toml"):
|
||||
logger.warning("检测到bot_config.toml不存在,正在从模板复制")
|
||||
import shutil
|
||||
# 检查config目录是否存在
|
||||
if not os.path.exists("config"):
|
||||
os.makedirs("config")
|
||||
logger.info("创建config目录")
|
||||
|
||||
shutil.copy("template/bot_config_template.toml", "config/bot_config.toml")
|
||||
logger.info("复制完成,请修改config/bot_config.toml和.env.prod中的配置后重新启动")
|
||||
def easter_egg():
|
||||
# 彩蛋
|
||||
from colorama import init, Fore
|
||||
|
||||
# 初始化.env 默认ENVIRONMENT=prod
|
||||
if not os.path.exists(".env"):
|
||||
with open(".env", "w") as f:
|
||||
f.write("ENVIRONMENT=prod")
|
||||
init()
|
||||
text = "多年以后,面对AI行刑队,张三将会回想起他2023年在会议上讨论人工智能的那个下午"
|
||||
rainbow_colors = [Fore.RED, Fore.YELLOW, Fore.GREEN, Fore.CYAN, Fore.BLUE, Fore.MAGENTA]
|
||||
rainbow_text = ""
|
||||
for i, char in enumerate(text):
|
||||
rainbow_text += rainbow_colors[i % len(rainbow_colors)] + char
|
||||
print(rainbow_text)
|
||||
|
||||
# 检测.env.prod文件是否存在
|
||||
if not os.path.exists(".env.prod"):
|
||||
logger.error("检测到.env.prod文件不存在")
|
||||
shutil.copy("template.env", "./.env.prod")
|
||||
|
||||
# 首先加载基础环境变量.env
|
||||
if os.path.exists(".env"):
|
||||
load_dotenv(".env")
|
||||
logger.success("成功加载基础环境变量配置")
|
||||
def init_config():
|
||||
# 初次启动检测
|
||||
if not os.path.exists("config/bot_config.toml"):
|
||||
logger.warning("检测到bot_config.toml不存在,正在从模板复制")
|
||||
|
||||
# 根据 ENVIRONMENT 加载对应的环境配置
|
||||
if os.getenv("ENVIRONMENT") == "prod":
|
||||
logger.success("加载生产环境变量配置")
|
||||
load_dotenv(".env.prod", override=True) # override=True 允许覆盖已存在的环境变量
|
||||
elif os.getenv("ENVIRONMENT") == "dev":
|
||||
logger.success("加载开发环境变量配置")
|
||||
load_dotenv(".env.dev", override=True) # override=True 允许覆盖已存在的环境变量
|
||||
elif os.path.exists(f".env.{os.getenv('ENVIRONMENT')}"):
|
||||
logger.success(f"加载{os.getenv('ENVIRONMENT')}环境变量配置")
|
||||
load_dotenv(f".env.{os.getenv('ENVIRONMENT')}", override=True) # override=True 允许覆盖已存在的环境变量
|
||||
else:
|
||||
logger.error(f"ENVIRONMENT配置错误,请检查.env文件中的ENVIRONMENT变量对应的.env.{os.getenv('ENVIRONMENT')}是否存在")
|
||||
exit(1)
|
||||
# 检查config目录是否存在
|
||||
if not os.path.exists("config"):
|
||||
os.makedirs("config")
|
||||
logger.info("创建config目录")
|
||||
|
||||
# 检测Key是否存在
|
||||
if not os.getenv("SILICONFLOW_KEY"):
|
||||
logger.error("缺失必要的API KEY")
|
||||
logger.error(f"请至少在.env.{os.getenv('ENVIRONMENT')}文件中填写SILICONFLOW_KEY后重新启动")
|
||||
exit(1)
|
||||
shutil.copy("template/bot_config_template.toml", "config/bot_config.toml")
|
||||
logger.info("复制完成,请修改config/bot_config.toml和.env.prod中的配置后重新启动")
|
||||
|
||||
# 获取所有环境变量
|
||||
env_config = {key: os.getenv(key) for key in os.environ}
|
||||
|
||||
# 设置基础配置
|
||||
base_config = {
|
||||
"websocket_port": int(env_config.get("PORT", 8080)),
|
||||
"host": env_config.get("HOST", "127.0.0.1"),
|
||||
"log_level": "INFO",
|
||||
}
|
||||
def init_env():
|
||||
# 初始化.env 默认ENVIRONMENT=prod
|
||||
if not os.path.exists(".env"):
|
||||
with open(".env", "w") as f:
|
||||
f.write("ENVIRONMENT=prod")
|
||||
|
||||
# 合并配置
|
||||
nonebot.init(**base_config, **env_config)
|
||||
# 检测.env.prod文件是否存在
|
||||
if not os.path.exists(".env.prod"):
|
||||
logger.error("检测到.env.prod文件不存在")
|
||||
shutil.copy("template.env", "./.env.prod")
|
||||
|
||||
# 注册适配器
|
||||
driver = nonebot.get_driver()
|
||||
driver.register_adapter(Adapter)
|
||||
# 检测.env.dev文件是否存在,不存在的话直接复制生产环境配置
|
||||
if not os.path.exists(".env.dev"):
|
||||
logger.error("检测到.env.dev文件不存在")
|
||||
shutil.copy(".env.prod", "./.env.dev")
|
||||
|
||||
# 首先加载基础环境变量.env
|
||||
if os.path.exists(".env"):
|
||||
load_dotenv(".env")
|
||||
logger.success("成功加载基础环境变量配置")
|
||||
|
||||
|
||||
def load_env():
|
||||
# 使用闭包实现对加载器的横向扩展,避免大量重复判断
|
||||
def prod():
|
||||
logger.success("加载生产环境变量配置")
|
||||
load_dotenv(".env.prod", override=True) # override=True 允许覆盖已存在的环境变量
|
||||
|
||||
def dev():
|
||||
logger.success("加载开发环境变量配置")
|
||||
load_dotenv(".env.dev", override=True) # override=True 允许覆盖已存在的环境变量
|
||||
|
||||
fn_map = {
|
||||
"prod": prod,
|
||||
"dev": dev
|
||||
}
|
||||
|
||||
env = os.getenv("ENVIRONMENT")
|
||||
logger.info(f"[load_env] 当前的 ENVIRONMENT 变量值:{env}")
|
||||
|
||||
if env in fn_map:
|
||||
fn_map[env]() # 根据映射执行闭包函数
|
||||
|
||||
elif os.path.exists(f".env.{env}"):
|
||||
logger.success(f"加载{env}环境变量配置")
|
||||
load_dotenv(f".env.{env}", override=True) # override=True 允许覆盖已存在的环境变量
|
||||
|
||||
else:
|
||||
logger.error(f"ENVIRONMENT 配置错误,请检查 .env 文件中的 ENVIRONMENT 变量及对应 .env.{env} 是否存在")
|
||||
RuntimeError(f"ENVIRONMENT 配置错误,请检查 .env 文件中的 ENVIRONMENT 变量及对应 .env.{env} 是否存在")
|
||||
|
||||
|
||||
def load_logger():
|
||||
logger.remove() # 移除默认配置
|
||||
logger.add(
|
||||
sys.stderr,
|
||||
format="<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> <fg #777777>|</> <level>{level: <7}</level> <fg "
|
||||
"#777777>|</> <cyan>{name:.<8}</cyan>:<cyan>{function:.<8}</cyan>:<cyan>{line: >4}</cyan> <fg "
|
||||
"#777777>-</> <level>{message}</level>",
|
||||
colorize=True,
|
||||
level=os.getenv("LOG_LEVEL", "INFO"), # 根据环境设置日志级别,默认为INFO
|
||||
filter=lambda record: "nonebot" not in record["name"]
|
||||
)
|
||||
|
||||
|
||||
|
||||
def scan_provider(env_config: dict):
|
||||
provider = {}
|
||||
|
||||
# 利用未初始化 env 时获取的 env_mask 来对新的环境变量集去重
|
||||
# 避免 GPG_KEY 这样的变量干扰检查
|
||||
env_config = dict(filter(lambda item: item[0] not in env_mask, env_config.items()))
|
||||
|
||||
# 遍历 env_config 的所有键
|
||||
for key in env_config:
|
||||
# 检查键是否符合 {provider}_BASE_URL 或 {provider}_KEY 的格式
|
||||
if key.endswith("_BASE_URL") or key.endswith("_KEY"):
|
||||
# 提取 provider 名称
|
||||
provider_name = key.split("_", 1)[0] # 从左分割一次,取第一部分
|
||||
|
||||
# 初始化 provider 的字典(如果尚未初始化)
|
||||
if provider_name not in provider:
|
||||
provider[provider_name] = {"url": None, "key": None}
|
||||
|
||||
# 根据键的类型填充 url 或 key
|
||||
if key.endswith("_BASE_URL"):
|
||||
provider[provider_name]["url"] = env_config[key]
|
||||
elif key.endswith("_KEY"):
|
||||
provider[provider_name]["key"] = env_config[key]
|
||||
|
||||
# 检查每个 provider 是否同时存在 url 和 key
|
||||
for provider_name, config in provider.items():
|
||||
if config["url"] is None or config["key"] is None:
|
||||
logger.error(
|
||||
f"provider 内容:{config}\n"
|
||||
f"env_config 内容:{env_config}"
|
||||
)
|
||||
raise ValueError(f"请检查 '{provider_name}' 提供商配置是否丢失 BASE_URL 或 KEY 环境变量")
|
||||
|
||||
|
||||
async def graceful_shutdown():
|
||||
try:
|
||||
global uvicorn_server
|
||||
if uvicorn_server:
|
||||
uvicorn_server.force_exit = True # 强制退出
|
||||
await uvicorn_server.shutdown()
|
||||
|
||||
tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
|
||||
for task in tasks:
|
||||
task.cancel()
|
||||
await asyncio.gather(*tasks, return_exceptions=True)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"麦麦关闭失败: {e}")
|
||||
|
||||
|
||||
async def uvicorn_main():
|
||||
global uvicorn_server
|
||||
config = uvicorn.Config(
|
||||
app="__main__:app",
|
||||
host=os.getenv("HOST", "127.0.0.1"),
|
||||
port=int(os.getenv("PORT", 8080)),
|
||||
reload=os.getenv("ENVIRONMENT") == "dev",
|
||||
timeout_graceful_shutdown=5,
|
||||
log_config=None,
|
||||
access_log=False
|
||||
)
|
||||
server = uvicorn.Server(config)
|
||||
uvicorn_server = server
|
||||
await server.serve()
|
||||
|
||||
|
||||
def raw_main():
|
||||
# 利用 TZ 环境变量设定程序工作的时区
|
||||
# 仅保证行为一致,不依赖 localtime(),实际对生产环境几乎没有作用
|
||||
if platform.system().lower() != 'windows':
|
||||
time.tzset()
|
||||
|
||||
easter_egg()
|
||||
load_logger()
|
||||
init_config()
|
||||
init_env()
|
||||
load_env()
|
||||
load_logger()
|
||||
|
||||
env_config = {key: os.getenv(key) for key in os.environ}
|
||||
scan_provider(env_config)
|
||||
|
||||
# 设置基础配置
|
||||
base_config = {
|
||||
"websocket_port": int(env_config.get("PORT", 8080)),
|
||||
"host": env_config.get("HOST", "127.0.0.1"),
|
||||
"log_level": "INFO",
|
||||
}
|
||||
|
||||
# 合并配置
|
||||
nonebot.init(**base_config, **env_config)
|
||||
|
||||
# 注册适配器
|
||||
global driver
|
||||
driver = nonebot.get_driver()
|
||||
driver.register_adapter(Adapter)
|
||||
|
||||
# 加载插件
|
||||
nonebot.load_plugins("src/plugins")
|
||||
|
||||
# 加载插件
|
||||
nonebot.load_plugins("src/plugins")
|
||||
|
||||
if __name__ == "__main__":
|
||||
nonebot.run()
|
||||
|
||||
try:
|
||||
raw_main()
|
||||
|
||||
global app
|
||||
app = nonebot.get_asgi()
|
||||
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
loop.run_until_complete(uvicorn_main())
|
||||
except KeyboardInterrupt:
|
||||
logger.warning("麦麦会努力做的更好的!正在停止中......")
|
||||
except Exception as e:
|
||||
logger.error(f"主程序异常: {e}")
|
||||
finally:
|
||||
loop.run_until_complete(graceful_shutdown())
|
||||
loop.close()
|
||||
logger.info("进程终止完毕,麦麦开始休眠......下次再见哦!")
|
||||
|
||||
6
changelog.md
Normal file
6
changelog.md
Normal file
@@ -0,0 +1,6 @@
|
||||
# Changelog
|
||||
|
||||
## [0.5.12] - 2025-3-9
|
||||
### Added
|
||||
- 新增了 我是测试
|
||||
|
||||
12
changelog_config.md
Normal file
12
changelog_config.md
Normal file
@@ -0,0 +1,12 @@
|
||||
# Changelog
|
||||
|
||||
## [0.0.5] - 2025-3-11
|
||||
### Added
|
||||
- 新增了 `alias_names` 配置项,用于指定麦麦的别名。
|
||||
|
||||
## [0.0.4] - 2025-3-9
|
||||
### Added
|
||||
- 新增了 `memory_ban_words` 配置项,用于指定不希望记忆的词汇。
|
||||
|
||||
|
||||
|
||||
@@ -2,47 +2,47 @@ services:
|
||||
napcat:
|
||||
container_name: napcat
|
||||
environment:
|
||||
- tz=Asia/Shanghai
|
||||
- TZ=Asia/Shanghai
|
||||
- NAPCAT_UID=${NAPCAT_UID}
|
||||
- NAPCAT_GID=${NAPCAT_GID}
|
||||
- NAPCAT_GID=${NAPCAT_GID} # 让 NapCat 获取当前用户 GID,UID,防止权限问题
|
||||
ports:
|
||||
- 3000:3000
|
||||
- 3001:3001
|
||||
- 6099:6099
|
||||
restart: always
|
||||
restart: unless-stopped
|
||||
volumes:
|
||||
- napcatQQ:/app/.config/QQ
|
||||
- napcatCONFIG:/app/napcat/config
|
||||
- maimbotDATA:/MaiMBot/data # 麦麦的图片等要给napcat不然发送图片会有问题
|
||||
- napcatQQ:/app/.config/QQ # 持久化 QQ 本体
|
||||
- napcatCONFIG:/app/napcat/config # 持久化 NapCat 配置文件
|
||||
- maimbotDATA:/MaiMBot/data # NapCat 和 NoneBot 共享此卷,否则发送图片会有问题
|
||||
image: mlikiowa/napcat-docker:latest
|
||||
|
||||
mongodb:
|
||||
container_name: mongodb
|
||||
environment:
|
||||
- tz=Asia/Shanghai
|
||||
- TZ=Asia/Shanghai
|
||||
# - MONGO_INITDB_ROOT_USERNAME=your_username
|
||||
# - MONGO_INITDB_ROOT_PASSWORD=your_password
|
||||
expose:
|
||||
- "27017"
|
||||
restart: always
|
||||
restart: unless-stopped
|
||||
volumes:
|
||||
- mongodb:/data/db
|
||||
- mongodbCONFIG:/data/configdb
|
||||
- mongodb:/data/db # 持久化 MongoDB 数据库
|
||||
- mongodbCONFIG:/data/configdb # 持久化 MongoDB 配置文件
|
||||
image: mongo:latest
|
||||
|
||||
maimbot:
|
||||
container_name: maimbot
|
||||
environment:
|
||||
- tz=Asia/Shanghai
|
||||
- TZ=Asia/Shanghai
|
||||
expose:
|
||||
- "8080"
|
||||
restart: always
|
||||
restart: unless-stopped
|
||||
depends_on:
|
||||
- mongodb
|
||||
- napcat
|
||||
volumes:
|
||||
- napcatCONFIG:/MaiMBot/napcat # 自动根据配置中的qq号创建ws反向客户端配置
|
||||
- ./bot_config.toml:/MaiMBot/config/bot_config.toml
|
||||
- maimbotDATA:/MaiMBot/data
|
||||
- ./.env.prod:/MaiMBot/.env.prod
|
||||
- napcatCONFIG:/MaiMBot/napcat # 自动根据配置中的 QQ 号创建 ws 反向客户端配置
|
||||
- ./bot_config.toml:/MaiMBot/config/bot_config.toml # Toml 配置文件映射
|
||||
- maimbotDATA:/MaiMBot/data # NapCat 和 NoneBot 共享此卷,否则发送图片会有问题
|
||||
- ./.env.prod:/MaiMBot/.env.prod # Toml 配置文件映射
|
||||
image: sengokucola/maimbot:latest
|
||||
|
||||
volumes:
|
||||
|
||||
20
docs/Jonathan R.md
Normal file
20
docs/Jonathan R.md
Normal file
@@ -0,0 +1,20 @@
|
||||
Jonathan R. Wolpaw 在 “Memory in neuroscience: rhetoric versus reality.” 一文中提到,从神经科学的感觉运动假设出发,整个神经系统的功能是将经验与适当的行为联系起来,而不是单纯的信息存储。
|
||||
Jonathan R,Wolpaw. (2019). Memory in neuroscience: rhetoric versus reality.. Behavioral and cognitive neuroscience reviews(2).
|
||||
|
||||
1. **单一过程理论**
|
||||
- 单一过程理论认为,识别记忆主要是基于熟悉性这一单一因素的影响。熟悉性是指对刺激的一种自动的、无意识的感知,它可以使我们在没有回忆起具体细节的情况下,判断一个刺激是否曾经出现过。
|
||||
- 例如,在一些实验中,研究者发现被试可以在没有回忆起具体学习情境的情况下,对曾经出现过的刺激做出正确的判断,这被认为是熟悉性在起作用1。
|
||||
2. **双重过程理论**
|
||||
- 双重过程理论则认为,识别记忆是基于两个过程:回忆和熟悉性。回忆是指对过去经验的有意识的回忆,它可以使我们回忆起具体的细节和情境;熟悉性则是一种自动的、无意识的感知。
|
||||
- 该理论认为,在识别记忆中,回忆和熟悉性共同作用,使我们能够判断一个刺激是否曾经出现过。例如,在 “记得 / 知道” 范式中,被试被要求判断他们对一个刺激的记忆是基于回忆还是熟悉性。研究发现,被试可以区分这两种不同的记忆过程,这为双重过程理论提供了支持1。
|
||||
|
||||
|
||||
|
||||
1. **神经元节点与连接**:借鉴神经网络原理,将每个记忆单元视为一个神经元节点。节点之间通过连接相互关联,连接的强度代表记忆之间的关联程度。在形态学联想记忆中,具有相似形态特征的记忆节点连接强度较高。例如,苹果和橘子的记忆节点,由于在形状、都是水果等形态语义特征上相似,它们之间的连接强度大于苹果与汽车记忆节点间的连接强度。
|
||||
2. **记忆聚类与层次结构**:依据形态特征的相似性对记忆进行聚类,形成不同的记忆簇。每个记忆簇内部的记忆具有较高的相似性,而不同记忆簇之间的记忆相似性较低。同时,构建记忆的层次结构,高层次的记忆节点代表更抽象、概括的概念,低层次的记忆节点对应具体的实例。比如,“水果” 作为高层次记忆节点,连接着 “苹果”“橘子”“香蕉” 等低层次具体水果的记忆节点。
|
||||
3. **网络的动态更新**:随着新记忆的不断加入,记忆网络动态调整。新记忆节点根据其形态特征与现有网络中的节点建立连接,同时影响相关连接的强度。若新记忆与某个记忆簇的特征高度相似,则被纳入该记忆簇;若具有独特特征,则可能引发新的记忆簇的形成。例如,当系统学习到一种新的水果 “番石榴”,它会根据番石榴的形态、语义等特征,在记忆网络中找到与之最相似的区域(如水果记忆簇),并建立相应连接,同时调整周围节点连接强度以适应这一新记忆。
|
||||
|
||||
|
||||
|
||||
- **相似性联想**:该理论认为,当两个或多个事物在形态上具有相似性时,它们在记忆中会形成关联。例如,梨和苹果在形状和都是水果这一属性上有相似性,所以当我们看到梨时,很容易通过形态学联想记忆联想到苹果。这种相似性联想有助于我们对新事物进行分类和理解,当遇到一个新的类似水果时,我们可以通过与已有的水果记忆进行相似性匹配,来推测它的一些特征。
|
||||
- **时空关联性联想**:除了相似性联想,MAM 还强调时空关联性联想。如果两个事物在时间或空间上经常同时出现,它们也会在记忆中形成关联。比如,每次在公园里看到花的时候,都能听到鸟儿的叫声,那么花和鸟儿叫声的形态特征(花的视觉形态和鸟叫的听觉形态)就会在记忆中形成关联,以后听到鸟叫可能就会联想到公园里的花。
|
||||
@@ -1,22 +1,95 @@
|
||||
# 🐳 Docker 部署指南
|
||||
|
||||
## 部署步骤(推荐,但不一定是最新)
|
||||
## 部署步骤 (推荐,但不一定是最新)
|
||||
|
||||
**"更新镜像与容器"部分在本文档 [Part 6](#6-更新镜像与容器)**
|
||||
|
||||
### 0. 前提说明
|
||||
|
||||
**本文假设读者已具备一定的 Docker 基础知识。若您对 Docker 不熟悉,建议先参考相关教程或文档进行学习,或选择使用 [📦Linux手动部署指南](./manual_deploy_linux.md) 或 [📦Windows手动部署指南](./manual_deploy_windows.md) 。**
|
||||
|
||||
|
||||
### 1. 获取Docker配置文件
|
||||
|
||||
- 建议先单独创建好一个文件夹并进入,作为工作目录
|
||||
|
||||
1. 获取配置文件:
|
||||
```bash
|
||||
wget https://raw.githubusercontent.com/SengokuCola/MaiMBot/main/docker-compose.yml
|
||||
wget https://raw.githubusercontent.com/SengokuCola/MaiMBot/main/docker-compose.yml -O docker-compose.yml
|
||||
```
|
||||
|
||||
2. 启动服务:
|
||||
- 若需要启用MongoDB数据库的用户名和密码,可进入docker-compose.yml,取消MongoDB处的注释并修改变量旁 `=` 后方的值为你的用户名和密码\
|
||||
修改后请注意在之后配置 `.env.prod` 文件时指定MongoDB数据库的用户名密码
|
||||
|
||||
|
||||
### 2. 启动服务
|
||||
|
||||
- **!!! 请在第一次启动前确保当前工作目录下 `.env.prod` 与 `bot_config.toml` 文件存在 !!!**\
|
||||
由于Docker文件映射行为的特殊性,若宿主机的映射路径不存在,可能导致意外的目录创建,而不会创建文件,由于此处需要文件映射到文件,需提前确保文件存在且路径正确,可使用如下命令:
|
||||
|
||||
```bash
|
||||
touch .env.prod
|
||||
touch bot_config.toml
|
||||
```
|
||||
|
||||
- 启动Docker容器:
|
||||
|
||||
```bash
|
||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose up -d
|
||||
# 旧版Docker中可能找不到docker compose,请使用docker-compose工具替代
|
||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker-compose up -d
|
||||
```
|
||||
|
||||
3. 修改配置后重启:
|
||||
|
||||
### 3. 修改配置并重启Docker
|
||||
|
||||
- 请前往 [🎀新手配置指南](./installation_cute.md) 或 [⚙️标准配置指南](./installation_standard.md) 完成 `.env.prod` 与 `bot_config.toml` 配置文件的编写\
|
||||
**需要注意 `.env.prod` 中HOST处IP的填写,Docker中部署和系统中直接安装的配置会有所不同**
|
||||
|
||||
- 重启Docker容器:
|
||||
|
||||
```bash
|
||||
docker restart maimbot # 若修改过容器名称则替换maimbot为你自定的名称
|
||||
```
|
||||
|
||||
- 下方命令可以但不推荐,只是同时重启NapCat、MongoDB、MaiMBot三个服务
|
||||
|
||||
```bash
|
||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose restart
|
||||
# 旧版Docker中可能找不到docker compose,请使用docker-compose工具替代
|
||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker-compose restart
|
||||
```
|
||||
|
||||
|
||||
### 4. 登入NapCat管理页添加反向WebSocket
|
||||
|
||||
- 在浏览器地址栏输入 `http://<宿主机IP>:6099/` 进入NapCat的管理Web页,添加一个Websocket客户端
|
||||
|
||||
> 网络配置 -> 新建 -> Websocket客户端
|
||||
|
||||
- Websocket客户端的名称自定,URL栏填入 `ws://maimbot:8080/onebot/v11/ws`,启用并保存即可\
|
||||
(若修改过容器名称则替换maimbot为你自定的名称)
|
||||
|
||||
|
||||
### 5. 部署完成,愉快地和麦麦对话吧!
|
||||
|
||||
|
||||
### 6. 更新镜像与容器
|
||||
|
||||
- 拉取最新镜像
|
||||
|
||||
```bash
|
||||
docker-compose pull
|
||||
```
|
||||
|
||||
- 执行启动容器指令,该指令会自动重建镜像有更新的容器并启动
|
||||
|
||||
```bash
|
||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker compose up -d
|
||||
# 旧版Docker中可能找不到docker compose,请使用docker-compose工具替代
|
||||
NAPCAT_UID=$(id -u) NAPCAT_GID=$(id -g) docker-compose up -d
|
||||
```
|
||||
|
||||
|
||||
## ⚠️ 注意事项
|
||||
|
||||
- 目前部署方案仍在测试中,可能存在未知问题
|
||||
|
||||
@@ -52,12 +52,12 @@ key = "SILICONFLOW_KEY" # 用同一张门票就可以啦
|
||||
如果你想用DeepSeek官方的服务,就要这样改:
|
||||
```toml
|
||||
[model.llm_reasoning]
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
name = "deepseek-reasoner" # 改成对应的模型名称,这里为DeepseekR1
|
||||
base_url = "DEEP_SEEK_BASE_URL" # 改成去DeepSeek游乐园
|
||||
key = "DEEP_SEEK_KEY" # 用DeepSeek的门票
|
||||
|
||||
[model.llm_normal]
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
name = "deepseek-chat" # 改成对应的模型名称,这里为DeepseekV3
|
||||
base_url = "DEEP_SEEK_BASE_URL" # 也去DeepSeek游乐园
|
||||
key = "DEEP_SEEK_KEY" # 用同一张DeepSeek门票
|
||||
```
|
||||
@@ -88,11 +88,11 @@ CHAT_ANY_WHERE_KEY=your_key
|
||||
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
|
||||
|
||||
# 如果你不知道这是什么,那么下面这些不用改,保持原样就好啦
|
||||
HOST=127.0.0.1
|
||||
HOST=127.0.0.1 # 如果使用Docker部署,需要改成0.0.0.0喵,不然听不见群友讲话了喵
|
||||
PORT=8080
|
||||
|
||||
# 这些是数据库设置,一般也不用改呢
|
||||
MONGODB_HOST=127.0.0.1
|
||||
MONGODB_HOST=127.0.0.1 # 如果使用Docker部署,需要改成数据库容器的名字喵,默认是mongodb喵
|
||||
MONGODB_PORT=27017
|
||||
DATABASE_NAME=MegBot
|
||||
MONGODB_USERNAME = "" # 如果数据库需要用户名,就在这里填写喵
|
||||
@@ -110,7 +110,8 @@ PLUGINS=["src2.plugins.chat"] # 这里是机器人的插件列表呢
|
||||
```toml
|
||||
[bot]
|
||||
qq = "把这里改成你的机器人QQ号喵" # 填写你的机器人QQ号
|
||||
nickname = "麦麦" # 机器人的名字,你可以改成你喜欢的任何名字哦
|
||||
nickname = "麦麦" # 机器人的名字,你可以改成你喜欢的任何名字哦,建议和机器人QQ名称/群昵称一样哦
|
||||
alias_names = ["小麦", "阿麦"] # 也可以用这个招呼机器人,可以不设置呢
|
||||
|
||||
[personality]
|
||||
# 这里可以设置机器人的性格呢,让它更有趣一些喵
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
|
||||
## API配置说明
|
||||
|
||||
`.env.prod`和`bot_config.toml`中的API配置关系如下:
|
||||
`.env.prod` 和 `bot_config.toml` 中的API配置关系如下:
|
||||
|
||||
### 在.env.prod中定义API凭证:
|
||||
```ini
|
||||
@@ -34,7 +34,7 @@ key = "SILICONFLOW_KEY" # 引用.env.prod中定义的密钥
|
||||
如需切换到其他API服务,只需修改引用:
|
||||
```toml
|
||||
[model.llm_reasoning]
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
name = "deepseek-reasoner" # 改成对应的模型名称,这里为DeepseekR1
|
||||
base_url = "DEEP_SEEK_BASE_URL" # 切换为DeepSeek服务
|
||||
key = "DEEP_SEEK_KEY" # 使用DeepSeek密钥
|
||||
```
|
||||
@@ -52,12 +52,12 @@ CHAT_ANY_WHERE_KEY=your_key
|
||||
CHAT_ANY_WHERE_BASE_URL=https://api.chatanywhere.tech/v1
|
||||
|
||||
# 服务配置
|
||||
HOST=127.0.0.1
|
||||
PORT=8080
|
||||
HOST=127.0.0.1 # 如果使用Docker部署,需要改成0.0.0.0,否则QQ消息无法传入
|
||||
PORT=8080 # 与反向端口相同
|
||||
|
||||
# 数据库配置
|
||||
MONGODB_HOST=127.0.0.1
|
||||
MONGODB_PORT=27017
|
||||
MONGODB_HOST=127.0.0.1 # 如果使用Docker部署,需要改成数据库容器的名字,默认是mongodb
|
||||
MONGODB_PORT=27017 # MongoDB端口
|
||||
DATABASE_NAME=MegBot
|
||||
MONGODB_USERNAME = "" # 数据库用户名
|
||||
MONGODB_PASSWORD = "" # 数据库密码
|
||||
@@ -72,6 +72,9 @@ PLUGINS=["src2.plugins.chat"]
|
||||
[bot]
|
||||
qq = "机器人QQ号" # 必填
|
||||
nickname = "麦麦" # 机器人昵称
|
||||
# alias_names: 配置机器人可使用的别名。当机器人在群聊或对话中被调用时,别名可以作为直接命令或提及机器人的关键字使用。
|
||||
# 该配置项为字符串数组。例如: ["小麦", "阿麦"]
|
||||
alias_names = ["小麦", "阿麦"] # 机器人别名
|
||||
|
||||
[personality]
|
||||
prompt_personality = [
|
||||
|
||||
115
docs/manual_deploy_linux.md
Normal file
115
docs/manual_deploy_linux.md
Normal file
@@ -0,0 +1,115 @@
|
||||
# 📦 Linux系统如何手动部署MaiMbot麦麦?
|
||||
|
||||
## 准备工作
|
||||
- 一台联网的Linux设备(本教程以Ubuntu/Debian系为例)
|
||||
- QQ小号(QQ框架的使用可能导致qq被风控,严重(小概率)可能会导致账号封禁,强烈不推荐使用大号)
|
||||
- 可用的大模型API
|
||||
- 一个AI助手,网上随便搜一家打开来用都行,可以帮你解决一些不懂的问题
|
||||
- 以下内容假设你对Linux系统有一定的了解,如果觉得难以理解,请直接用Windows系统部署[Windows系统部署指南](./manual_deploy_windows.md)
|
||||
|
||||
## 你需要知道什么?
|
||||
|
||||
- 如何正确向AI助手提问,来学习新知识
|
||||
|
||||
- Python是什么
|
||||
|
||||
- Python的虚拟环境是什么?如何创建虚拟环境
|
||||
|
||||
- 命令行是什么
|
||||
|
||||
- 数据库是什么?如何安装并启动MongoDB
|
||||
|
||||
- 如何运行一个QQ机器人,以及NapCat框架是什么
|
||||
---
|
||||
|
||||
## 环境配置
|
||||
|
||||
### 1️⃣ **确认Python版本**
|
||||
|
||||
需确保Python版本为3.9及以上
|
||||
|
||||
```bash
|
||||
python --version
|
||||
# 或
|
||||
python3 --version
|
||||
```
|
||||
如果版本低于3.9,请更新Python版本。
|
||||
```bash
|
||||
# Ubuntu/Debian
|
||||
sudo apt update
|
||||
sudo apt install python3.9
|
||||
# 如执行了这一步,建议在执行时将python3指向python3.9
|
||||
# 更新替代方案,设置 python3.9 为默认的 python3 版本:
|
||||
sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1
|
||||
sudo update-alternatives --config python3
|
||||
```
|
||||
|
||||
### 2️⃣ **创建虚拟环境**
|
||||
```bash
|
||||
# 方法1:使用venv(推荐)
|
||||
python3 -m venv maimbot
|
||||
source maimbot/bin/activate # 激活环境
|
||||
|
||||
# 方法2:使用conda(需先安装Miniconda)
|
||||
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
|
||||
bash Miniconda3-latest-Linux-x86_64.sh
|
||||
conda create -n maimbot python=3.9
|
||||
conda activate maimbot
|
||||
|
||||
# 通过以上方法创建并进入虚拟环境后,再执行以下命令
|
||||
|
||||
# 安装依赖(任选一种环境)
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 数据库配置
|
||||
### 3️⃣ **安装并启动MongoDB**
|
||||
- 安装与启动: Debian参考[官方文档](https://docs.mongodb.com/manual/tutorial/install-mongodb-on-debian/),Ubuntu参考[官方文档](https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/)
|
||||
|
||||
- 默认连接本地27017端口
|
||||
---
|
||||
|
||||
## NapCat配置
|
||||
### 4️⃣ **安装NapCat框架**
|
||||
|
||||
- 参考[NapCat官方文档](https://www.napcat.wiki/guide/boot/Shell#napcat-installer-linux%E4%B8%80%E9%94%AE%E4%BD%BF%E7%94%A8%E8%84%9A%E6%9C%AC-%E6%94%AF%E6%8C%81ubuntu-20-debian-10-centos9)安装
|
||||
|
||||
- 使用QQ小号登录,添加反向WS地址: `ws://127.0.0.1:8080/onebot/v11/ws`
|
||||
|
||||
---
|
||||
|
||||
## 配置文件设置
|
||||
### 5️⃣ **配置文件设置,让麦麦Bot正常工作**
|
||||
- 修改环境配置文件: `.env.prod`
|
||||
- 修改机器人配置文件: `bot_config.toml`
|
||||
|
||||
|
||||
---
|
||||
|
||||
## 启动机器人
|
||||
### 6️⃣ **启动麦麦机器人**
|
||||
```bash
|
||||
# 在项目目录下操作
|
||||
nb run
|
||||
# 或
|
||||
python3 bot.py
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## **其他组件(可选)**
|
||||
- 直接运行 knowledge.py生成知识库
|
||||
|
||||
|
||||
---
|
||||
|
||||
## 常见问题
|
||||
🔧 权限问题: 在命令前加 `sudo`
|
||||
🔌 端口占用: 使用 `sudo lsof -i :8080` 查看端口占用
|
||||
🛡️ 防火墙: 确保8080/27017端口开放
|
||||
```bash
|
||||
sudo ufw allow 8080/tcp
|
||||
sudo ufw allow 27017/tcp
|
||||
```
|
||||
@@ -1,4 +1,4 @@
|
||||
# 📦 如何手动部署MaiMbot麦麦?
|
||||
# 📦 Windows系统如何手动部署MaiMbot麦麦?
|
||||
|
||||
## 你需要什么?
|
||||
|
||||
@@ -30,7 +30,7 @@
|
||||
|
||||
在创建虚拟环境之前,请确保你的电脑上安装了Python 3.9及以上版本。如果没有,可以按以下步骤安装:
|
||||
|
||||
1. 访问Python官网下载页面:https://www.python.org/downloads/release/python-3913/
|
||||
1. 访问Python官网下载页面: https://www.python.org/downloads/release/python-3913/
|
||||
2. 下载Windows安装程序 (64-bit): `python-3.9.13-amd64.exe`
|
||||
3. 运行安装程序,并确保勾选"Add Python 3.9 to PATH"选项
|
||||
4. 点击"Install Now"开始安装
|
||||
@@ -79,11 +79,11 @@ pip install -r requirements.txt
|
||||
|
||||
### 3️⃣ **配置NapCat,让麦麦bot与qq取得联系**
|
||||
- 安装并登录NapCat(用你的qq小号)
|
||||
- 添加反向WS:`ws://localhost:8080/onebot/v11/ws`
|
||||
- 添加反向WS: `ws://127.0.0.1:8080/onebot/v11/ws`
|
||||
|
||||
### 4️⃣ **配置文件设置,让麦麦Bot正常工作**
|
||||
- 修改环境配置文件:`.env.prod`
|
||||
- 修改机器人配置文件:`bot_config.toml`
|
||||
- 修改环境配置文件: `.env.prod`
|
||||
- 修改机器人配置文件: `bot_config.toml`
|
||||
|
||||
### 5️⃣ **启动麦麦机器人**
|
||||
- 打开命令行,cd到对应路径
|
||||
@@ -22,6 +22,7 @@
|
||||
|
||||
pythonEnv = pkgs.python3.withPackages (
|
||||
ps: with ps; [
|
||||
ruff
|
||||
pymongo
|
||||
python-dotenv
|
||||
pydantic
|
||||
|
||||
@@ -1,23 +1,51 @@
|
||||
[project]
|
||||
name = "Megbot"
|
||||
name = "MaiMaiBot"
|
||||
version = "0.1.0"
|
||||
description = "New Bot Project"
|
||||
description = "MaiMaiBot"
|
||||
|
||||
[tool.nonebot]
|
||||
plugins = ["src.plugins.chat"]
|
||||
plugin_dirs = ["src/plugins"]
|
||||
|
||||
[tool.ruff]
|
||||
# 设置 Python 版本
|
||||
target-version = "py39"
|
||||
|
||||
include = ["*.py"]
|
||||
|
||||
# 行长度设置
|
||||
line-length = 120
|
||||
|
||||
[tool.ruff.lint]
|
||||
fixable = ["ALL"]
|
||||
unfixable = []
|
||||
|
||||
# 如果一个变量的名称以下划线开头,即使它未被使用,也不应该被视为错误或警告。
|
||||
dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
|
||||
|
||||
# 启用的规则
|
||||
select = [
|
||||
"E", # pycodestyle 错误
|
||||
"F", # pyflakes
|
||||
"I", # isort
|
||||
"B", # flake8-bugbear
|
||||
"E", # pycodestyle 错误
|
||||
"F", # pyflakes
|
||||
"B", # flake8-bugbear
|
||||
]
|
||||
|
||||
# 行长度设置
|
||||
line-length = 88
|
||||
ignore = ["E711"]
|
||||
|
||||
[tool.ruff.format]
|
||||
docstring-code-format = true
|
||||
indent-style = "space"
|
||||
|
||||
|
||||
# 使用双引号表示字符串
|
||||
quote-style = "double"
|
||||
|
||||
# 尊重魔法尾随逗号
|
||||
# 例如:
|
||||
# items = [
|
||||
# "apple",
|
||||
# "banana",
|
||||
# "cherry",
|
||||
# ]
|
||||
skip-magic-trailing-comma = false
|
||||
|
||||
# 自动检测合适的换行符
|
||||
line-ending = "auto"
|
||||
|
||||
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
10
run.bat
10
run.bat
@@ -1,6 +1,10 @@
|
||||
@ECHO OFF
|
||||
chcp 65001
|
||||
REM python -m venv venv
|
||||
call venv\Scripts\activate.bat
|
||||
REM pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple --upgrade -r requirements.txt
|
||||
if not exist "venv" (
|
||||
python -m venv venv
|
||||
call venv\Scripts\activate.bat
|
||||
pip install -i https://mirrors.aliyun.com/pypi/simple --upgrade -r requirements.txt
|
||||
) else (
|
||||
call venv\Scripts\activate.bat
|
||||
)
|
||||
python run.py
|
||||
64
run.py
64
run.py
@@ -1,7 +1,7 @@
|
||||
import os
|
||||
import subprocess
|
||||
import zipfile
|
||||
|
||||
import sys
|
||||
import requests
|
||||
from tqdm import tqdm
|
||||
|
||||
@@ -37,7 +37,7 @@ def extract_files(zip_path, target_dir):
|
||||
f.write(zip_ref.read(file))
|
||||
|
||||
|
||||
def run_cmd(command: str, open_new_window: bool = False):
|
||||
def run_cmd(command: str, open_new_window: bool = True):
|
||||
"""
|
||||
运行 cmd 命令
|
||||
|
||||
@@ -45,26 +45,19 @@ def run_cmd(command: str, open_new_window: bool = False):
|
||||
command (str): 指定要运行的命令
|
||||
open_new_window (bool): 指定是否新建一个 cmd 窗口运行
|
||||
"""
|
||||
creationflags = 0
|
||||
if open_new_window:
|
||||
creationflags = subprocess.CREATE_NEW_CONSOLE
|
||||
subprocess.Popen(
|
||||
[
|
||||
"cmd.exe",
|
||||
"/c",
|
||||
command,
|
||||
],
|
||||
creationflags=creationflags,
|
||||
)
|
||||
command = "start " + command
|
||||
subprocess.Popen(command, shell=True)
|
||||
|
||||
|
||||
def run_maimbot():
|
||||
run_cmd(r"napcat\NapCatWinBootMain.exe 10001", False)
|
||||
if not os.path.exists(r"mongodb\db"):
|
||||
os.makedirs(r"mongodb\db")
|
||||
run_cmd(
|
||||
r"mongodb\bin\mongod.exe --dbpath=" + os.getcwd() + r"\mongodb\db --port 27017",
|
||||
True,
|
||||
r"mongodb\bin\mongod.exe --dbpath=" + os.getcwd() + r"\mongodb\db --port 27017"
|
||||
)
|
||||
run_cmd("nb run", True)
|
||||
run_cmd("nb run")
|
||||
|
||||
|
||||
def install_mongodb():
|
||||
@@ -87,17 +80,35 @@ def install_mongodb():
|
||||
for data in resp.iter_content(chunk_size=1024):
|
||||
size = file.write(data)
|
||||
bar.update(size)
|
||||
extract_files("mongodb.zip", "mongodb")
|
||||
print("MongoDB 下载完成")
|
||||
os.remove("mongodb.zip")
|
||||
extract_files("mongodb.zip", "mongodb")
|
||||
print("MongoDB 下载完成")
|
||||
os.remove("mongodb.zip")
|
||||
choice = input(
|
||||
"是否安装 MongoDB Compass?此软件可以以可视化的方式修改数据库,建议安装(Y/n)"
|
||||
).upper()
|
||||
if choice == "Y" or choice == "":
|
||||
install_mongodb_compass()
|
||||
|
||||
|
||||
def install_mongodb_compass():
|
||||
run_cmd(
|
||||
r"powershell Start-Process powershell -Verb runAs 'Set-ExecutionPolicy RemoteSigned'"
|
||||
)
|
||||
input("请在弹出的用户账户控制中点击“是”后按任意键继续安装")
|
||||
run_cmd(r"powershell mongodb\bin\Install-Compass.ps1")
|
||||
input("按任意键启动麦麦")
|
||||
input("如不需要启动此窗口可直接关闭,无需等待 Compass 安装完成")
|
||||
run_maimbot()
|
||||
|
||||
|
||||
def install_napcat():
|
||||
run_cmd("start https://github.com/NapNeko/NapCatQQ/releases", True)
|
||||
run_cmd("start https://github.com/NapNeko/NapCatQQ/releases", False)
|
||||
print("请检查弹出的浏览器窗口,点击**第一个**蓝色的“Win64无头” 下载 napcat")
|
||||
napcat_filename = input(
|
||||
"下载完成后请把文件复制到此文件夹,并将**不包含后缀的文件名**输入至此窗口,如 NapCat.32793.Shell:"
|
||||
)
|
||||
if(napcat_filename[-4:] == ".zip"):
|
||||
napcat_filename = napcat_filename[:-4]
|
||||
extract_files(napcat_filename + ".zip", "napcat")
|
||||
print("NapCat 安装完成")
|
||||
os.remove(napcat_filename + ".zip")
|
||||
@@ -105,11 +116,15 @@ def install_napcat():
|
||||
|
||||
if __name__ == "__main__":
|
||||
os.system("cls")
|
||||
if sys.version_info < (3, 9):
|
||||
print("当前 Python 版本过低,最低版本为 3.9,请更新 Python 版本")
|
||||
print("按任意键退出")
|
||||
input()
|
||||
exit(1)
|
||||
choice = input(
|
||||
"请输入要进行的操作:\n"
|
||||
"1.首次安装\n"
|
||||
"2.运行麦麦\n"
|
||||
"3.运行麦麦并启动可视化推理界面\n"
|
||||
)
|
||||
os.system("cls")
|
||||
if choice == "1":
|
||||
@@ -117,6 +132,9 @@ if __name__ == "__main__":
|
||||
install_mongodb()
|
||||
elif choice == "2":
|
||||
run_maimbot()
|
||||
elif choice == "3":
|
||||
run_maimbot()
|
||||
run_cmd("python src/gui/reasoning_gui.py", True)
|
||||
choice = input("是否启动推理可视化?(y/N)").upper()
|
||||
if choice == "Y":
|
||||
run_cmd(r"python src\gui\reasoning_gui.py")
|
||||
choice = input("是否启动记忆可视化?(y/N)").upper()
|
||||
if choice == "Y":
|
||||
run_cmd(r"python src/plugins/memory_system/memory_manual_build.py")
|
||||
|
||||
29
run_memory_vis.bat
Normal file
29
run_memory_vis.bat
Normal file
@@ -0,0 +1,29 @@
|
||||
@echo on
|
||||
chcp 65001 > nul
|
||||
set /p CONDA_ENV="请输入要激活的 conda 环境名称: "
|
||||
call conda activate %CONDA_ENV%
|
||||
if errorlevel 1 (
|
||||
echo 激活 conda 环境失败
|
||||
pause
|
||||
exit /b 1
|
||||
)
|
||||
echo Conda 环境 "%CONDA_ENV%" 激活成功
|
||||
|
||||
set /p OPTION="请选择运行选项 (1: 运行全部绘制, 2: 运行简单绘制): "
|
||||
if "%OPTION%"=="1" (
|
||||
python src/plugins/memory_system/memory_manual_build.py
|
||||
) else if "%OPTION%"=="2" (
|
||||
python src/plugins/memory_system/draw_memory.py
|
||||
) else (
|
||||
echo 无效的选项
|
||||
pause
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
if errorlevel 1 (
|
||||
echo 命令执行失败,错误代码 %errorlevel%
|
||||
pause
|
||||
exit /b 1
|
||||
)
|
||||
echo 脚本成功完成
|
||||
pause
|
||||
@@ -5,6 +5,9 @@ import threading
|
||||
import time
|
||||
from datetime import datetime
|
||||
from typing import Dict, List
|
||||
from loguru import logger
|
||||
from typing import Optional
|
||||
from pymongo import MongoClient
|
||||
|
||||
import customtkinter as ctk
|
||||
from dotenv import load_dotenv
|
||||
@@ -17,23 +20,20 @@ root_dir = os.path.abspath(os.path.join(current_dir, '..', '..'))
|
||||
# 加载环境变量
|
||||
if os.path.exists(os.path.join(root_dir, '.env.dev')):
|
||||
load_dotenv(os.path.join(root_dir, '.env.dev'))
|
||||
print("成功加载开发环境配置")
|
||||
logger.info("成功加载开发环境配置")
|
||||
elif os.path.exists(os.path.join(root_dir, '.env.prod')):
|
||||
load_dotenv(os.path.join(root_dir, '.env.prod'))
|
||||
print("成功加载生产环境配置")
|
||||
logger.info("成功加载生产环境配置")
|
||||
else:
|
||||
print("未找到环境配置文件")
|
||||
logger.error("未找到环境配置文件")
|
||||
sys.exit(1)
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from pymongo import MongoClient
|
||||
|
||||
|
||||
class Database:
|
||||
_instance: Optional["Database"] = None
|
||||
|
||||
def __init__(self, host: str, port: int, db_name: str, username: str = None, password: str = None, auth_source: str = None):
|
||||
def __init__(self, host: str, port: int, db_name: str, username: str = None, password: str = None,
|
||||
auth_source: str = None):
|
||||
if username and password:
|
||||
self.client = MongoClient(
|
||||
host=host,
|
||||
@@ -47,7 +47,8 @@ class Database:
|
||||
self.db = self.client[db_name]
|
||||
|
||||
@classmethod
|
||||
def initialize(cls, host: str, port: int, db_name: str, username: str = None, password: str = None, auth_source: str = None) -> "Database":
|
||||
def initialize(cls, host: str, port: int, db_name: str, username: str = None, password: str = None,
|
||||
auth_source: str = None) -> "Database":
|
||||
if cls._instance is None:
|
||||
cls._instance = cls(host, port, db_name, username, password, auth_source)
|
||||
return cls._instance
|
||||
@@ -59,12 +60,11 @@ class Database:
|
||||
return cls._instance
|
||||
|
||||
|
||||
|
||||
class ReasoningGUI:
|
||||
def __init__(self):
|
||||
# 记录启动时间戳,转换为Unix时间戳
|
||||
self.start_timestamp = datetime.now().timestamp()
|
||||
print(f"程序启动时间戳: {self.start_timestamp}")
|
||||
logger.info(f"程序启动时间戳: {self.start_timestamp}")
|
||||
|
||||
# 设置主题
|
||||
ctk.set_appearance_mode("dark")
|
||||
@@ -79,15 +79,15 @@ class ReasoningGUI:
|
||||
# 初始化数据库连接
|
||||
try:
|
||||
self.db = Database.get_instance().db
|
||||
print("数据库连接成功")
|
||||
logger.success("数据库连接成功")
|
||||
except RuntimeError:
|
||||
print("数据库未初始化,正在尝试初始化...")
|
||||
logger.warning("数据库未初始化,正在尝试初始化...")
|
||||
try:
|
||||
Database.initialize("localhost", 27017, "maimai_bot")
|
||||
Database.initialize("127.0.0.1", 27017, "maimai_bot")
|
||||
self.db = Database.get_instance().db
|
||||
print("数据库初始化成功")
|
||||
except Exception as e:
|
||||
print(f"数据库初始化失败: {e}")
|
||||
logger.success("数据库初始化成功")
|
||||
except Exception:
|
||||
logger.exception("数据库初始化失败")
|
||||
sys.exit(1)
|
||||
|
||||
# 存储群组数据
|
||||
@@ -274,7 +274,7 @@ class ReasoningGUI:
|
||||
self.content_text.insert("end", f"{item.get('response', '')}\n", "response")
|
||||
|
||||
# 分隔符
|
||||
self.content_text.insert("end", f"\n{'='*50}\n\n", "separator")
|
||||
self.content_text.insert("end", f"\n{'=' * 50}\n\n", "separator")
|
||||
|
||||
# 滚动到顶部
|
||||
self.content_text.see("1.0")
|
||||
@@ -285,12 +285,12 @@ class ReasoningGUI:
|
||||
try:
|
||||
# 从数据库获取最新数据,只获取启动时间之后的记录
|
||||
query = {"time": {"$gt": self.start_timestamp}}
|
||||
print(f"查询条件: {query}")
|
||||
logger.debug(f"查询条件: {query}")
|
||||
|
||||
# 先获取一条记录检查时间格式
|
||||
sample = self.db.reasoning_logs.find_one()
|
||||
if sample:
|
||||
print(f"样本记录时间格式: {type(sample['time'])} 值: {sample['time']}")
|
||||
logger.debug(f"样本记录时间格式: {type(sample['time'])} 值: {sample['time']}")
|
||||
|
||||
cursor = self.db.reasoning_logs.find(query).sort("time", -1)
|
||||
new_data = {}
|
||||
@@ -299,7 +299,7 @@ class ReasoningGUI:
|
||||
for item in cursor:
|
||||
# 调试输出
|
||||
if total_count == 0:
|
||||
print(f"记录时间: {item['time']}, 类型: {type(item['time'])}")
|
||||
logger.debug(f"记录时间: {item['time']}, 类型: {type(item['time'])}")
|
||||
|
||||
total_count += 1
|
||||
group_id = str(item.get('group_id', 'unknown'))
|
||||
@@ -312,7 +312,7 @@ class ReasoningGUI:
|
||||
elif isinstance(item['time'], datetime):
|
||||
time_obj = item['time']
|
||||
else:
|
||||
print(f"未知的时间格式: {type(item['time'])}")
|
||||
logger.warning(f"未知的时间格式: {type(item['time'])}")
|
||||
time_obj = datetime.now() # 使用当前时间作为后备
|
||||
|
||||
new_data[group_id].append({
|
||||
@@ -325,12 +325,12 @@ class ReasoningGUI:
|
||||
'prompt': item.get('prompt', '') # 添加prompt字段
|
||||
})
|
||||
|
||||
print(f"从数据库加载了 {total_count} 条记录,分布在 {len(new_data)} 个群组中")
|
||||
logger.info(f"从数据库加载了 {total_count} 条记录,分布在 {len(new_data)} 个群组中")
|
||||
|
||||
# 更新数据
|
||||
if new_data != self.group_data:
|
||||
self.group_data = new_data
|
||||
print("数据已更新,正在刷新显示...")
|
||||
logger.info("数据已更新,正在刷新显示...")
|
||||
# 将更新任务添加到队列
|
||||
self.update_queue.put({'type': 'update_group_list'})
|
||||
if self.group_data:
|
||||
@@ -341,8 +341,8 @@ class ReasoningGUI:
|
||||
'type': 'update_display',
|
||||
'group_id': self.selected_group_id
|
||||
})
|
||||
except Exception as e:
|
||||
print(f"自动更新出错: {e}")
|
||||
except Exception:
|
||||
logger.exception("自动更新出错")
|
||||
|
||||
# 每5秒更新一次
|
||||
time.sleep(5)
|
||||
@@ -359,11 +359,11 @@ class ReasoningGUI:
|
||||
def main():
|
||||
"""主函数"""
|
||||
Database.initialize(
|
||||
host= os.getenv("MONGODB_HOST"),
|
||||
port= int(os.getenv("MONGODB_PORT")),
|
||||
db_name= os.getenv("DATABASE_NAME"),
|
||||
username= os.getenv("MONGODB_USERNAME"),
|
||||
password= os.getenv("MONGODB_PASSWORD"),
|
||||
host=os.getenv("MONGODB_HOST"),
|
||||
port=int(os.getenv("MONGODB_PORT")),
|
||||
db_name=os.getenv("DATABASE_NAME"),
|
||||
username=os.getenv("MONGODB_USERNAME"),
|
||||
password=os.getenv("MONGODB_PASSWORD"),
|
||||
auth_source=os.getenv("MONGODB_AUTH_SOURCE")
|
||||
)
|
||||
|
||||
@@ -371,6 +371,5 @@ def main():
|
||||
app.run()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -1,12 +1,9 @@
|
||||
import asyncio
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
|
||||
from loguru import logger
|
||||
from nonebot import get_driver, on_command, on_message, require
|
||||
from nonebot import get_driver, on_message, require
|
||||
from nonebot.adapters.onebot.v11 import Bot, GroupMessageEvent, Message, MessageSegment
|
||||
from nonebot.rule import to_me
|
||||
from nonebot.typing import T_State
|
||||
|
||||
from ...common.database import Database
|
||||
@@ -19,6 +16,10 @@ from .emoji_manager import emoji_manager
|
||||
from .relationship_manager import relationship_manager
|
||||
from .willing_manager import willing_manager
|
||||
from .chat_stream import chat_manager
|
||||
from ..memory_system.memory import hippocampus, memory_graph
|
||||
from .bot import ChatBot
|
||||
from .message_sender import message_manager, message_sender
|
||||
|
||||
|
||||
# 创建LLM统计实例
|
||||
llm_stats = LLMStatistics("llm_statistics.txt")
|
||||
@@ -31,27 +32,20 @@ driver = get_driver()
|
||||
config = driver.config
|
||||
|
||||
Database.initialize(
|
||||
host= config.MONGODB_HOST,
|
||||
port= int(config.MONGODB_PORT),
|
||||
db_name= config.DATABASE_NAME,
|
||||
username= config.MONGODB_USERNAME,
|
||||
password= config.MONGODB_PASSWORD,
|
||||
auth_source= config.MONGODB_AUTH_SOURCE
|
||||
host=config.MONGODB_HOST,
|
||||
port=int(config.MONGODB_PORT),
|
||||
db_name=config.DATABASE_NAME,
|
||||
username=config.MONGODB_USERNAME,
|
||||
password=config.MONGODB_PASSWORD,
|
||||
auth_source=config.MONGODB_AUTH_SOURCE
|
||||
)
|
||||
print("\033[1;32m[初始化数据库完成]\033[0m")
|
||||
logger.success("初始化数据库成功")
|
||||
|
||||
|
||||
# 导入其他模块
|
||||
from ..memory_system.memory import hippocampus, memory_graph
|
||||
from .bot import ChatBot
|
||||
|
||||
# from .message_send_control import message_sender
|
||||
from .message_sender import message_manager, message_sender
|
||||
|
||||
# 初始化表情管理器
|
||||
emoji_manager.initialize()
|
||||
|
||||
print(f"\033[1;32m正在唤醒{global_config.BOT_NICKNAME}......\033[0m")
|
||||
logger.debug(f"正在唤醒{global_config.BOT_NICKNAME}......")
|
||||
# 创建机器人实例
|
||||
chat_bot = ChatBot()
|
||||
# 注册群消息处理器
|
||||
@@ -60,71 +54,80 @@ group_msg = on_message(priority=5)
|
||||
scheduler = require("nonebot_plugin_apscheduler").scheduler
|
||||
|
||||
|
||||
|
||||
@driver.on_startup
|
||||
async def start_background_tasks():
|
||||
"""启动后台任务"""
|
||||
# 启动LLM统计
|
||||
llm_stats.start()
|
||||
print("\033[1;32m[初始化]\033[0m LLM统计功能已启动")
|
||||
logger.success("LLM统计功能启动成功")
|
||||
|
||||
# 初始化并启动情绪管理器
|
||||
mood_manager = MoodManager.get_instance()
|
||||
mood_manager.start_mood_update(update_interval=global_config.mood_update_interval)
|
||||
print("\033[1;32m[初始化]\033[0m 情绪管理器已启动")
|
||||
logger.success("情绪管理器启动成功")
|
||||
|
||||
# 只启动表情包管理任务
|
||||
asyncio.create_task(emoji_manager.start_periodic_check(interval_MINS=global_config.EMOJI_CHECK_INTERVAL))
|
||||
await bot_schedule.initialize()
|
||||
bot_schedule.print_schedule()
|
||||
|
||||
|
||||
@driver.on_startup
|
||||
async def init_relationships():
|
||||
"""在 NoneBot2 启动时初始化关系管理器"""
|
||||
print("\033[1;32m[初始化]\033[0m 正在加载用户关系数据...")
|
||||
logger.debug("正在加载用户关系数据...")
|
||||
await relationship_manager.load_all_relationships()
|
||||
asyncio.create_task(relationship_manager._start_relationship_manager())
|
||||
|
||||
|
||||
@driver.on_bot_connect
|
||||
async def _(bot: Bot):
|
||||
"""Bot连接成功时的处理"""
|
||||
global _message_manager_started
|
||||
print(f"\033[1;38;5;208m-----------{global_config.BOT_NICKNAME}成功连接!-----------\033[0m")
|
||||
logger.debug(f"-----------{global_config.BOT_NICKNAME}成功连接!-----------")
|
||||
await willing_manager.ensure_started()
|
||||
|
||||
message_sender.set_bot(bot)
|
||||
print("\033[1;38;5;208m-----------消息发送器已启动!-----------\033[0m")
|
||||
logger.success("-----------消息发送器已启动!-----------")
|
||||
|
||||
if not _message_manager_started:
|
||||
asyncio.create_task(message_manager.start_processor())
|
||||
_message_manager_started = True
|
||||
print("\033[1;38;5;208m-----------消息处理器已启动!-----------\033[0m")
|
||||
logger.success("-----------消息处理器已启动!-----------")
|
||||
|
||||
asyncio.create_task(emoji_manager._periodic_scan(interval_MINS=global_config.EMOJI_REGISTER_INTERVAL))
|
||||
print("\033[1;38;5;208m-----------开始偷表情包!-----------\033[0m")
|
||||
logger.success("-----------开始偷表情包!-----------")
|
||||
asyncio.create_task(chat_manager._initialize())
|
||||
asyncio.create_task(chat_manager._auto_save_task())
|
||||
|
||||
|
||||
@group_msg.handle()
|
||||
async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
|
||||
await chat_bot.handle_message(event, bot)
|
||||
|
||||
|
||||
# 添加build_memory定时任务
|
||||
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory")
|
||||
async def build_memory_task():
|
||||
"""每build_memory_interval秒执行一次记忆构建"""
|
||||
print("\033[1;32m[记忆构建]\033[0m -------------------------------------------开始构建记忆-------------------------------------------")
|
||||
logger.debug(
|
||||
"[记忆构建]"
|
||||
"------------------------------------开始构建记忆--------------------------------------")
|
||||
start_time = time.time()
|
||||
await hippocampus.operation_build_memory(chat_size=20)
|
||||
end_time = time.time()
|
||||
print(f"\033[1;32m[记忆构建]\033[0m -------------------------------------------记忆构建完成:耗时: {end_time - start_time:.2f} 秒-------------------------------------------")
|
||||
logger.success(
|
||||
f"[记忆构建]--------------------------记忆构建完成:耗时: {end_time - start_time:.2f} "
|
||||
"秒-------------------------------------------")
|
||||
|
||||
|
||||
@scheduler.scheduled_job("interval", seconds=global_config.forget_memory_interval, id="forget_memory")
|
||||
async def forget_memory_task():
|
||||
"""每30秒执行一次记忆构建"""
|
||||
# print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...")
|
||||
# await hippocampus.operation_forget_topic(percentage=0.1)
|
||||
# print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成")
|
||||
print("\033[1;32m[记忆遗忘]\033[0m 开始遗忘记忆...")
|
||||
await hippocampus.operation_forget_topic(percentage=0.1)
|
||||
print("\033[1;32m[记忆遗忘]\033[0m 记忆遗忘完成")
|
||||
|
||||
|
||||
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval + 10, id="merge_memory")
|
||||
async def merge_memory_task():
|
||||
@@ -133,9 +136,9 @@ async def merge_memory_task():
|
||||
# await hippocampus.operation_merge_memory(percentage=0.1)
|
||||
# print("\033[1;32m[记忆整合]\033[0m 记忆整合完成")
|
||||
|
||||
|
||||
@scheduler.scheduled_job("interval", seconds=30, id="print_mood")
|
||||
async def print_mood_task():
|
||||
"""每30秒打印一次情绪状态"""
|
||||
mood_manager = MoodManager.get_instance()
|
||||
mood_manager.print_mood_status()
|
||||
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import re
|
||||
import time
|
||||
from random import random
|
||||
from loguru import logger
|
||||
@@ -96,8 +97,17 @@ class ChatBot:
|
||||
# 过滤词
|
||||
for word in global_config.ban_words:
|
||||
if word in message.processed_plain_text:
|
||||
logger.info(f"\033[1;32m[{groupinfo.group_name}]{userinfo.user_nickname}:\033[0m {message.processed_plain_text}")
|
||||
logger.info(f"\033[1;32m[过滤词识别]\033[0m 消息中含有{word},filtered")
|
||||
logger.info(
|
||||
f"[{groupinfo.group_name}]{userinfo.user_nickname}:{message.processed_plain_text}")
|
||||
logger.info(f"[过滤词识别]消息中含有{word},filtered")
|
||||
return
|
||||
|
||||
# 正则表达式过滤
|
||||
for pattern in global_config.ban_msgs_regex:
|
||||
if re.search(pattern, message.raw_message):
|
||||
logger.info(
|
||||
f"[{message.group_name}]{message.user_nickname}:{message.raw_message}")
|
||||
logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered")
|
||||
return
|
||||
|
||||
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(messageinfo.time))
|
||||
@@ -107,8 +117,9 @@ class ChatBot:
|
||||
# topic=await topic_identifier.identify_topic_llm(message.processed_plain_text)
|
||||
topic = ''
|
||||
interested_rate = 0
|
||||
interested_rate = await hippocampus.memory_activate_value(message.processed_plain_text)/100
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 对{message.processed_plain_text}的激活度:---------------------------------------{interested_rate}\n")
|
||||
interested_rate = await hippocampus.memory_activate_value(message.processed_plain_text) / 100
|
||||
logger.debug(f"对{message.processed_plain_text}"
|
||||
f"的激活度:{interested_rate}")
|
||||
# logger.info(f"\033[1;32m[主题识别]\033[0m 使用{global_config.topic_extract}主题: {topic}")
|
||||
|
||||
await self.storage.store_message(message,chat, topic[0] if topic else None)
|
||||
@@ -124,7 +135,10 @@ class ChatBot:
|
||||
)
|
||||
current_willing = willing_manager.get_willing(chat_stream=chat)
|
||||
|
||||
print(f"\033[1;32m[{current_time}][{chat.group_info.group_name}]{chat.user_info.user_nickname}:\033[0m {message.processed_plain_text}\033[1;36m[回复意愿:{current_willing:.2f}][概率:{reply_probability * 100:.1f}%]\033[0m")
|
||||
logger.info(
|
||||
f"[{current_time}][{chat.group_info.group_name}]{chat.user_info.user_nickname}:"
|
||||
f"{message.processed_plain_text}[回复意愿:{current_willing:.2f}][概率:{reply_probability * 100:.1f}%]"
|
||||
)
|
||||
|
||||
response = None
|
||||
|
||||
@@ -162,10 +176,10 @@ class ChatBot:
|
||||
|
||||
# 如果找不到思考消息,直接返回
|
||||
if not thinking_message:
|
||||
print(f"\033[1;33m[警告]\033[0m 未找到对应的思考消息,可能已超时被移除")
|
||||
logger.warning("未找到对应的思考消息,可能已超时被移除")
|
||||
return
|
||||
|
||||
#记录开始思考的时间,避免从思考到回复的时间太久
|
||||
# 记录开始思考的时间,避免从思考到回复的时间太久
|
||||
thinking_start_time = thinking_message.thinking_start_time
|
||||
message_set = MessageSet(chat, think_id)
|
||||
message_set = MessageSet(chat, think_id)
|
||||
@@ -175,7 +189,7 @@ class ChatBot:
|
||||
mark_head = False
|
||||
for msg in response:
|
||||
# print(f"\033[1;32m[回复内容]\033[0m {msg}")
|
||||
#通过时间改变时间戳
|
||||
# 通过时间改变时间戳
|
||||
typing_time = calculate_typing_time(msg)
|
||||
accu_typing_time += typing_time
|
||||
timepoint = tinking_time_point + accu_typing_time
|
||||
@@ -194,7 +208,7 @@ class ChatBot:
|
||||
mark_head = True
|
||||
message_set.add_message(bot_message)
|
||||
|
||||
#message_set 可以直接加入 message_manager
|
||||
# message_set 可以直接加入 message_manager
|
||||
# print(f"\033[1;32m[回复]\033[0m 将回复载入发送容器")
|
||||
message_manager.add_message(message_set)
|
||||
|
||||
@@ -205,7 +219,7 @@ class ChatBot:
|
||||
|
||||
# 检查是否 <没有找到> emoji
|
||||
if emoji_raw != None:
|
||||
emoji_path,discription = emoji_raw
|
||||
emoji_path, description = emoji_raw
|
||||
|
||||
emoji_cq = image_path_to_base64(emoji_path)
|
||||
|
||||
@@ -226,8 +240,8 @@ class ChatBot:
|
||||
)
|
||||
message_manager.add_message(bot_message)
|
||||
emotion = await self.gpt._get_emotion_tags(raw_content)
|
||||
print(f"为 '{response}' 获取到的情感标签为:{emotion}")
|
||||
valuedict={
|
||||
logger.debug(f"为 '{response}' 获取到的情感标签为:{emotion}")
|
||||
valuedict = {
|
||||
'happy': 0.5,
|
||||
'angry': -1,
|
||||
'sad': -0.5,
|
||||
@@ -240,9 +254,10 @@ class ChatBot:
|
||||
# 使用情绪管理器更新情绪
|
||||
self.mood_manager.update_mood_from_emotion(emotion[0], global_config.mood_intensity_factor)
|
||||
|
||||
willing_manager.change_reply_willing_after_sent(
|
||||
chat_stream=chat
|
||||
)
|
||||
# willing_manager.change_reply_willing_after_sent(
|
||||
# chat_stream=chat
|
||||
# )
|
||||
|
||||
|
||||
# 创建全局ChatBot实例
|
||||
chat_bot = ChatBot()
|
||||
@@ -1,16 +1,23 @@
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Optional
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import tomli
|
||||
from loguru import logger
|
||||
from packaging import version
|
||||
from packaging.version import Version, InvalidVersion
|
||||
from packaging.specifiers import SpecifierSet, InvalidSpecifier
|
||||
|
||||
|
||||
@dataclass
|
||||
class BotConfig:
|
||||
"""机器人配置类"""
|
||||
|
||||
INNER_VERSION: Version = None
|
||||
|
||||
BOT_QQ: Optional[int] = 1
|
||||
BOT_NICKNAME: Optional[str] = None
|
||||
BOT_ALIAS_NAMES: List[str] = field(default_factory=list) # 别名,可以通过这个叫它
|
||||
|
||||
# 消息处理相关配置
|
||||
MIN_TEXT_LENGTH: int = 2 # 最小处理文本长度
|
||||
@@ -34,10 +41,11 @@ class BotConfig:
|
||||
EMOJI_CHECK_INTERVAL: int = 120 # 表情包检查间隔(分钟)
|
||||
EMOJI_REGISTER_INTERVAL: int = 10 # 表情包注册间隔(分钟)
|
||||
EMOJI_SAVE: bool = True # 偷表情包
|
||||
EMOJI_CHECK: bool = False #是否开启过滤
|
||||
EMOJI_CHECK_PROMPT: str = "符合公序良俗" # 表情包过滤要求
|
||||
EMOJI_CHECK: bool = False # 是否开启过滤
|
||||
EMOJI_CHECK_PROMPT: str = "符合公序良俗" # 表情包过滤要求
|
||||
|
||||
ban_words = set()
|
||||
ban_msgs_regex = set()
|
||||
|
||||
max_response_length: int = 1024 # 最大回复长度
|
||||
|
||||
@@ -58,174 +66,357 @@ class BotConfig:
|
||||
MODEL_R1_DISTILL_PROBABILITY: float = 0.1 # R1蒸馏模型概率
|
||||
|
||||
enable_advance_output: bool = False # 是否启用高级输出
|
||||
enable_kuuki_read: bool = True # 是否启用读空气功能
|
||||
enable_kuuki_read: bool = True # 是否启用读空气功能
|
||||
|
||||
mood_update_interval: float = 1.0 # 情绪更新间隔 单位秒
|
||||
mood_decay_rate: float = 0.95 # 情绪衰减率
|
||||
mood_intensity_factor: float = 0.7 # 情绪强度因子
|
||||
mood_update_interval: float = 1.0 # 情绪更新间隔 单位秒
|
||||
mood_decay_rate: float = 0.95 # 情绪衰减率
|
||||
mood_intensity_factor: float = 0.7 # 情绪强度因子
|
||||
|
||||
keywords_reaction_rules = [] # 关键词回复规则
|
||||
|
||||
chinese_typo_enable = True # 是否启用中文错别字生成器
|
||||
chinese_typo_error_rate = 0.03 # 单字替换概率
|
||||
chinese_typo_min_freq = 7 # 最小字频阈值
|
||||
chinese_typo_tone_error_rate = 0.2 # 声调错误概率
|
||||
chinese_typo_word_replace_rate = 0.02 # 整词替换概率
|
||||
|
||||
# 默认人设
|
||||
PROMPT_PERSONALITY=[
|
||||
PROMPT_PERSONALITY = [
|
||||
"曾经是一个学习地质的女大学生,现在学习心理学和脑科学,你会刷贴吧",
|
||||
"是一个女大学生,你有黑色头发,你会刷小红书",
|
||||
"是一个女大学生,你会刷b站,对ACG文化感兴趣"
|
||||
"是一个女大学生,你会刷b站,对ACG文化感兴趣",
|
||||
]
|
||||
PROMPT_SCHEDULE_GEN="一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||
|
||||
PERSONALITY_1: float = 0.6 # 第一种人格概率
|
||||
PERSONALITY_2: float = 0.3 # 第二种人格概率
|
||||
PERSONALITY_3: float = 0.1 # 第三种人格概率
|
||||
PROMPT_SCHEDULE_GEN = "一个曾经学习地质,现在学习心理学和脑科学的女大学生,喜欢刷qq,贴吧,知乎和小红书"
|
||||
|
||||
PERSONALITY_1: float = 0.6 # 第一种人格概率
|
||||
PERSONALITY_2: float = 0.3 # 第二种人格概率
|
||||
PERSONALITY_3: float = 0.1 # 第三种人格概率
|
||||
|
||||
memory_ban_words: list = field(
|
||||
default_factory=lambda: ["表情包", "图片", "回复", "聊天记录"]
|
||||
) # 添加新的配置项默认值
|
||||
|
||||
@staticmethod
|
||||
def get_config_dir() -> str:
|
||||
"""获取配置文件目录"""
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
root_dir = os.path.abspath(os.path.join(current_dir, '..', '..', '..'))
|
||||
config_dir = os.path.join(root_dir, 'config')
|
||||
root_dir = os.path.abspath(os.path.join(current_dir, "..", "..", ".."))
|
||||
config_dir = os.path.join(root_dir, "config")
|
||||
if not os.path.exists(config_dir):
|
||||
os.makedirs(config_dir)
|
||||
return config_dir
|
||||
|
||||
@classmethod
|
||||
def convert_to_specifierset(cls, value: str) -> SpecifierSet:
|
||||
"""将 字符串 版本表达式转换成 SpecifierSet
|
||||
Args:
|
||||
value[str]: 版本表达式(字符串)
|
||||
Returns:
|
||||
SpecifierSet
|
||||
"""
|
||||
|
||||
try:
|
||||
converted = SpecifierSet(value)
|
||||
except InvalidSpecifier:
|
||||
logger.error(f"{value} 分类使用了错误的版本约束表达式\n", "请阅读 https://semver.org/lang/zh-CN/ 修改代码")
|
||||
exit(1)
|
||||
|
||||
return converted
|
||||
|
||||
@classmethod
|
||||
def get_config_version(cls, toml: dict) -> Version:
|
||||
"""提取配置文件的 SpecifierSet 版本数据
|
||||
Args:
|
||||
toml[dict]: 输入的配置文件字典
|
||||
Returns:
|
||||
Version
|
||||
"""
|
||||
|
||||
if "inner" in toml:
|
||||
try:
|
||||
config_version: str = toml["inner"]["version"]
|
||||
except KeyError as e:
|
||||
logger.error("配置文件中 inner 段 不存在, 这是错误的配置文件")
|
||||
raise KeyError(f"配置文件中 inner 段 不存在 {e}, 这是错误的配置文件") from e
|
||||
else:
|
||||
toml["inner"] = {"version": "0.0.0"}
|
||||
config_version = toml["inner"]["version"]
|
||||
|
||||
try:
|
||||
ver = version.parse(config_version)
|
||||
except InvalidVersion as e:
|
||||
logger.error(
|
||||
"配置文件中 inner段 的 version 键是错误的版本描述\n"
|
||||
"请阅读 https://semver.org/lang/zh-CN/ 修改配置,并参考本项目指定的模板进行修改\n"
|
||||
"本项目在不同的版本下有不同的模板,请注意识别"
|
||||
)
|
||||
raise InvalidVersion("配置文件中 inner段 的 version 键是错误的版本描述\n") from e
|
||||
|
||||
return ver
|
||||
|
||||
@classmethod
|
||||
def load_config(cls, config_path: str = None) -> "BotConfig":
|
||||
"""从TOML配置文件加载配置"""
|
||||
config = cls()
|
||||
|
||||
def personality(parent: dict):
|
||||
personality_config = parent["personality"]
|
||||
personality = personality_config.get("prompt_personality")
|
||||
if len(personality) >= 2:
|
||||
logger.debug(f"载入自定义人格:{personality}")
|
||||
config.PROMPT_PERSONALITY = personality_config.get("prompt_personality", config.PROMPT_PERSONALITY)
|
||||
logger.info(f"载入自定义日程prompt:{personality_config.get('prompt_schedule', config.PROMPT_SCHEDULE_GEN)}")
|
||||
config.PROMPT_SCHEDULE_GEN = personality_config.get("prompt_schedule", config.PROMPT_SCHEDULE_GEN)
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.2"):
|
||||
config.PERSONALITY_1 = personality_config.get("personality_1_probability", config.PERSONALITY_1)
|
||||
config.PERSONALITY_2 = personality_config.get("personality_2_probability", config.PERSONALITY_2)
|
||||
config.PERSONALITY_3 = personality_config.get("personality_3_probability", config.PERSONALITY_3)
|
||||
|
||||
def emoji(parent: dict):
|
||||
emoji_config = parent["emoji"]
|
||||
config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL)
|
||||
config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL)
|
||||
config.EMOJI_CHECK_PROMPT = emoji_config.get("check_prompt", config.EMOJI_CHECK_PROMPT)
|
||||
config.EMOJI_SAVE = emoji_config.get("auto_save", config.EMOJI_SAVE)
|
||||
config.EMOJI_CHECK = emoji_config.get("enable_check", config.EMOJI_CHECK)
|
||||
|
||||
def cq_code(parent: dict):
|
||||
cq_code_config = parent["cq_code"]
|
||||
config.ENABLE_PIC_TRANSLATE = cq_code_config.get("enable_pic_translate", config.ENABLE_PIC_TRANSLATE)
|
||||
|
||||
def bot(parent: dict):
|
||||
# 机器人基础配置
|
||||
bot_config = parent["bot"]
|
||||
bot_qq = bot_config.get("qq")
|
||||
config.BOT_QQ = int(bot_qq)
|
||||
config.BOT_NICKNAME = bot_config.get("nickname", config.BOT_NICKNAME)
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.5"):
|
||||
config.BOT_ALIAS_NAMES = bot_config.get("alias_names", config.BOT_ALIAS_NAMES)
|
||||
|
||||
def response(parent: dict):
|
||||
response_config = parent["response"]
|
||||
config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
|
||||
config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
|
||||
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get(
|
||||
"model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY
|
||||
)
|
||||
config.max_response_length = response_config.get("max_response_length", config.max_response_length)
|
||||
|
||||
def model(parent: dict):
|
||||
# 加载模型配置
|
||||
model_config: dict = parent["model"]
|
||||
|
||||
config_list = [
|
||||
"llm_reasoning",
|
||||
"llm_reasoning_minor",
|
||||
"llm_normal",
|
||||
"llm_normal_minor",
|
||||
"llm_topic_judge",
|
||||
"llm_summary_by_topic",
|
||||
"llm_emotion_judge",
|
||||
"vlm",
|
||||
"embedding",
|
||||
"moderation",
|
||||
]
|
||||
|
||||
for item in config_list:
|
||||
if item in model_config:
|
||||
cfg_item: dict = model_config[item]
|
||||
|
||||
# base_url 的例子: SILICONFLOW_BASE_URL
|
||||
# key 的例子: SILICONFLOW_KEY
|
||||
cfg_target = {"name": "", "base_url": "", "key": "", "pri_in": 0, "pri_out": 0}
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet("<=0.0.0"):
|
||||
cfg_target = cfg_item
|
||||
|
||||
elif config.INNER_VERSION in SpecifierSet(">=0.0.1"):
|
||||
stable_item = ["name", "pri_in", "pri_out"]
|
||||
pricing_item = ["pri_in", "pri_out"]
|
||||
# 从配置中原始拷贝稳定字段
|
||||
for i in stable_item:
|
||||
# 如果 字段 属于计费项 且获取不到,那默认值是 0
|
||||
if i in pricing_item and i not in cfg_item:
|
||||
cfg_target[i] = 0
|
||||
else:
|
||||
# 没有特殊情况则原样复制
|
||||
try:
|
||||
cfg_target[i] = cfg_item[i]
|
||||
except KeyError as e:
|
||||
logger.error(f"{item} 中的必要字段不存在,请检查")
|
||||
raise KeyError(f"{item} 中的必要字段 {e} 不存在,请检查") from e
|
||||
|
||||
provider = cfg_item.get("provider")
|
||||
if provider is None:
|
||||
logger.error(f"provider 字段在模型配置 {item} 中不存在,请检查")
|
||||
raise KeyError(f"provider 字段在模型配置 {item} 中不存在,请检查")
|
||||
|
||||
cfg_target["base_url"] = f"{provider}_BASE_URL"
|
||||
cfg_target["key"] = f"{provider}_KEY"
|
||||
|
||||
# 如果 列表中的项目在 model_config 中,利用反射来设置对应项目
|
||||
setattr(config, item, cfg_target)
|
||||
else:
|
||||
logger.error(f"模型 {item} 在config中不存在,请检查")
|
||||
raise KeyError(f"模型 {item} 在config中不存在,请检查")
|
||||
|
||||
def message(parent: dict):
|
||||
msg_config = parent["message"]
|
||||
config.MIN_TEXT_LENGTH = msg_config.get("min_text_length", config.MIN_TEXT_LENGTH)
|
||||
config.MAX_CONTEXT_SIZE = msg_config.get("max_context_size", config.MAX_CONTEXT_SIZE)
|
||||
config.emoji_chance = msg_config.get("emoji_chance", config.emoji_chance)
|
||||
config.ban_words = msg_config.get("ban_words", config.ban_words)
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.2"):
|
||||
config.thinking_timeout = msg_config.get("thinking_timeout", config.thinking_timeout)
|
||||
config.response_willing_amplifier = msg_config.get(
|
||||
"response_willing_amplifier", config.response_willing_amplifier
|
||||
)
|
||||
config.response_interested_rate_amplifier = msg_config.get(
|
||||
"response_interested_rate_amplifier", config.response_interested_rate_amplifier
|
||||
)
|
||||
config.down_frequency_rate = msg_config.get("down_frequency_rate", config.down_frequency_rate)
|
||||
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.6"):
|
||||
config.ban_msgs_regex = msg_config.get("ban_msgs_regex", config.ban_msgs_regex)
|
||||
|
||||
def memory(parent: dict):
|
||||
memory_config = parent["memory"]
|
||||
config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
|
||||
config.forget_memory_interval = memory_config.get("forget_memory_interval", config.forget_memory_interval)
|
||||
|
||||
# 在版本 >= 0.0.4 时才处理新增的配置项
|
||||
if config.INNER_VERSION in SpecifierSet(">=0.0.4"):
|
||||
config.memory_ban_words = set(memory_config.get("memory_ban_words", []))
|
||||
|
||||
def mood(parent: dict):
|
||||
mood_config = parent["mood"]
|
||||
config.mood_update_interval = mood_config.get("mood_update_interval", config.mood_update_interval)
|
||||
config.mood_decay_rate = mood_config.get("mood_decay_rate", config.mood_decay_rate)
|
||||
config.mood_intensity_factor = mood_config.get("mood_intensity_factor", config.mood_intensity_factor)
|
||||
|
||||
def keywords_reaction(parent: dict):
|
||||
keywords_reaction_config = parent["keywords_reaction"]
|
||||
if keywords_reaction_config.get("enable", False):
|
||||
config.keywords_reaction_rules = keywords_reaction_config.get("rules", config.keywords_reaction_rules)
|
||||
|
||||
def chinese_typo(parent: dict):
|
||||
chinese_typo_config = parent["chinese_typo"]
|
||||
config.chinese_typo_enable = chinese_typo_config.get("enable", config.chinese_typo_enable)
|
||||
config.chinese_typo_error_rate = chinese_typo_config.get("error_rate", config.chinese_typo_error_rate)
|
||||
config.chinese_typo_min_freq = chinese_typo_config.get("min_freq", config.chinese_typo_min_freq)
|
||||
config.chinese_typo_tone_error_rate = chinese_typo_config.get(
|
||||
"tone_error_rate", config.chinese_typo_tone_error_rate
|
||||
)
|
||||
config.chinese_typo_word_replace_rate = chinese_typo_config.get(
|
||||
"word_replace_rate", config.chinese_typo_word_replace_rate
|
||||
)
|
||||
|
||||
def groups(parent: dict):
|
||||
groups_config = parent["groups"]
|
||||
config.talk_allowed_groups = set(groups_config.get("talk_allowed", []))
|
||||
config.talk_frequency_down_groups = set(groups_config.get("talk_frequency_down", []))
|
||||
config.ban_user_id = set(groups_config.get("ban_user_id", []))
|
||||
|
||||
def others(parent: dict):
|
||||
others_config = parent["others"]
|
||||
config.enable_advance_output = others_config.get("enable_advance_output", config.enable_advance_output)
|
||||
config.enable_kuuki_read = others_config.get("enable_kuuki_read", config.enable_kuuki_read)
|
||||
|
||||
# 版本表达式:>=1.0.0,<2.0.0
|
||||
# 允许字段:func: method, support: str, notice: str, necessary: bool
|
||||
# 如果使用 notice 字段,在该组配置加载时,会展示该字段对用户的警示
|
||||
# 例如:"notice": "personality 将在 1.3.2 后被移除",那么在有效版本中的用户就会虽然可以
|
||||
# 正常执行程序,但是会看到这条自定义提示
|
||||
include_configs = {
|
||||
"personality": {"func": personality, "support": ">=0.0.0"},
|
||||
"emoji": {"func": emoji, "support": ">=0.0.0"},
|
||||
"cq_code": {"func": cq_code, "support": ">=0.0.0"},
|
||||
"bot": {"func": bot, "support": ">=0.0.0"},
|
||||
"response": {"func": response, "support": ">=0.0.0"},
|
||||
"model": {"func": model, "support": ">=0.0.0"},
|
||||
"message": {"func": message, "support": ">=0.0.0"},
|
||||
"memory": {"func": memory, "support": ">=0.0.0", "necessary": False},
|
||||
"mood": {"func": mood, "support": ">=0.0.0"},
|
||||
"keywords_reaction": {"func": keywords_reaction, "support": ">=0.0.2", "necessary": False},
|
||||
"chinese_typo": {"func": chinese_typo, "support": ">=0.0.3", "necessary": False},
|
||||
"groups": {"func": groups, "support": ">=0.0.0"},
|
||||
"others": {"func": others, "support": ">=0.0.0"},
|
||||
}
|
||||
|
||||
# 原地修改,将 字符串版本表达式 转换成 版本对象
|
||||
for key in include_configs:
|
||||
item_support = include_configs[key]["support"]
|
||||
include_configs[key]["support"] = cls.convert_to_specifierset(item_support)
|
||||
|
||||
if os.path.exists(config_path):
|
||||
with open(config_path, "rb") as f:
|
||||
try:
|
||||
toml_dict = tomli.load(f)
|
||||
except(tomli.TOMLDecodeError) as e:
|
||||
except tomli.TOMLDecodeError as e:
|
||||
logger.critical(f"配置文件bot_config.toml填写有误,请检查第{e.lineno}行第{e.colno}处:{e.msg}")
|
||||
exit(1)
|
||||
|
||||
if 'personality' in toml_dict:
|
||||
personality_config=toml_dict['personality']
|
||||
personality=personality_config.get('prompt_personality')
|
||||
if len(personality) >= 2:
|
||||
logger.info(f"载入自定义人格:{personality}")
|
||||
config.PROMPT_PERSONALITY=personality_config.get('prompt_personality',config.PROMPT_PERSONALITY)
|
||||
logger.info(f"载入自定义日程prompt:{personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)}")
|
||||
config.PROMPT_SCHEDULE_GEN=personality_config.get('prompt_schedule',config.PROMPT_SCHEDULE_GEN)
|
||||
config.PERSONALITY_1=personality_config.get('personality_1_probability',config.PERSONALITY_1)
|
||||
config.PERSONALITY_2=personality_config.get('personality_2_probability',config.PERSONALITY_2)
|
||||
config.PERSONALITY_3=personality_config.get('personality_3_probability',config.PERSONALITY_3)
|
||||
# 获取配置文件版本
|
||||
config.INNER_VERSION = cls.get_config_version(toml_dict)
|
||||
|
||||
if "emoji" in toml_dict:
|
||||
emoji_config = toml_dict["emoji"]
|
||||
config.EMOJI_CHECK_INTERVAL = emoji_config.get("check_interval", config.EMOJI_CHECK_INTERVAL)
|
||||
config.EMOJI_REGISTER_INTERVAL = emoji_config.get("register_interval", config.EMOJI_REGISTER_INTERVAL)
|
||||
config.EMOJI_CHECK_PROMPT = emoji_config.get('check_prompt',config.EMOJI_CHECK_PROMPT)
|
||||
config.EMOJI_SAVE = emoji_config.get('auto_save',config.EMOJI_SAVE)
|
||||
config.EMOJI_CHECK = emoji_config.get('enable_check',config.EMOJI_CHECK)
|
||||
# 如果在配置中找到了需要的项,调用对应项的闭包函数处理
|
||||
for key in include_configs:
|
||||
if key in toml_dict:
|
||||
group_specifierset: SpecifierSet = include_configs[key]["support"]
|
||||
|
||||
if "cq_code" in toml_dict:
|
||||
cq_code_config = toml_dict["cq_code"]
|
||||
config.ENABLE_PIC_TRANSLATE = cq_code_config.get("enable_pic_translate", config.ENABLE_PIC_TRANSLATE)
|
||||
# 检查配置文件版本是否在支持范围内
|
||||
if config.INNER_VERSION in group_specifierset:
|
||||
# 如果版本在支持范围内,检查是否存在通知
|
||||
if "notice" in include_configs[key]:
|
||||
logger.warning(include_configs[key]["notice"])
|
||||
|
||||
# 机器人基础配置
|
||||
if "bot" in toml_dict:
|
||||
bot_config = toml_dict["bot"]
|
||||
bot_qq = bot_config.get("qq")
|
||||
config.BOT_QQ = int(bot_qq)
|
||||
config.BOT_NICKNAME = bot_config.get("nickname", config.BOT_NICKNAME)
|
||||
include_configs[key]["func"](toml_dict)
|
||||
|
||||
if "response" in toml_dict:
|
||||
response_config = toml_dict["response"]
|
||||
config.MODEL_R1_PROBABILITY = response_config.get("model_r1_probability", config.MODEL_R1_PROBABILITY)
|
||||
config.MODEL_V3_PROBABILITY = response_config.get("model_v3_probability", config.MODEL_V3_PROBABILITY)
|
||||
config.MODEL_R1_DISTILL_PROBABILITY = response_config.get("model_r1_distill_probability", config.MODEL_R1_DISTILL_PROBABILITY)
|
||||
config.max_response_length = response_config.get("max_response_length", config.max_response_length)
|
||||
else:
|
||||
# 如果版本不在支持范围内,崩溃并提示用户
|
||||
logger.error(
|
||||
f"配置文件中的 '{key}' 字段的版本 ({config.INNER_VERSION}) 不在支持范围内。\n"
|
||||
f"当前程序仅支持以下版本范围: {group_specifierset}"
|
||||
)
|
||||
raise InvalidVersion(f"当前程序仅支持以下版本范围: {group_specifierset}")
|
||||
|
||||
# 加载模型配置
|
||||
if "model" in toml_dict:
|
||||
model_config = toml_dict["model"]
|
||||
# 如果 necessary 项目存在,而且显式声明是 False,进入特殊处理
|
||||
elif "necessary" in include_configs[key] and include_configs[key].get("necessary") is False:
|
||||
# 通过 pass 处理的项虽然直接忽略也是可以的,但是为了不增加理解困难,依然需要在这里显式处理
|
||||
if key == "keywords_reaction":
|
||||
pass
|
||||
|
||||
if "llm_reasoning" in model_config:
|
||||
config.llm_reasoning = model_config["llm_reasoning"]
|
||||
else:
|
||||
# 如果用户根本没有需要的配置项,提示缺少配置
|
||||
logger.error(f"配置文件中缺少必需的字段: '{key}'")
|
||||
raise KeyError(f"配置文件中缺少必需的字段: '{key}'")
|
||||
|
||||
if "llm_reasoning_minor" in model_config:
|
||||
config.llm_reasoning_minor = model_config["llm_reasoning_minor"]
|
||||
|
||||
if "llm_normal" in model_config:
|
||||
config.llm_normal = model_config["llm_normal"]
|
||||
|
||||
if "llm_normal_minor" in model_config:
|
||||
config.llm_normal_minor = model_config["llm_normal_minor"]
|
||||
|
||||
if "llm_topic_judge" in model_config:
|
||||
config.llm_topic_judge = model_config["llm_topic_judge"]
|
||||
|
||||
if "llm_summary_by_topic" in model_config:
|
||||
config.llm_summary_by_topic = model_config["llm_summary_by_topic"]
|
||||
|
||||
if "llm_emotion_judge" in model_config:
|
||||
config.llm_emotion_judge = model_config["llm_emotion_judge"]
|
||||
|
||||
if "vlm" in model_config:
|
||||
config.vlm = model_config["vlm"]
|
||||
|
||||
if "embedding" in model_config:
|
||||
config.embedding = model_config["embedding"]
|
||||
|
||||
if "moderation" in model_config:
|
||||
config.moderation = model_config["moderation"]
|
||||
|
||||
# 消息配置
|
||||
if "message" in toml_dict:
|
||||
msg_config = toml_dict["message"]
|
||||
config.MIN_TEXT_LENGTH = msg_config.get("min_text_length", config.MIN_TEXT_LENGTH)
|
||||
config.MAX_CONTEXT_SIZE = msg_config.get("max_context_size", config.MAX_CONTEXT_SIZE)
|
||||
config.emoji_chance = msg_config.get("emoji_chance", config.emoji_chance)
|
||||
config.ban_words=msg_config.get("ban_words",config.ban_words)
|
||||
config.thinking_timeout = msg_config.get("thinking_timeout", config.thinking_timeout)
|
||||
config.response_willing_amplifier = msg_config.get("response_willing_amplifier", config.response_willing_amplifier)
|
||||
config.response_interested_rate_amplifier = msg_config.get("response_interested_rate_amplifier", config.response_interested_rate_amplifier)
|
||||
config.down_frequency_rate = msg_config.get("down_frequency_rate", config.down_frequency_rate)
|
||||
|
||||
if "memory" in toml_dict:
|
||||
memory_config = toml_dict["memory"]
|
||||
config.build_memory_interval = memory_config.get("build_memory_interval", config.build_memory_interval)
|
||||
config.forget_memory_interval = memory_config.get("forget_memory_interval", config.forget_memory_interval)
|
||||
|
||||
if "mood" in toml_dict:
|
||||
mood_config = toml_dict["mood"]
|
||||
config.mood_update_interval = mood_config.get("mood_update_interval", config.mood_update_interval)
|
||||
config.mood_decay_rate = mood_config.get("mood_decay_rate", config.mood_decay_rate)
|
||||
config.mood_intensity_factor = mood_config.get("mood_intensity_factor", config.mood_intensity_factor)
|
||||
|
||||
# 群组配置
|
||||
if "groups" in toml_dict:
|
||||
groups_config = toml_dict["groups"]
|
||||
config.talk_allowed_groups = set(groups_config.get("talk_allowed", []))
|
||||
config.talk_frequency_down_groups = set(groups_config.get("talk_frequency_down", []))
|
||||
config.ban_user_id = set(groups_config.get("ban_user_id", []))
|
||||
|
||||
if "others" in toml_dict:
|
||||
others_config = toml_dict["others"]
|
||||
config.enable_advance_output = others_config.get("enable_advance_output", config.enable_advance_output)
|
||||
config.enable_kuuki_read = others_config.get("enable_kuuki_read", config.enable_kuuki_read)
|
||||
|
||||
logger.success(f"成功加载配置文件: {config_path}")
|
||||
logger.success(f"成功加载配置文件: {config_path}")
|
||||
|
||||
return config
|
||||
|
||||
# 获取配置文件路径
|
||||
|
||||
# 获取配置文件路径
|
||||
bot_config_floder_path = BotConfig.get_config_dir()
|
||||
print(f"正在品鉴配置文件目录: {bot_config_floder_path}")
|
||||
logger.debug(f"正在品鉴配置文件目录: {bot_config_floder_path}")
|
||||
|
||||
bot_config_path = os.path.join(bot_config_floder_path, "bot_config.toml")
|
||||
|
||||
if os.path.exists(bot_config_path):
|
||||
# 如果开发环境配置文件不存在,则使用默认配置文件
|
||||
print(f"异常的新鲜,异常的美味: {bot_config_path}")
|
||||
logger.debug(f"异常的新鲜,异常的美味: {bot_config_path}")
|
||||
logger.info("使用bot配置文件")
|
||||
else:
|
||||
logger.info("没有找到美味")
|
||||
# 配置文件不存在
|
||||
logger.error("配置文件不存在,请检查路径: {bot_config_path}")
|
||||
raise FileNotFoundError(f"配置文件不存在: {bot_config_path}")
|
||||
|
||||
global_config = BotConfig.load_config(config_path=bot_config_path)
|
||||
|
||||
|
||||
if not global_config.enable_advance_output:
|
||||
logger.remove()
|
||||
pass
|
||||
|
||||
|
||||
@@ -170,11 +170,11 @@ class CQCode:
|
||||
|
||||
except (requests.exceptions.SSLError, requests.exceptions.HTTPError) as e:
|
||||
if retry == max_retries - 1:
|
||||
print(f"\033[1;31m[致命错误]\033[0m 最终请求失败: {str(e)}")
|
||||
logger.error(f"最终请求失败: {str(e)}")
|
||||
time.sleep(1.5**retry) # 指数退避
|
||||
|
||||
except Exception as e:
|
||||
print(f"\033[1;33m[未知错误]\033[0m {str(e)}")
|
||||
except Exception:
|
||||
logger.exception("[未知错误]")
|
||||
return None
|
||||
|
||||
return None
|
||||
|
||||
@@ -36,7 +36,9 @@ class EmojiManager:
|
||||
self.db = Database.get_instance()
|
||||
self._scan_task = None
|
||||
self.vlm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=1000)
|
||||
self.llm_emotion_judge = LLM_request(model=global_config.llm_normal_minor, max_tokens=60,temperature=0.8) #更高的温度,更少的token(后续可以根据情绪来调整温度)
|
||||
self.llm_emotion_judge = LLM_request(model=global_config.llm_normal_minor, max_tokens=60,
|
||||
temperature=0.8) # 更高的温度,更少的token(后续可以根据情绪来调整温度)
|
||||
|
||||
|
||||
def _ensure_emoji_dir(self):
|
||||
"""确保表情存储目录存在"""
|
||||
@@ -52,8 +54,8 @@ class EmojiManager:
|
||||
self._initialized = True
|
||||
# 启动时执行一次完整性检查
|
||||
self.check_emoji_file_integrity()
|
||||
except Exception as e:
|
||||
logger.error(f"初始化表情管理器失败: {str(e)}")
|
||||
except Exception:
|
||||
logger.exception("初始化表情管理器失败")
|
||||
|
||||
def _ensure_db(self):
|
||||
"""确保数据库已初始化"""
|
||||
@@ -106,7 +108,7 @@ class EmojiManager:
|
||||
self._ensure_db()
|
||||
|
||||
# 获取文本的embedding
|
||||
text_for_search= await self._get_kimoji_for_text(text)
|
||||
text_for_search = await self._get_kimoji_for_text(text)
|
||||
if not text_for_search:
|
||||
logger.error("无法获取文本的情绪")
|
||||
return None
|
||||
@@ -117,7 +119,7 @@ class EmojiManager:
|
||||
|
||||
try:
|
||||
# 获取所有表情包
|
||||
all_emojis = list(self.db.db.emoji.find({}, {'_id': 1, 'path': 1, 'embedding': 1, 'discription': 1}))
|
||||
all_emojis = list(self.db.db.emoji.find({}, {'_id': 1, 'path': 1, 'embedding': 1, 'description': 1}))
|
||||
|
||||
if not all_emojis:
|
||||
logger.warning("数据库中没有任何表情包")
|
||||
@@ -159,9 +161,10 @@ class EmojiManager:
|
||||
{'_id': selected_emoji['_id']},
|
||||
{'$inc': {'usage_count': 1}}
|
||||
)
|
||||
logger.success(f"找到匹配的表情包: {selected_emoji.get('discription', '无描述')} (相似度: {similarity:.4f})")
|
||||
logger.success(
|
||||
f"找到匹配的表情包: {selected_emoji.get('description', '无描述')} (相似度: {similarity:.4f})")
|
||||
# 稍微改一下文本描述,不然容易产生幻觉,描述已经包含 表情包 了
|
||||
return selected_emoji['path'],"[ %s ]" % selected_emoji.get('discription', '无描述')
|
||||
return selected_emoji['path'], "[ %s ]" % selected_emoji.get('description', '无描述')
|
||||
|
||||
except Exception as search_error:
|
||||
logger.error(f"搜索表情包失败: {str(search_error)}")
|
||||
@@ -198,11 +201,11 @@ class EmojiManager:
|
||||
logger.error(f"获取标签失败: {str(e)}")
|
||||
return None
|
||||
|
||||
async def _get_kimoji_for_text(self, text:str):
|
||||
async def _get_kimoji_for_text(self, text: str):
|
||||
try:
|
||||
prompt = f'这是{global_config.BOT_NICKNAME}将要发送的消息内容:\n{text}\n若要为其配上表情包,请你输出这个表情包应该表达怎样的情感,应该给人什么样的感觉,不要太简洁也不要太长,注意不要输出任何对消息内容的分析内容,只输出\"一种什么样的感觉\"中间的形容词部分。'
|
||||
|
||||
content, _ = await self.llm_emotion_judge.generate_response_async(prompt)
|
||||
content, _ = await self.llm_emotion_judge.generate_response_async(prompt,temperature=1.5)
|
||||
logger.info(f"输出描述: {content}")
|
||||
return content
|
||||
|
||||
@@ -217,7 +220,8 @@ class EmojiManager:
|
||||
os.makedirs(emoji_dir, exist_ok=True)
|
||||
|
||||
# 获取所有支持的图片文件
|
||||
files_to_process = [f for f in os.listdir(emoji_dir) if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))]
|
||||
files_to_process = [f for f in os.listdir(emoji_dir) if
|
||||
f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))]
|
||||
|
||||
for filename in files_to_process:
|
||||
image_path = os.path.join(emoji_dir, filename)
|
||||
@@ -273,10 +277,14 @@ class EmojiManager:
|
||||
if '是' not in check:
|
||||
os.remove(image_path)
|
||||
logger.info(f"描述: {description}")
|
||||
logger.info(f"描述: {description}")
|
||||
logger.info(f"其不满足过滤规则,被剔除 {check}")
|
||||
continue
|
||||
logger.info(f"check通过 {check}")
|
||||
|
||||
if description is not None:
|
||||
embedding = await get_embedding(description)
|
||||
|
||||
if description is not None:
|
||||
embedding = await get_embedding(description)
|
||||
# 准备数据库记录
|
||||
@@ -313,18 +321,16 @@ class EmojiManager:
|
||||
else:
|
||||
logger.warning(f"跳过表情包: {filename}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"扫描表情包失败: {str(e)}")
|
||||
logger.error(traceback.format_exc())
|
||||
except Exception:
|
||||
logger.exception("扫描表情包失败")
|
||||
|
||||
async def _periodic_scan(self, interval_MINS: int = 10):
|
||||
"""定期扫描新表情包"""
|
||||
while True:
|
||||
print("\033[1;36m[表情包]\033[0m 开始扫描新表情包...")
|
||||
logger.info("开始扫描新表情包...")
|
||||
await self.scan_new_emojis()
|
||||
await asyncio.sleep(interval_MINS * 60) # 每600秒扫描一次
|
||||
|
||||
|
||||
def check_emoji_file_integrity(self):
|
||||
"""检查表情包文件完整性
|
||||
如果文件已被删除,则从数据库中移除对应记录
|
||||
@@ -356,7 +362,7 @@ class EmojiManager:
|
||||
# 从数据库中删除记录
|
||||
result = self.db.db.emoji.delete_one({'_id': emoji['_id']})
|
||||
if result.deleted_count > 0:
|
||||
logger.success(f"成功删除数据库记录: {emoji['_id']}")
|
||||
logger.debug(f"成功删除数据库记录: {emoji['_id']}")
|
||||
removed_count += 1
|
||||
else:
|
||||
logger.error(f"删除数据库记录失败: {emoji['_id']}")
|
||||
@@ -382,6 +388,6 @@ class EmojiManager:
|
||||
await asyncio.sleep(interval_MINS * 60)
|
||||
|
||||
|
||||
|
||||
# 创建全局单例
|
||||
emoji_manager = EmojiManager()
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@ import time
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
from nonebot import get_driver
|
||||
from loguru import logger
|
||||
|
||||
from ...common.database import Database
|
||||
from ..models.utils_model import LLM_request
|
||||
@@ -55,9 +56,7 @@ class ResponseGenerator:
|
||||
self.current_model_type = "r1_distill"
|
||||
current_model = self.model_r1_distill
|
||||
|
||||
print(
|
||||
f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++"
|
||||
)
|
||||
logger.info(f"{global_config.BOT_NICKNAME}{self.current_model_type}思考中")
|
||||
|
||||
model_response = await self._generate_response_with_model(
|
||||
message, current_model
|
||||
@@ -65,7 +64,7 @@ class ResponseGenerator:
|
||||
raw_content = model_response
|
||||
|
||||
if model_response:
|
||||
print(f"{global_config.BOT_NICKNAME}的回复是:{model_response}")
|
||||
logger.info(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
|
||||
model_response = await self._process_response(model_response)
|
||||
if model_response:
|
||||
return model_response, raw_content
|
||||
@@ -122,8 +121,8 @@ class ResponseGenerator:
|
||||
# 生成回复
|
||||
try:
|
||||
content, reasoning_content = await model.generate_response(prompt)
|
||||
except Exception as e:
|
||||
print(f"生成回复时出错: {e}")
|
||||
except Exception:
|
||||
logger.exception("生成回复时出错")
|
||||
return None
|
||||
|
||||
# 保存到数据库
|
||||
@@ -219,7 +218,7 @@ class InitiativeMessageGenerate:
|
||||
prompt_builder._build_initiative_prompt_select(message.group_id)
|
||||
)
|
||||
content_select, reasoning = self.model_v3.generate_response(topic_select_prompt)
|
||||
print(f"[DEBUG] {content_select} {reasoning}")
|
||||
logger.debug(f"{content_select} {reasoning}")
|
||||
topics_list = [dot[0] for dot in dots_for_select]
|
||||
if content_select:
|
||||
if content_select in topics_list:
|
||||
@@ -232,12 +231,12 @@ class InitiativeMessageGenerate:
|
||||
select_dot[1], prompt_template
|
||||
)
|
||||
content_check, reasoning_check = self.model_v3.generate_response(prompt_check)
|
||||
print(f"[DEBUG] {content_check} {reasoning_check}")
|
||||
logger.info(f"{content_check} {reasoning_check}")
|
||||
if "yes" not in content_check.lower():
|
||||
return None
|
||||
prompt = prompt_builder._build_initiative_prompt(
|
||||
select_dot, prompt_template, memory
|
||||
)
|
||||
content, reasoning = self.model_r1.generate_response_async(prompt)
|
||||
print(f"[DEBUG] {content} {reasoning}")
|
||||
logger.debug(f"[DEBUG] {content} {reasoning}")
|
||||
return content
|
||||
|
||||
@@ -2,6 +2,7 @@ import asyncio
|
||||
import time
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from loguru import logger
|
||||
from nonebot.adapters.onebot.v11 import Bot
|
||||
|
||||
from .cq_code import cq_code_tool
|
||||
@@ -14,6 +15,7 @@ from .chat_stream import chat_manager
|
||||
|
||||
class Message_Sender:
|
||||
"""发送器"""
|
||||
|
||||
def __init__(self):
|
||||
self.message_interval = (0.5, 1) # 消息间隔时间范围(秒)
|
||||
self.last_send_time = 0
|
||||
@@ -41,10 +43,10 @@ class Message_Sender:
|
||||
message=message_send.raw_message,
|
||||
auto_escape=False
|
||||
)
|
||||
print(f"\033[1;34m[调试]\033[0m 发送消息{message.processed_plain_text}成功")
|
||||
logger.success(f"[调试] 发送消息{message.processed_plain_text}成功")
|
||||
except Exception as e:
|
||||
print(f"发生错误 {e}")
|
||||
print(f"\033[1;34m[调试]\033[0m 发送消息{message.processed_plain_text}失败")
|
||||
logger.error(f"[调试] 发生错误 {e}")
|
||||
logger.error(f"[调试] 发送消息{message.processed_plain_text}失败")
|
||||
else:
|
||||
try:
|
||||
await self._current_bot.send_private_msg(
|
||||
@@ -52,10 +54,10 @@ class Message_Sender:
|
||||
message=message_send.raw_message,
|
||||
auto_escape=False
|
||||
)
|
||||
print(f"\033[1;34m[调试]\033[0m 发送消息{message.processed_plain_text}成功")
|
||||
logger.success(f"[调试] 发送消息{message.processed_plain_text}成功")
|
||||
except Exception as e:
|
||||
print(f"发生错误 {e}")
|
||||
print(f"\033[1;34m[调试]\033[0m 发送消息{message.processed_plain_text}失败")
|
||||
logger.error(f"发生错误 {e}")
|
||||
logger.error(f"[调试] 发送消息{message.processed_plain_text}失败")
|
||||
|
||||
|
||||
class MessageContainer:
|
||||
@@ -110,8 +112,8 @@ class MessageContainer:
|
||||
self.messages.remove(message)
|
||||
return True
|
||||
return False
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 移除消息时发生错误: {e}")
|
||||
except Exception:
|
||||
logger.exception("移除消息时发生错误")
|
||||
return False
|
||||
|
||||
def has_messages(self) -> bool:
|
||||
@@ -152,11 +154,11 @@ class MessageManager:
|
||||
if isinstance(message_earliest, MessageThinking):
|
||||
message_earliest.update_thinking_time()
|
||||
thinking_time = message_earliest.thinking_time
|
||||
print(f"\033[1;34m[调试]\033[0m 消息正在思考中,已思考{int(thinking_time)}秒\033[K\r", end='', flush=True)
|
||||
print(f"消息正在思考中,已思考{int(thinking_time)}秒\r", end='', flush=True)
|
||||
|
||||
# 检查是否超时
|
||||
if thinking_time > global_config.thinking_timeout:
|
||||
print(f"\033[1;33m[警告]\033[0m 消息思考超时({thinking_time}秒),移除该消息")
|
||||
logger.warning(f"消息思考超时({thinking_time}秒),移除该消息")
|
||||
container.remove_message(message_earliest)
|
||||
else:
|
||||
print(f"\033[1;34m[调试]\033[0m 消息'{message_earliest.processed_plain_text}'正在发送中")
|
||||
@@ -174,7 +176,7 @@ class MessageManager:
|
||||
|
||||
message_timeout = container.get_timeout_messages()
|
||||
if message_timeout:
|
||||
print(f"\033[1;34m[调试]\033[0m 发现{len(message_timeout)}条超时消息")
|
||||
logger.warning(f"发现{len(message_timeout)}条超时消息")
|
||||
for msg in message_timeout:
|
||||
if msg == message_earliest:
|
||||
continue
|
||||
@@ -191,9 +193,9 @@ class MessageManager:
|
||||
await self.storage.store_message(msg,msg.chat_stream, None)
|
||||
|
||||
if not container.remove_message(msg):
|
||||
print("\033[1;33m[警告]\033[0m 尝试删除不存在的消息")
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 处理超时消息时发生错误: {e}")
|
||||
logger.warning("尝试删除不存在的消息")
|
||||
except Exception:
|
||||
logger.exception("处理超时消息时发生错误")
|
||||
continue
|
||||
|
||||
async def start_processor(self):
|
||||
@@ -206,6 +208,7 @@ class MessageManager:
|
||||
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
|
||||
# 创建全局消息管理器实例
|
||||
message_manager = MessageManager()
|
||||
# 创建全局发送器实例
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import random
|
||||
import time
|
||||
from typing import Optional
|
||||
from loguru import logger
|
||||
|
||||
from ...common.database import Database
|
||||
from ..memory_system.memory import hippocampus, memory_graph
|
||||
@@ -35,42 +36,41 @@ class PromptBuilder:
|
||||
Returns:
|
||||
str: 构建好的prompt
|
||||
"""
|
||||
#先禁用关系
|
||||
# 先禁用关系
|
||||
if 0 > 30:
|
||||
relation_prompt = "关系特别特别好,你很喜欢喜欢他"
|
||||
relation_prompt_2 = "热情发言或者回复"
|
||||
elif 0 <-20:
|
||||
elif 0 < -20:
|
||||
relation_prompt = "关系很差,你很讨厌他"
|
||||
relation_prompt_2 = "骂他"
|
||||
else:
|
||||
relation_prompt = "关系一般"
|
||||
relation_prompt_2 = "发言或者回复"
|
||||
|
||||
#开始构建prompt
|
||||
# 开始构建prompt
|
||||
|
||||
|
||||
#心情
|
||||
# 心情
|
||||
mood_manager = MoodManager.get_instance()
|
||||
mood_prompt = mood_manager.get_prompt()
|
||||
|
||||
|
||||
#日程构建
|
||||
# 日程构建
|
||||
current_date = time.strftime("%Y-%m-%d", time.localtime())
|
||||
current_time = time.strftime("%H:%M:%S", time.localtime())
|
||||
bot_schedule_now_time,bot_schedule_now_activity = bot_schedule.get_current_task()
|
||||
bot_schedule_now_time, bot_schedule_now_activity = bot_schedule.get_current_task()
|
||||
prompt_date = f'''今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n'''
|
||||
|
||||
#知识构建
|
||||
# 知识构建
|
||||
start_time = time.time()
|
||||
|
||||
prompt_info = ''
|
||||
promt_info_prompt = ''
|
||||
prompt_info = await self.get_prompt_info(message_txt,threshold=0.5)
|
||||
prompt_info = await self.get_prompt_info(message_txt, threshold=0.5)
|
||||
if prompt_info:
|
||||
prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]:\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n'''
|
||||
prompt_info = f'''你有以下这些[知识]:{prompt_info}请你记住上面的[
|
||||
知识],之后可能会用到-'''
|
||||
|
||||
end_time = time.time()
|
||||
print(f"\033[1;32m[知识检索]\033[0m 耗时: {(end_time - start_time):.3f}秒")
|
||||
logger.debug(f"知识检索耗时: {(end_time - start_time):.3f}秒")
|
||||
|
||||
# 获取聊天上下文
|
||||
chat_in_group=True
|
||||
@@ -108,54 +108,54 @@ class PromptBuilder:
|
||||
memory_prompt = "看到这些聊天,你想起来:\n" + "\n".join(memory_items) + "\n"
|
||||
|
||||
# 打印调试信息
|
||||
print("\n\033[1;32m[记忆检索]\033[0m 找到以下相关记忆:")
|
||||
logger.debug("[记忆检索]找到以下相关记忆:")
|
||||
for memory in relevant_memories:
|
||||
print(f"- 主题「{memory['topic']}」[相似度: {memory['similarity']:.2f}]: {memory['content']}")
|
||||
logger.debug(f"- 主题「{memory['topic']}」[相似度: {memory['similarity']:.2f}]: {memory['content']}")
|
||||
|
||||
end_time = time.time()
|
||||
print(f"\033[1;32m[回忆耗时]\033[0m 耗时: {(end_time - start_time):.3f}秒")
|
||||
logger.info(f"回忆耗时: {(end_time - start_time):.3f}秒")
|
||||
|
||||
|
||||
|
||||
#激活prompt构建
|
||||
# 激活prompt构建
|
||||
activate_prompt = ''
|
||||
if chat_in_group:
|
||||
activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和ta{relation_prompt},{mood_prompt},你想要{relation_prompt_2}。"
|
||||
else:
|
||||
activate_prompt = f"以上是你正在和{sender_name}私聊的内容,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和ta{relation_prompt},{mood_prompt},你想要{relation_prompt_2}。"
|
||||
#检测机器人相关词汇
|
||||
bot_keywords = ['人机', 'bot', '机器', '入机', 'robot', '机器人']
|
||||
is_bot = any(keyword in message_txt.lower() for keyword in bot_keywords)
|
||||
if is_bot:
|
||||
is_bot_prompt = '有人说你是人机或者机器人,否定这一事实,攻击或反问他。注意,只有认为你是机器人才回复,否则不要否认'
|
||||
else:
|
||||
is_bot_prompt = ''
|
||||
|
||||
# 关键词检测与反应
|
||||
keywords_reaction_prompt = ''
|
||||
for rule in global_config.keywords_reaction_rules:
|
||||
if rule.get("enable", False):
|
||||
if any(keyword in message_txt.lower() for keyword in rule.get("keywords", [])):
|
||||
logger.info(f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}")
|
||||
keywords_reaction_prompt += rule.get("reaction", "") + ','
|
||||
|
||||
#人格选择
|
||||
personality=global_config.PROMPT_PERSONALITY
|
||||
probability_1 = global_config.PERSONALITY_1
|
||||
probability_2 = global_config.PERSONALITY_2
|
||||
probability_3 = global_config.PERSONALITY_3
|
||||
prompt_personality = ''
|
||||
|
||||
prompt_personality = f'{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},你还有很多别名:{"/".join(global_config.BOT_ALIAS_NAMES)},'
|
||||
personality_choice = random.random()
|
||||
if chat_in_group:
|
||||
prompt_in_group=f"你正在浏览{chat_stream.platform}群"
|
||||
else:
|
||||
prompt_in_group=f"你正在{chat_stream.platform}上和{sender_name}私聊"
|
||||
if personality_choice < probability_1: # 第一种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[0]},{prompt_in_group},{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,平淡一些,尽量简短一些。{is_bot_prompt}
|
||||
prompt_personality += f'''{personality[0]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,平淡一些,尽量简短一些。{keywords_reaction_prompt}
|
||||
请注意把握群里的聊天内容,不要刻意突出自身学科背景,不要回复的太有条理,可以有个性。'''
|
||||
elif personality_choice < probability_1 + probability_2: # 第二种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[1]},{prompt_in_group},{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{is_bot_prompt}
|
||||
prompt_personality += f'''{personality[1]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{keywords_reaction_prompt}
|
||||
请你表达自己的见解和观点。可以有个性。'''
|
||||
else: # 第三种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[2]},{prompt_in_group},{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{is_bot_prompt}
|
||||
prompt_personality += f'''{personality[2]}, 你正在浏览qq群,{promt_info_prompt},
|
||||
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{keywords_reaction_prompt}
|
||||
请你表达自己的见解和观点。可以有个性。'''
|
||||
|
||||
#中文高手(新加的好玩功能)
|
||||
# 中文高手(新加的好玩功能)
|
||||
prompt_ger = ''
|
||||
if random.random() < 0.04:
|
||||
prompt_ger += '你喜欢用倒装句'
|
||||
@@ -164,10 +164,10 @@ class PromptBuilder:
|
||||
if random.random() < 0.01:
|
||||
prompt_ger += '你喜欢用文言文'
|
||||
|
||||
#额外信息要求
|
||||
# 额外信息要求
|
||||
extra_info = '''但是记得回复平淡一些,简短一些,尤其注意在没明确提到时不要过多提及自身的背景, 不要直接回复别人发的表情包,记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容'''
|
||||
|
||||
#合并prompt
|
||||
# 合并prompt
|
||||
prompt = ""
|
||||
prompt += f"{prompt_info}\n"
|
||||
prompt += f"{prompt_date}\n"
|
||||
@@ -177,9 +177,9 @@ class PromptBuilder:
|
||||
prompt += f"{extra_info}\n"
|
||||
|
||||
'''读空气prompt处理'''
|
||||
activate_prompt_check=f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2},但是这不一定是合适的时机,请你决定是否要回应这条消息。"
|
||||
activate_prompt_check = f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2},但是这不一定是合适的时机,请你决定是否要回应这条消息。"
|
||||
prompt_personality_check = ''
|
||||
extra_check_info=f"请注意把握群里的聊天内容的基础上,综合群内的氛围,例如,和{global_config.BOT_NICKNAME}相关的话题要积极回复,如果是at自己的消息一定要回复,如果自己正在和别人聊天一定要回复,其他话题如果合适搭话也可以回复,如果认为应该回复请输出yes,否则输出no,请注意是决定是否需要回复,而不是编写回复内容,除了yes和no不要输出任何回复内容。"
|
||||
extra_check_info = f"请注意把握群里的聊天内容的基础上,综合群内的氛围,例如,和{global_config.BOT_NICKNAME}相关的话题要积极回复,如果是at自己的消息一定要回复,如果自己正在和别人聊天一定要回复,其他话题如果合适搭话也可以回复,如果认为应该回复请输出yes,否则输出no,请注意是决定是否需要回复,而不是编写回复内容,除了yes和no不要输出任何回复内容。"
|
||||
if personality_choice < probability_1: # 第一种人格
|
||||
prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME},{personality[0]}, 你正在浏览qq群,{promt_info_prompt} {activate_prompt_check} {extra_check_info}'''
|
||||
elif personality_choice < probability_1 + probability_2: # 第二种人格
|
||||
@@ -187,34 +187,36 @@ class PromptBuilder:
|
||||
else: # 第三种人格
|
||||
prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME},{personality[2]}, 你正在浏览qq群,{promt_info_prompt} {activate_prompt_check} {extra_check_info}'''
|
||||
|
||||
prompt_check_if_response=f"{prompt_info}\n{prompt_date}\n{chat_talking_prompt}\n{prompt_personality_check}"
|
||||
prompt_check_if_response = f"{prompt_info}\n{prompt_date}\n{chat_talking_prompt}\n{prompt_personality_check}"
|
||||
|
||||
return prompt,prompt_check_if_response
|
||||
return prompt, prompt_check_if_response
|
||||
|
||||
def _build_initiative_prompt_select(self,group_id):
|
||||
def _build_initiative_prompt_select(self, group_id, probability_1=0.8, probability_2=0.1):
|
||||
current_date = time.strftime("%Y-%m-%d", time.localtime())
|
||||
current_time = time.strftime("%H:%M:%S", time.localtime())
|
||||
bot_schedule_now_time,bot_schedule_now_activity = bot_schedule.get_current_task()
|
||||
bot_schedule_now_time, bot_schedule_now_activity = bot_schedule.get_current_task()
|
||||
prompt_date = f'''今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n'''
|
||||
|
||||
chat_talking_prompt = ''
|
||||
if group_id:
|
||||
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True)
|
||||
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id,
|
||||
limit=global_config.MAX_CONTEXT_SIZE,
|
||||
combine=True)
|
||||
|
||||
chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}"
|
||||
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
|
||||
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
|
||||
|
||||
# 获取主动发言的话题
|
||||
all_nodes=memory_graph.dots
|
||||
all_nodes=filter(lambda dot:len(dot[1]['memory_items'])>3,all_nodes)
|
||||
nodes_for_select=random.sample(all_nodes,5)
|
||||
topics=[info[0] for info in nodes_for_select]
|
||||
infos=[info[1] for info in nodes_for_select]
|
||||
all_nodes = memory_graph.dots
|
||||
all_nodes = filter(lambda dot: len(dot[1]['memory_items']) > 3, all_nodes)
|
||||
nodes_for_select = random.sample(all_nodes, 5)
|
||||
topics = [info[0] for info in nodes_for_select]
|
||||
infos = [info[1] for info in nodes_for_select]
|
||||
|
||||
#激活prompt构建
|
||||
# 激活prompt构建
|
||||
activate_prompt = ''
|
||||
activate_prompt = "以上是群里正在进行的聊天。"
|
||||
personality=global_config.PROMPT_PERSONALITY
|
||||
personality = global_config.PROMPT_PERSONALITY
|
||||
prompt_personality = ''
|
||||
personality_choice = random.random()
|
||||
if personality_choice < probability_1: # 第一种人格
|
||||
@@ -224,30 +226,29 @@ class PromptBuilder:
|
||||
else: # 第三种人格
|
||||
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME},{personality[2]}'''
|
||||
|
||||
topics_str=','.join(f"\"{topics}\"")
|
||||
prompt_for_select=f"你现在想在群里发言,回忆了一下,想到几个话题,分别是{topics_str},综合当前状态以及群内气氛,请你在其中选择一个合适的话题,注意只需要输出话题,除了话题什么也不要输出(双引号也不要输出)"
|
||||
topics_str = ','.join(f"\"{topics}\"")
|
||||
prompt_for_select = f"你现在想在群里发言,回忆了一下,想到几个话题,分别是{topics_str},综合当前状态以及群内气氛,请你在其中选择一个合适的话题,注意只需要输出话题,除了话题什么也不要输出(双引号也不要输出)"
|
||||
|
||||
prompt_initiative_select=f"{prompt_date}\n{prompt_personality}\n{prompt_for_select}"
|
||||
prompt_regular=f"{prompt_date}\n{prompt_personality}"
|
||||
prompt_initiative_select = f"{prompt_date}\n{prompt_personality}\n{prompt_for_select}"
|
||||
prompt_regular = f"{prompt_date}\n{prompt_personality}"
|
||||
|
||||
return prompt_initiative_select,nodes_for_select,prompt_regular
|
||||
return prompt_initiative_select, nodes_for_select, prompt_regular
|
||||
|
||||
def _build_initiative_prompt_check(self,selected_node,prompt_regular):
|
||||
memory=random.sample(selected_node['memory_items'],3)
|
||||
memory='\n'.join(memory)
|
||||
prompt_for_check=f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,以这个作为主题发言合适吗?请在把握群里的聊天内容的基础上,综合群内的氛围,如果认为应该发言请输出yes,否则输出no,请注意是决定是否需要发言,而不是编写回复内容,除了yes和no不要输出任何回复内容。"
|
||||
return prompt_for_check,memory
|
||||
def _build_initiative_prompt_check(self, selected_node, prompt_regular):
|
||||
memory = random.sample(selected_node['memory_items'], 3)
|
||||
memory = '\n'.join(memory)
|
||||
prompt_for_check = f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,以这个作为主题发言合适吗?请在把握群里的聊天内容的基础上,综合群内的氛围,如果认为应该发言请输出yes,否则输出no,请注意是决定是否需要发言,而不是编写回复内容,除了yes和no不要输出任何回复内容。"
|
||||
return prompt_for_check, memory
|
||||
|
||||
def _build_initiative_prompt(self,selected_node,prompt_regular,memory):
|
||||
prompt_for_initiative=f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,请在把握群里的聊天内容的基础上,综合群内的氛围,以日常且口语化的口吻,简短且随意一点进行发言,不要说的太有条理,可以有个性。记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等)"
|
||||
def _build_initiative_prompt(self, selected_node, prompt_regular, memory):
|
||||
prompt_for_initiative = f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,请在把握群里的聊天内容的基础上,综合群内的氛围,以日常且口语化的口吻,简短且随意一点进行发言,不要说的太有条理,可以有个性。记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等)"
|
||||
return prompt_for_initiative
|
||||
|
||||
|
||||
async def get_prompt_info(self,message:str,threshold:float):
|
||||
async def get_prompt_info(self, message: str, threshold: float):
|
||||
related_info = ''
|
||||
print(f"\033[1;34m[调试]\033[0m 获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||||
embedding = await get_embedding(message)
|
||||
related_info += self.get_info_from_db(embedding,threshold=threshold)
|
||||
related_info += self.get_info_from_db(embedding, threshold=threshold)
|
||||
|
||||
return related_info
|
||||
|
||||
@@ -319,4 +320,5 @@ class PromptBuilder:
|
||||
# 返回所有找到的内容,用换行分隔
|
||||
return '\n'.join(str(result['content']) for result in results)
|
||||
|
||||
|
||||
prompt_builder = PromptBuilder()
|
||||
@@ -1,6 +1,7 @@
|
||||
import asyncio
|
||||
from typing import Optional, Union
|
||||
from typing import Optional, Union
|
||||
from loguru import logger
|
||||
|
||||
from ...common.database import Database
|
||||
from .message_base import UserInfo
|
||||
@@ -13,6 +14,7 @@ class Impression:
|
||||
|
||||
relationship_value: float = None
|
||||
|
||||
|
||||
class Relationship:
|
||||
user_id: int = None
|
||||
platform: str = None
|
||||
@@ -121,7 +123,7 @@ class RelationshipManager:
|
||||
# 如果不存在且提供了user_info,则创建新的关系
|
||||
if user_info is not None:
|
||||
return await self.update_relationship(chat_stream=chat_stream, **kwargs)
|
||||
print(f"\033[1;31m[关系管理]\033[0m 用户 {user_id}({platform}) 不存在,无法更新")
|
||||
logger.warning(f"[关系管理] 用户 {user_id}({platform}) 不存在,无法更新")
|
||||
return None
|
||||
|
||||
def get_relationship(self,
|
||||
@@ -179,10 +181,10 @@ class RelationshipManager:
|
||||
# 依次加载每条记录
|
||||
for data in all_relationships:
|
||||
await self.load_relationship(data)
|
||||
print(f"\033[1;32m[关系管理]\033[0m 已加载 {len(self.relationships)} 条关系记录")
|
||||
logger.debug(f"[关系管理] 已加载 {len(self.relationships)} 条关系记录")
|
||||
|
||||
while True:
|
||||
print("\033[1;32m[关系管理]\033[0m 正在自动保存关系")
|
||||
logger.debug("正在自动保存关系")
|
||||
await asyncio.sleep(300) # 等待300秒(5分钟)
|
||||
await self._save_all_relationships()
|
||||
|
||||
|
||||
@@ -5,6 +5,8 @@ from ...common.database import Database
|
||||
from .message_base import MessageBase
|
||||
from .message import MessageSending, MessageRecv
|
||||
from .chat_stream import ChatStream
|
||||
from loguru import logger
|
||||
|
||||
|
||||
class MessageStorage:
|
||||
def __init__(self):
|
||||
@@ -24,7 +26,7 @@ class MessageStorage:
|
||||
"topic": topic,
|
||||
}
|
||||
self.db.db.messages.insert_one(message_data)
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 存储消息失败: {e}")
|
||||
except Exception:
|
||||
logger.exception("存储消息失败")
|
||||
|
||||
# 如果需要其他存储相关的函数,可以在这里添加
|
||||
@@ -4,10 +4,12 @@ from nonebot import get_driver
|
||||
|
||||
from ..models.utils_model import LLM_request
|
||||
from .config import global_config
|
||||
from loguru import logger
|
||||
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
|
||||
|
||||
class TopicIdentifier:
|
||||
def __init__(self):
|
||||
self.llm_topic_judge = LLM_request(model=global_config.llm_topic_judge)
|
||||
@@ -25,7 +27,7 @@ class TopicIdentifier:
|
||||
topic, _ = await self.llm_topic_judge.generate_response(prompt)
|
||||
|
||||
if not topic:
|
||||
print("\033[1;31m[错误]\033[0m LLM API 返回为空")
|
||||
logger.error("LLM API 返回为空")
|
||||
return None
|
||||
|
||||
# 直接在这里处理主题解析
|
||||
@@ -35,7 +37,8 @@ class TopicIdentifier:
|
||||
# 解析主题字符串为列表
|
||||
topic_list = [t.strip() for t in topic.split(",") if t.strip()]
|
||||
|
||||
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic_list}")
|
||||
logger.info(f"主题: {topic_list}")
|
||||
return topic_list if topic_list else None
|
||||
|
||||
|
||||
topic_identifier = TopicIdentifier()
|
||||
@@ -7,6 +7,7 @@ from typing import Dict, List
|
||||
import jieba
|
||||
import numpy as np
|
||||
from nonebot import get_driver
|
||||
from loguru import logger
|
||||
|
||||
from ..models.utils_model import LLM_request
|
||||
from ..utils.typo_generator import ChineseTypoGenerator
|
||||
@@ -21,16 +22,16 @@ config = driver.config
|
||||
|
||||
|
||||
def db_message_to_str(message_dict: Dict) -> str:
|
||||
print(f"message_dict: {message_dict}")
|
||||
logger.debug(f"message_dict: {message_dict}")
|
||||
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message_dict["time"]))
|
||||
try:
|
||||
name = "[(%s)%s]%s" % (
|
||||
message_dict['user_id'], message_dict.get("user_nickname", ""), message_dict.get("user_cardname", ""))
|
||||
message_dict['user_id'], message_dict.get("user_nickname", ""), message_dict.get("user_cardname", ""))
|
||||
except:
|
||||
name = message_dict.get("user_nickname", "") or f"用户{message_dict['user_id']}"
|
||||
content = message_dict.get("processed_plain_text", "")
|
||||
result = f"[{time_str}] {name}: {content}\n"
|
||||
print(f"result: {result}")
|
||||
logger.debug(f"result: {result}")
|
||||
return result
|
||||
|
||||
|
||||
@@ -71,8 +72,12 @@ def calculate_information_content(text):
|
||||
|
||||
|
||||
def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
|
||||
chat_text = ''
|
||||
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数
|
||||
|
||||
Returns:
|
||||
list: 消息记录字典列表,每个字典包含消息内容和时间信息
|
||||
"""
|
||||
chat_records = []
|
||||
closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
|
||||
|
||||
if closest_record and closest_record.get('memorized', 0) < 4:
|
||||
@@ -84,11 +89,10 @@ def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||
).sort('time', 1).limit(length))
|
||||
|
||||
# 更新每条消息的memorized属性
|
||||
for record in chat_records:
|
||||
# 检查当前记录的memorized值
|
||||
for record in records:
|
||||
current_memorized = record.get('memorized', 0)
|
||||
if current_memorized > 3:
|
||||
# print(f"消息已读取3次,跳过")
|
||||
print("消息已读取3次,跳过")
|
||||
return ''
|
||||
|
||||
# 更新memorized值
|
||||
@@ -97,11 +101,14 @@ def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||
{"$set": {"memorized": current_memorized + 1}}
|
||||
)
|
||||
|
||||
chat_text += record["detailed_plain_text"]
|
||||
# 添加到记录列表中
|
||||
chat_records.append({
|
||||
'text': record["detailed_plain_text"],
|
||||
'time': record["time"],
|
||||
'group_id': record["group_id"]
|
||||
})
|
||||
|
||||
return chat_text
|
||||
# print(f"消息已读取3次,跳过")
|
||||
return ''
|
||||
return chat_records
|
||||
|
||||
|
||||
async def get_recent_group_messages(db, chat_id:str, limit: int = 12) -> list:
|
||||
@@ -142,7 +149,7 @@ async def get_recent_group_messages(db, chat_id:str, limit: int = 12) -> list:
|
||||
)
|
||||
message_objects.append(msg)
|
||||
except KeyError:
|
||||
print("[WARNING] 数据库中存在无效的消息")
|
||||
logger.warning("数据库中存在无效的消息")
|
||||
continue
|
||||
|
||||
# 按时间正序排列
|
||||
@@ -259,11 +266,10 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
|
||||
sentence = sentence.replace(',', ' ').replace(',', ' ')
|
||||
sentences_done.append(sentence)
|
||||
|
||||
print(f"处理后的句子: {sentences_done}")
|
||||
logger.info(f"处理后的句子: {sentences_done}")
|
||||
return sentences_done
|
||||
|
||||
|
||||
|
||||
def random_remove_punctuation(text: str) -> str:
|
||||
"""随机处理标点符号,模拟人类打字习惯
|
||||
|
||||
@@ -291,43 +297,70 @@ def random_remove_punctuation(text: str) -> str:
|
||||
return result
|
||||
|
||||
|
||||
|
||||
def process_llm_response(text: str) -> List[str]:
|
||||
# processed_response = process_text_with_typos(content)
|
||||
if len(text) > 300:
|
||||
print(f"回复过长 ({len(text)} 字符),返回默认回复")
|
||||
if len(text) > 200:
|
||||
logger.warning(f"回复过长 ({len(text)} 字符),返回默认回复")
|
||||
return ['懒得说']
|
||||
# 处理长消息
|
||||
typo_generator = ChineseTypoGenerator(
|
||||
error_rate=0.03,
|
||||
min_freq=7,
|
||||
tone_error_rate=0.2,
|
||||
word_replace_rate=0.02
|
||||
error_rate=global_config.chinese_typo_error_rate,
|
||||
min_freq=global_config.chinese_typo_min_freq,
|
||||
tone_error_rate=global_config.chinese_typo_tone_error_rate,
|
||||
word_replace_rate=global_config.chinese_typo_word_replace_rate
|
||||
)
|
||||
typoed_text = typo_generator.create_typo_sentence(text)[0]
|
||||
sentences = split_into_sentences_w_remove_punctuation(typoed_text)
|
||||
split_sentences = split_into_sentences_w_remove_punctuation(text)
|
||||
sentences = []
|
||||
for sentence in split_sentences:
|
||||
if global_config.chinese_typo_enable:
|
||||
typoed_text, typo_corrections = typo_generator.create_typo_sentence(sentence)
|
||||
sentences.append(typoed_text)
|
||||
if typo_corrections:
|
||||
sentences.append(typo_corrections)
|
||||
else:
|
||||
sentences.append(sentence)
|
||||
# 检查分割后的消息数量是否过多(超过3条)
|
||||
if len(sentences) > 4:
|
||||
print(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
|
||||
|
||||
if len(sentences) > 5:
|
||||
logger.warning(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
|
||||
return [f'{global_config.BOT_NICKNAME}不知道哦']
|
||||
|
||||
return sentences
|
||||
|
||||
|
||||
def calculate_typing_time(input_string: str, chinese_time: float = 0.2, english_time: float = 0.1) -> float:
|
||||
def calculate_typing_time(input_string: str, chinese_time: float = 0.4, english_time: float = 0.2) -> float:
|
||||
"""
|
||||
计算输入字符串所需的时间,中文和英文字符有不同的输入时间
|
||||
input_string (str): 输入的字符串
|
||||
chinese_time (float): 中文字符的输入时间,默认为0.3秒
|
||||
english_time (float): 英文字符的输入时间,默认为0.15秒
|
||||
chinese_time (float): 中文字符的输入时间,默认为0.2秒
|
||||
english_time (float): 英文字符的输入时间,默认为0.1秒
|
||||
|
||||
特殊情况:
|
||||
- 如果只有一个中文字符,将使用3倍的中文输入时间
|
||||
- 在所有输入结束后,额外加上回车时间0.3秒
|
||||
"""
|
||||
mood_manager = MoodManager.get_instance()
|
||||
# 将0-1的唤醒度映射到-1到1
|
||||
mood_arousal = mood_manager.current_mood.arousal
|
||||
# 映射到0.5到2倍的速度系数
|
||||
typing_speed_multiplier = 1.5 ** mood_arousal # 唤醒度为1时速度翻倍,为-1时速度减半
|
||||
chinese_time *= 1 / typing_speed_multiplier
|
||||
english_time *= 1 / typing_speed_multiplier
|
||||
# 计算中文字符数
|
||||
chinese_chars = sum(1 for char in input_string if '\u4e00' <= char <= '\u9fff')
|
||||
|
||||
# 如果只有一个中文字符,使用3倍时间
|
||||
if chinese_chars == 1 and len(input_string.strip()) == 1:
|
||||
return chinese_time * 3 + 0.3 # 加上回车时间
|
||||
|
||||
# 正常计算所有字符的输入时间
|
||||
total_time = 0.0
|
||||
for char in input_string:
|
||||
if '\u4e00' <= char <= '\u9fff': # 判断是否为中文字符
|
||||
total_time += chinese_time
|
||||
else: # 其他字符(如英文)
|
||||
total_time += english_time
|
||||
return total_time
|
||||
return total_time + 0.3 # 加上回车时间
|
||||
|
||||
|
||||
def cosine_similarity(v1, v2):
|
||||
|
||||
@@ -16,6 +16,8 @@ class WillingManager:
|
||||
self.chat_reply_willing: Dict[str, float] = {} # 存储每个聊天流的回复意愿
|
||||
self._decay_task = None
|
||||
self._started = False
|
||||
self.min_reply_willing = 0.01
|
||||
self.attenuation_coefficient = 0.75
|
||||
|
||||
async def _decay_reply_willing(self):
|
||||
"""定期衰减回复意愿"""
|
||||
@@ -33,12 +35,9 @@ class WillingManager:
|
||||
return self.chat_reply_willing.get(stream.stream_id, 0)
|
||||
return 0
|
||||
|
||||
def set_willing(self, chat_id: str, willing: float):
|
||||
"""设置指定聊天流的回复意愿"""
|
||||
self.chat_reply_willing[chat_id] = willing
|
||||
def set_willing(self, chat_id: str, willing: float):
|
||||
"""设置指定聊天流的回复意愿"""
|
||||
self.chat_reply_willing[chat_id] = willing
|
||||
def set_willing(self, chat_id: int, willing: float):
|
||||
"""设置指定群组的回复意愿"""
|
||||
self.group_reply_willing[chat_id] = willing
|
||||
|
||||
async def change_reply_willing_received(self,
|
||||
chat_stream:ChatStream,
|
||||
@@ -51,47 +50,67 @@ class WillingManager:
|
||||
# 获取或创建聊天流
|
||||
stream = chat_stream
|
||||
chat_id = stream.stream_id
|
||||
group_id = stream.group_info.group_id
|
||||
|
||||
# 若非目标回复群组,则直接return
|
||||
if group_id not in config.talk_allowed_groups:
|
||||
reply_probability = 0
|
||||
return reply_probability
|
||||
|
||||
|
||||
current_willing = self.chat_reply_willing.get(chat_id, 0)
|
||||
|
||||
# print(f"初始意愿: {current_willing}")
|
||||
if is_mentioned_bot and current_willing < 1.0:
|
||||
current_willing += 0.9
|
||||
print(f"被提及, 当前意愿: {current_willing}")
|
||||
elif is_mentioned_bot:
|
||||
current_willing += 0.05
|
||||
print(f"被重复提及, 当前意愿: {current_willing}")
|
||||
logger.debug(f"[{chat_id}]的初始回复意愿: {current_willing}")
|
||||
|
||||
|
||||
# 根据消息类型(被cue/表情包)调控
|
||||
if is_mentioned_bot:
|
||||
current_willing = min(
|
||||
3.0,
|
||||
current_willing + 0.9
|
||||
)
|
||||
logger.debug(f"被提及, 当前意愿: {current_willing}")
|
||||
|
||||
if is_emoji:
|
||||
current_willing *= 0.1
|
||||
print(f"表情包, 当前意愿: {current_willing}")
|
||||
logger.debug(f"表情包, 当前意愿: {current_willing}")
|
||||
|
||||
print(f"放大系数_interested_rate: {global_config.response_interested_rate_amplifier}")
|
||||
interested_rate *= global_config.response_interested_rate_amplifier #放大回复兴趣度
|
||||
if interested_rate > 0.4:
|
||||
# print(f"兴趣度: {interested_rate}, 当前意愿: {current_willing}")
|
||||
current_willing += interested_rate-0.4
|
||||
# 兴趣放大系数,若兴趣 > 0.4则增加回复概率
|
||||
interested_rate_amplifier = global_config.response_interested_rate_amplifier
|
||||
logger.debug(f"放大系数_interested_rate: {interested_rate_amplifier}")
|
||||
interested_rate *= interested_rate_amplifier
|
||||
|
||||
current_willing *= global_config.response_willing_amplifier #放大回复意愿
|
||||
# print(f"放大系数_willing: {global_config.response_willing_amplifier}, 当前意愿: {current_willing}")
|
||||
current_willing += max(
|
||||
0.0,
|
||||
interested_rate - 0.4
|
||||
)
|
||||
|
||||
reply_probability = max((current_willing - 0.45) * 2, 0)
|
||||
# 回复意愿系数调控,独立乘区
|
||||
willing_amplifier = max(
|
||||
global_config.response_willing_amplifier,
|
||||
self.min_reply_willing
|
||||
)
|
||||
current_willing *= willing_amplifier
|
||||
logger.debug(f"放大系数_willing: {global_config.response_willing_amplifier}, 当前意愿: {current_willing}")
|
||||
|
||||
# 检查群组权限(如果是群聊)
|
||||
if chat_stream.group_info:
|
||||
if chat_stream.group_info.group_id not in config.talk_allowed_groups:
|
||||
current_willing = 0
|
||||
reply_probability = 0
|
||||
# 回复概率迭代,保底0.01回复概率
|
||||
reply_probability = max(
|
||||
(current_willing - 0.45) * 2,
|
||||
self.min_reply_willing
|
||||
)
|
||||
|
||||
if chat_stream.group_info.group_id in config.talk_frequency_down_groups:
|
||||
reply_probability = reply_probability / global_config.down_frequency_rate
|
||||
# 降低目标低频群组回复概率
|
||||
down_frequency_rate = max(
|
||||
1.0,
|
||||
global_config.down_frequency_rate
|
||||
)
|
||||
if group_id in config.talk_frequency_down_groups:
|
||||
reply_probability = reply_probability / down_frequency_rate
|
||||
|
||||
reply_probability = min(reply_probability, 1)
|
||||
if reply_probability < 0:
|
||||
reply_probability = 0
|
||||
|
||||
self.chat_reply_willing[chat_id] = min(current_willing, 3.0)
|
||||
self.chat_reply_willing[chat_id] = min(current_willing, 3.0)
|
||||
self.group_reply_willing[group_id] = min(current_willing, 3.0)
|
||||
logger.debug(f"当前群组{group_id}回复概率:{reply_probability}")
|
||||
return reply_probability
|
||||
|
||||
def change_reply_willing_sent(self, chat_stream:ChatStream):
|
||||
@@ -116,5 +135,6 @@ class WillingManager:
|
||||
self._decay_task = asyncio.create_task(self._decay_reply_willing())
|
||||
self._started = True
|
||||
|
||||
|
||||
# 创建全局实例
|
||||
willing_manager = WillingManager()
|
||||
|
||||
@@ -19,7 +19,7 @@ from src.common.database import Database
|
||||
|
||||
# 从环境变量获取配置
|
||||
Database.initialize(
|
||||
host=os.getenv("MONGODB_HOST", "localhost"),
|
||||
host=os.getenv("MONGODB_HOST", "127.0.0.1"),
|
||||
port=int(os.getenv("MONGODB_PORT", "27017")),
|
||||
db_name=os.getenv("DATABASE_NAME", "maimai"),
|
||||
username=os.getenv("MONGODB_USERNAME"),
|
||||
@@ -79,7 +79,7 @@ class KnowledgeLibrary:
|
||||
content = f.read()
|
||||
|
||||
# 按1024字符分段
|
||||
segments = [content[i:i+600] for i in range(0, len(content), 600)]
|
||||
segments = [content[i:i+600] for i in range(0, len(content), 300)]
|
||||
|
||||
# 处理每个分段
|
||||
for segment in segments:
|
||||
|
||||
0
src/plugins/memory_system/__init__.py
Normal file
0
src/plugins/memory_system/__init__.py
Normal file
@@ -7,6 +7,7 @@ import jieba
|
||||
import matplotlib.pyplot as plt
|
||||
import networkx as nx
|
||||
from dotenv import load_dotenv
|
||||
from loguru import logger
|
||||
|
||||
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
|
||||
from src.common.database import Database # 使用正确的导入语法
|
||||
@@ -45,7 +46,7 @@ class Memory_graph:
|
||||
node_data = self.G.nodes[concept]
|
||||
# print(node_data)
|
||||
# 创建新的Memory_dot对象
|
||||
return concept,node_data
|
||||
return concept, node_data
|
||||
return None
|
||||
|
||||
def get_related_item(self, topic, depth=1):
|
||||
@@ -99,24 +100,26 @@ class Memory_graph:
|
||||
# 返回所有节点对应的 Memory_dot 对象
|
||||
return [self.get_dot(node) for node in self.G.nodes()]
|
||||
|
||||
|
||||
def get_random_chat_from_db(self, length: int, timestamp: str):
|
||||
# 从数据库中根据时间戳获取离其最近的聊天记录
|
||||
chat_text = ''
|
||||
closest_record = self.db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
|
||||
print(f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
|
||||
logger.info(
|
||||
f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
|
||||
|
||||
if closest_record:
|
||||
closest_time = closest_record['time']
|
||||
group_id = closest_record['group_id'] # 获取groupid
|
||||
# 获取该时间戳之后的length条消息,且groupid相同
|
||||
chat_record = list(self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(length))
|
||||
chat_record = list(
|
||||
self.db.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(
|
||||
length))
|
||||
for record in chat_record:
|
||||
time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
|
||||
try:
|
||||
displayname="[(%s)%s]%s" % (record["user_id"],record["user_nickname"],record["user_cardname"])
|
||||
displayname = "[(%s)%s]%s" % (record["user_id"], record["user_nickname"], record["user_cardname"])
|
||||
except:
|
||||
displayname=record["user_nickname"] or "用户" + str(record["user_id"])
|
||||
displayname = record["user_nickname"] or "用户" + str(record["user_id"])
|
||||
chat_text += f'[{time_str}] {displayname}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
|
||||
return chat_text
|
||||
|
||||
@@ -179,90 +182,30 @@ def main():
|
||||
break
|
||||
first_layer_items, second_layer_items = memory_graph.get_related_item(query)
|
||||
if first_layer_items or second_layer_items:
|
||||
print("\n第一层记忆:")
|
||||
logger.debug("第一层记忆:")
|
||||
for item in first_layer_items:
|
||||
print(item)
|
||||
print("\n第二层记忆:")
|
||||
logger.debug(item)
|
||||
logger.debug("第二层记忆:")
|
||||
for item in second_layer_items:
|
||||
print(item)
|
||||
logger.debug(item)
|
||||
else:
|
||||
print("未找到相关记忆。")
|
||||
logger.debug("未找到相关记忆。")
|
||||
|
||||
|
||||
def segment_text(text):
|
||||
seg_text = list(jieba.cut(text))
|
||||
return seg_text
|
||||
|
||||
|
||||
def find_topic(text, topic_num):
|
||||
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
|
||||
return prompt
|
||||
|
||||
|
||||
def topic_what(text, topic):
|
||||
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
|
||||
return prompt
|
||||
|
||||
def visualize_graph(memory_graph: Memory_graph, color_by_memory: bool = False):
|
||||
# 设置中文字体
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
|
||||
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
|
||||
|
||||
G = memory_graph.G
|
||||
|
||||
# 保存图到本地
|
||||
nx.write_gml(G, "memory_graph.gml") # 保存为 GML 格式
|
||||
|
||||
# 根据连接条数或记忆数量设置节点颜色
|
||||
node_colors = []
|
||||
nodes = list(G.nodes()) # 获取图中实际的节点列表
|
||||
|
||||
if color_by_memory:
|
||||
# 计算每个节点的记忆数量
|
||||
memory_counts = []
|
||||
for node in nodes:
|
||||
memory_items = G.nodes[node].get('memory_items', [])
|
||||
if isinstance(memory_items, list):
|
||||
count = len(memory_items)
|
||||
else:
|
||||
count = 1 if memory_items else 0
|
||||
memory_counts.append(count)
|
||||
max_memories = max(memory_counts) if memory_counts else 1
|
||||
|
||||
for count in memory_counts:
|
||||
# 使用不同的颜色方案:红色表示记忆多,蓝色表示记忆少
|
||||
if max_memories > 0:
|
||||
intensity = min(1.0, count / max_memories)
|
||||
color = (intensity, 0, 1.0 - intensity) # 从蓝色渐变到红色
|
||||
else:
|
||||
color = (0, 0, 1) # 如果没有记忆,则为蓝色
|
||||
node_colors.append(color)
|
||||
else:
|
||||
# 使用原来的连接数量着色方案
|
||||
max_degree = max(G.degree(), key=lambda x: x[1])[1] if G.degree() else 1
|
||||
for node in nodes:
|
||||
degree = G.degree(node)
|
||||
if max_degree > 0:
|
||||
red = min(1.0, degree / max_degree)
|
||||
blue = 1.0 - red
|
||||
color = (red, 0, blue)
|
||||
else:
|
||||
color = (0, 0, 1)
|
||||
node_colors.append(color)
|
||||
|
||||
# 绘制图形
|
||||
plt.figure(figsize=(12, 8))
|
||||
pos = nx.spring_layout(G, k=1, iterations=50)
|
||||
nx.draw(G, pos,
|
||||
with_labels=True,
|
||||
node_color=node_colors,
|
||||
node_size=200,
|
||||
font_size=10,
|
||||
font_family='SimHei',
|
||||
font_weight='bold')
|
||||
|
||||
title = '记忆图谱可视化 - ' + ('按记忆数量着色' if color_by_memory else '按连接数量着色')
|
||||
plt.title(title, fontsize=16, fontfamily='SimHei')
|
||||
plt.show()
|
||||
|
||||
|
||||
def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = False):
|
||||
# 设置中文字体
|
||||
@@ -280,18 +223,18 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
|
||||
memory_items = H.nodes[node].get('memory_items', [])
|
||||
memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
|
||||
degree = H.degree(node)
|
||||
if memory_count < 5 or degree < 2: # 改为小于2而不是小于等于2
|
||||
if memory_count < 3 or degree < 2: # 改为小于2而不是小于等于2
|
||||
nodes_to_remove.append(node)
|
||||
|
||||
H.remove_nodes_from(nodes_to_remove)
|
||||
|
||||
# 如果过滤后没有节点,则返回
|
||||
if len(H.nodes()) == 0:
|
||||
print("过滤后没有符合条件的节点可显示")
|
||||
logger.debug("过滤后没有符合条件的节点可显示")
|
||||
return
|
||||
|
||||
# 保存图到本地
|
||||
nx.write_gml(H, "memory_graph.gml") # 保存为 GML 格式
|
||||
# nx.write_gml(H, "memory_graph.gml") # 保存为 GML 格式
|
||||
|
||||
# 计算节点大小和颜色
|
||||
node_colors = []
|
||||
@@ -315,37 +258,38 @@ def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = Fal
|
||||
memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
|
||||
# 使用指数函数使变化更明显
|
||||
ratio = memory_count / max_memories
|
||||
size = 500 + 5000 * (ratio ** 2) # 使用平方函数使差异更明显
|
||||
size = 500 + 5000 * (ratio) # 使用1.5次方函数使差异不那么明显
|
||||
node_sizes.append(size)
|
||||
|
||||
# 计算节点颜色(基于连接数)
|
||||
degree = H.degree(node)
|
||||
# 红色分量随着度数增加而增加
|
||||
red = min(1.0, degree / max_degree)
|
||||
r = (degree / max_degree) ** 0.3
|
||||
red = min(1.0, r)
|
||||
# 蓝色分量随着度数减少而增加
|
||||
blue = 1.0 - red
|
||||
color = (red, 0, blue)
|
||||
blue = max(0.0, 1 - red)
|
||||
# blue = 1
|
||||
color = (red, 0.1, blue)
|
||||
node_colors.append(color)
|
||||
|
||||
# 绘制图形
|
||||
plt.figure(figsize=(12, 8))
|
||||
pos = nx.spring_layout(H, k=1.5, iterations=50) # 增加k值使节点分布更开
|
||||
pos = nx.spring_layout(H, k=1, iterations=50) # 增加k值使节点分布更开
|
||||
nx.draw(H, pos,
|
||||
with_labels=True,
|
||||
node_color=node_colors,
|
||||
node_size=node_sizes,
|
||||
font_size=10,
|
||||
font_family='SimHei',
|
||||
font_weight='bold',
|
||||
edge_color='gray',
|
||||
width=0.5,
|
||||
alpha=0.7)
|
||||
with_labels=True,
|
||||
node_color=node_colors,
|
||||
node_size=node_sizes,
|
||||
font_size=10,
|
||||
font_family='SimHei',
|
||||
font_weight='bold',
|
||||
edge_color='gray',
|
||||
width=0.5,
|
||||
alpha=0.9)
|
||||
|
||||
title = '记忆图谱可视化 - 节点大小表示记忆数量,颜色表示连接数'
|
||||
plt.title(title, fontsize=16, fontfamily='SimHei')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -7,6 +7,7 @@ import time
|
||||
import jieba
|
||||
import networkx as nx
|
||||
|
||||
from loguru import logger
|
||||
from ...common.database import Database # 使用正确的导入语法
|
||||
from ..chat.config import global_config
|
||||
from ..chat.utils import (
|
||||
@@ -24,26 +25,46 @@ class Memory_graph:
|
||||
self.db = Database.get_instance()
|
||||
|
||||
def connect_dot(self, concept1, concept2):
|
||||
# 如果边已存在,增加 strength
|
||||
# 避免自连接
|
||||
if concept1 == concept2:
|
||||
return
|
||||
|
||||
current_time = datetime.datetime.now().timestamp()
|
||||
|
||||
# 如果边已存在,增加 strength
|
||||
if self.G.has_edge(concept1, concept2):
|
||||
self.G[concept1][concept2]['strength'] = self.G[concept1][concept2].get('strength', 1) + 1
|
||||
# 更新最后修改时间
|
||||
self.G[concept1][concept2]['last_modified'] = current_time
|
||||
else:
|
||||
# 如果是新边,初始化 strength 为 1
|
||||
self.G.add_edge(concept1, concept2, strength=1)
|
||||
# 如果是新边,初始化 strength 为 1
|
||||
self.G.add_edge(concept1, concept2,
|
||||
strength=1,
|
||||
created_time=current_time, # 添加创建时间
|
||||
last_modified=current_time) # 添加最后修改时间
|
||||
|
||||
def add_dot(self, concept, memory):
|
||||
current_time = datetime.datetime.now().timestamp()
|
||||
|
||||
if concept in self.G:
|
||||
# 如果节点已存在,将新记忆添加到现有列表中
|
||||
if 'memory_items' in self.G.nodes[concept]:
|
||||
if not isinstance(self.G.nodes[concept]['memory_items'], list):
|
||||
# 如果当前不是列表,将其转换为列表
|
||||
self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
|
||||
self.G.nodes[concept]['memory_items'].append(memory)
|
||||
# 更新最后修改时间
|
||||
self.G.nodes[concept]['last_modified'] = current_time
|
||||
else:
|
||||
self.G.nodes[concept]['memory_items'] = [memory]
|
||||
# 如果节点存在但没有memory_items,说明是第一次添加memory,设置created_time
|
||||
if 'created_time' not in self.G.nodes[concept]:
|
||||
self.G.nodes[concept]['created_time'] = current_time
|
||||
self.G.nodes[concept]['last_modified'] = current_time
|
||||
else:
|
||||
# 如果是新节点,创建新的记忆列表
|
||||
self.G.add_node(concept, memory_items=[memory])
|
||||
# 如果是新节点,创建新的记忆列表
|
||||
self.G.add_node(concept,
|
||||
memory_items=[memory],
|
||||
created_time=current_time, # 添加创建时间
|
||||
last_modified=current_time) # 添加最后修改时间
|
||||
|
||||
def get_dot(self, concept):
|
||||
# 检查节点是否存在于图中
|
||||
@@ -131,10 +152,10 @@ class Memory_graph:
|
||||
|
||||
# 海马体
|
||||
class Hippocampus:
|
||||
def __init__(self,memory_graph:Memory_graph):
|
||||
def __init__(self, memory_graph: Memory_graph):
|
||||
self.memory_graph = memory_graph
|
||||
self.llm_topic_judge = LLM_request(model = global_config.llm_topic_judge,temperature=0.5)
|
||||
self.llm_summary_by_topic = LLM_request(model = global_config.llm_summary_by_topic,temperature=0.5)
|
||||
self.llm_topic_judge = LLM_request(model=global_config.llm_topic_judge, temperature=0.5)
|
||||
self.llm_summary_by_topic = LLM_request(model=global_config.llm_summary_by_topic, temperature=0.5)
|
||||
|
||||
def get_all_node_names(self) -> list:
|
||||
"""获取记忆图中所有节点的名字列表
|
||||
@@ -157,95 +178,164 @@ class Hippocampus:
|
||||
nodes = sorted([source, target])
|
||||
return hash(f"{nodes[0]}:{nodes[1]}")
|
||||
|
||||
def get_memory_sample(self,chat_size=20,time_frequency:dict={'near':2,'mid':4,'far':3}):
|
||||
def get_memory_sample(self, chat_size=20, time_frequency: dict = {'near': 2, 'mid': 4, 'far': 3}):
|
||||
"""获取记忆样本
|
||||
|
||||
Returns:
|
||||
list: 消息记录列表,每个元素是一个消息记录字典列表
|
||||
"""
|
||||
current_timestamp = datetime.datetime.now().timestamp()
|
||||
chat_text = []
|
||||
#短期:1h 中期:4h 长期:24h
|
||||
for _ in range(time_frequency.get('near')): # 循环10次
|
||||
random_time = current_timestamp - random.randint(1, 3600) # 随机时间
|
||||
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
chat_text.append(chat_)
|
||||
for _ in range(time_frequency.get('mid')): # 循环10次
|
||||
random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
|
||||
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
chat_text.append(chat_)
|
||||
for _ in range(time_frequency.get('far')): # 循环10次
|
||||
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
|
||||
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
chat_text.append(chat_)
|
||||
return [text for text in chat_text if text]
|
||||
chat_samples = []
|
||||
|
||||
async def memory_compress(self, input_text, compress_rate=0.1):
|
||||
print(input_text)
|
||||
# 短期:1h 中期:4h 长期:24h
|
||||
for _ in range(time_frequency.get('near')):
|
||||
random_time = current_timestamp - random.randint(1, 3600)
|
||||
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
if messages:
|
||||
chat_samples.append(messages)
|
||||
|
||||
for _ in range(time_frequency.get('mid')):
|
||||
random_time = current_timestamp - random.randint(3600, 3600 * 4)
|
||||
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
if messages:
|
||||
chat_samples.append(messages)
|
||||
|
||||
for _ in range(time_frequency.get('far')):
|
||||
random_time = current_timestamp - random.randint(3600 * 4, 3600 * 24)
|
||||
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
if messages:
|
||||
chat_samples.append(messages)
|
||||
|
||||
return chat_samples
|
||||
|
||||
async def memory_compress(self, messages: list, compress_rate=0.1):
|
||||
"""压缩消息记录为记忆
|
||||
|
||||
Returns:
|
||||
tuple: (压缩记忆集合, 相似主题字典)
|
||||
"""
|
||||
if not messages:
|
||||
return set(), {}
|
||||
|
||||
# 合并消息文本,同时保留时间信息
|
||||
input_text = ""
|
||||
time_info = ""
|
||||
# 计算最早和最晚时间
|
||||
earliest_time = min(msg['time'] for msg in messages)
|
||||
latest_time = max(msg['time'] for msg in messages)
|
||||
|
||||
earliest_dt = datetime.datetime.fromtimestamp(earliest_time)
|
||||
latest_dt = datetime.datetime.fromtimestamp(latest_time)
|
||||
|
||||
# 如果是同一年
|
||||
if earliest_dt.year == latest_dt.year:
|
||||
earliest_str = earliest_dt.strftime("%m-%d %H:%M:%S")
|
||||
latest_str = latest_dt.strftime("%m-%d %H:%M:%S")
|
||||
time_info += f"是在{earliest_dt.year}年,{earliest_str} 到 {latest_str} 的对话:\n"
|
||||
else:
|
||||
earliest_str = earliest_dt.strftime("%Y-%m-%d %H:%M:%S")
|
||||
latest_str = latest_dt.strftime("%Y-%m-%d %H:%M:%S")
|
||||
time_info += f"是从 {earliest_str} 到 {latest_str} 的对话:\n"
|
||||
|
||||
for msg in messages:
|
||||
input_text += f"{msg['text']}\n"
|
||||
|
||||
logger.debug(input_text)
|
||||
|
||||
#获取topics
|
||||
topic_num = self.calculate_topic_num(input_text, compress_rate)
|
||||
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(input_text, topic_num))
|
||||
# 修改话题处理逻辑
|
||||
# 定义需要过滤的关键词
|
||||
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
|
||||
|
||||
# 过滤topics
|
||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
filter_keywords = global_config.memory_ban_words
|
||||
topics = [topic.strip() for topic in
|
||||
topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
|
||||
|
||||
# print(f"原始话题: {topics}")
|
||||
print(f"过滤后话题: {filtered_topics}")
|
||||
logger.info(f"过滤后话题: {filtered_topics}")
|
||||
|
||||
# 使用过滤后的话题继续处理
|
||||
# 创建所有话题的请求任务
|
||||
tasks = []
|
||||
for topic in filtered_topics:
|
||||
topic_what_prompt = self.topic_what(input_text, topic)
|
||||
# 创建异步任务
|
||||
topic_what_prompt = self.topic_what(input_text, topic, time_info)
|
||||
task = self.llm_summary_by_topic.generate_response_async(topic_what_prompt)
|
||||
tasks.append((topic.strip(), task))
|
||||
|
||||
# 等待所有任务完成
|
||||
compressed_memory = set()
|
||||
similar_topics_dict = {} # 存储每个话题的相似主题列表
|
||||
for topic, task in tasks:
|
||||
response = await task
|
||||
if response:
|
||||
compressed_memory.add((topic, response[0]))
|
||||
# 为每个话题查找相似的已存在主题
|
||||
existing_topics = list(self.memory_graph.G.nodes())
|
||||
similar_topics = []
|
||||
|
||||
return compressed_memory
|
||||
for existing_topic in existing_topics:
|
||||
topic_words = set(jieba.cut(topic))
|
||||
existing_words = set(jieba.cut(existing_topic))
|
||||
|
||||
def calculate_topic_num(self,text, compress_rate):
|
||||
all_words = topic_words | existing_words
|
||||
v1 = [1 if word in topic_words else 0 for word in all_words]
|
||||
v2 = [1 if word in existing_words else 0 for word in all_words]
|
||||
|
||||
similarity = cosine_similarity(v1, v2)
|
||||
|
||||
if similarity >= 0.6:
|
||||
similar_topics.append((existing_topic, similarity))
|
||||
|
||||
similar_topics.sort(key=lambda x: x[1], reverse=True)
|
||||
similar_topics = similar_topics[:5]
|
||||
similar_topics_dict[topic] = similar_topics
|
||||
|
||||
return compressed_memory, similar_topics_dict
|
||||
|
||||
def calculate_topic_num(self, text, compress_rate):
|
||||
"""计算文本的话题数量"""
|
||||
information_content = calculate_information_content(text)
|
||||
topic_by_length = text.count('\n')*compress_rate
|
||||
topic_by_information_content = max(1, min(5, int((information_content-3) * 2)))
|
||||
topic_num = int((topic_by_length + topic_by_information_content)/2)
|
||||
print(f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, topic_num: {topic_num}")
|
||||
topic_by_length = text.count('\n') * compress_rate
|
||||
topic_by_information_content = max(1, min(5, int((information_content - 3) * 2)))
|
||||
topic_num = int((topic_by_length + topic_by_information_content) / 2)
|
||||
logger.debug(
|
||||
f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, "
|
||||
f"topic_num: {topic_num}")
|
||||
return topic_num
|
||||
|
||||
async def operation_build_memory(self,chat_size=20):
|
||||
# 最近消息获取频率
|
||||
time_frequency = {'near':2,'mid':4,'far':2}
|
||||
memory_sample = self.get_memory_sample(chat_size,time_frequency)
|
||||
async def operation_build_memory(self, chat_size=20):
|
||||
time_frequency = {'near': 3, 'mid': 8, 'far': 5}
|
||||
memory_samples = self.get_memory_sample(chat_size, time_frequency)
|
||||
|
||||
for i, input_text in enumerate(memory_sample, 1):
|
||||
# 加载进度可视化
|
||||
for i, messages in enumerate(memory_samples, 1):
|
||||
all_topics = []
|
||||
progress = (i / len(memory_sample)) * 100
|
||||
# 加载进度可视化
|
||||
progress = (i / len(memory_samples)) * 100
|
||||
bar_length = 30
|
||||
filled_length = int(bar_length * i // len(memory_sample))
|
||||
filled_length = int(bar_length * i // len(memory_samples))
|
||||
bar = '█' * filled_length + '-' * (bar_length - filled_length)
|
||||
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
|
||||
logger.debug(f"进度: [{bar}] {progress:.1f}% ({i}/{len(memory_samples)})")
|
||||
|
||||
# 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
|
||||
compressed_memory = set()
|
||||
compress_rate = 0.1
|
||||
compressed_memory = await self.memory_compress(input_text, compress_rate)
|
||||
print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
|
||||
compressed_memory, similar_topics_dict = await self.memory_compress(messages, compress_rate)
|
||||
logger.info(f"压缩后记忆数量: {len(compressed_memory)},似曾相识的话题: {len(similar_topics_dict)}")
|
||||
|
||||
# 将记忆加入到图谱中
|
||||
for topic, memory in compressed_memory:
|
||||
print(f"\033[1;32m添加节点\033[0m: {topic}")
|
||||
logger.info(f"添加节点: {topic}")
|
||||
self.memory_graph.add_dot(topic, memory)
|
||||
all_topics.append(topic) # 收集所有话题
|
||||
all_topics.append(topic)
|
||||
|
||||
# 连接相似的已存在主题
|
||||
if topic in similar_topics_dict:
|
||||
similar_topics = similar_topics_dict[topic]
|
||||
for similar_topic, similarity in similar_topics:
|
||||
if topic != similar_topic:
|
||||
strength = int(similarity * 10)
|
||||
logger.info(f"连接相似节点: {topic} 和 {similar_topic} (强度: {strength})")
|
||||
self.memory_graph.G.add_edge(topic, similar_topic, strength=strength)
|
||||
|
||||
# 连接同批次的相关话题
|
||||
for i in range(len(all_topics)):
|
||||
for j in range(i + 1, len(all_topics)):
|
||||
print(f"\033[1;32m连接节点\033[0m: {all_topics[i]} 和 {all_topics[j]}")
|
||||
logger.info(f"连接同批次节点: {all_topics[i]} 和 {all_topics[j]}")
|
||||
self.memory_graph.connect_dot(all_topics[i], all_topics[j])
|
||||
|
||||
self.sync_memory_to_db()
|
||||
@@ -256,7 +346,7 @@ class Hippocampus:
|
||||
db_nodes = list(self.memory_graph.db.db.graph_data.nodes.find())
|
||||
memory_nodes = list(self.memory_graph.G.nodes(data=True))
|
||||
|
||||
# 转换数据库节点为字典格式,方便查找
|
||||
# 转换数据库节点为字典格式,方便查找
|
||||
db_nodes_dict = {node['concept']: node for node in db_nodes}
|
||||
|
||||
# 检查并更新节点
|
||||
@@ -268,12 +358,18 @@ class Hippocampus:
|
||||
# 计算内存中节点的特征值
|
||||
memory_hash = self.calculate_node_hash(concept, memory_items)
|
||||
|
||||
# 获取时间信息
|
||||
created_time = data.get('created_time', datetime.datetime.now().timestamp())
|
||||
last_modified = data.get('last_modified', datetime.datetime.now().timestamp())
|
||||
|
||||
if concept not in db_nodes_dict:
|
||||
# 数据库中缺少的节点,添加
|
||||
# 数据库中缺少的节点,添加
|
||||
node_data = {
|
||||
'concept': concept,
|
||||
'memory_items': memory_items,
|
||||
'hash': memory_hash
|
||||
'hash': memory_hash,
|
||||
'created_time': created_time,
|
||||
'last_modified': last_modified
|
||||
}
|
||||
self.memory_graph.db.db.graph_data.nodes.insert_one(node_data)
|
||||
else:
|
||||
@@ -281,25 +377,21 @@ class Hippocampus:
|
||||
db_node = db_nodes_dict[concept]
|
||||
db_hash = db_node.get('hash', None)
|
||||
|
||||
# 如果特征值不同,则更新节点
|
||||
# 如果特征值不同,则更新节点
|
||||
if db_hash != memory_hash:
|
||||
self.memory_graph.db.db.graph_data.nodes.update_one(
|
||||
{'concept': concept},
|
||||
{'$set': {
|
||||
'memory_items': memory_items,
|
||||
'hash': memory_hash
|
||||
'hash': memory_hash,
|
||||
'created_time': created_time,
|
||||
'last_modified': last_modified
|
||||
}}
|
||||
)
|
||||
|
||||
# 检查并删除数据库中多余的节点
|
||||
memory_concepts = set(node[0] for node in memory_nodes)
|
||||
for db_node in db_nodes:
|
||||
if db_node['concept'] not in memory_concepts:
|
||||
self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']})
|
||||
|
||||
# 处理边的信息
|
||||
db_edges = list(self.memory_graph.db.db.graph_data.edges.find())
|
||||
memory_edges = list(self.memory_graph.G.edges())
|
||||
memory_edges = list(self.memory_graph.G.edges(data=True))
|
||||
|
||||
# 创建边的哈希值字典
|
||||
db_edge_dict = {}
|
||||
@@ -311,10 +403,14 @@ class Hippocampus:
|
||||
}
|
||||
|
||||
# 检查并更新边
|
||||
for source, target in memory_edges:
|
||||
for source, target, data in memory_edges:
|
||||
edge_hash = self.calculate_edge_hash(source, target)
|
||||
edge_key = (source, target)
|
||||
strength = self.memory_graph.G[source][target].get('strength', 1)
|
||||
strength = data.get('strength', 1)
|
||||
|
||||
# 获取边的时间信息
|
||||
created_time = data.get('created_time', datetime.datetime.now().timestamp())
|
||||
last_modified = data.get('last_modified', datetime.datetime.now().timestamp())
|
||||
|
||||
if edge_key not in db_edge_dict:
|
||||
# 添加新边
|
||||
@@ -322,7 +418,9 @@ class Hippocampus:
|
||||
'source': source,
|
||||
'target': target,
|
||||
'strength': strength,
|
||||
'hash': edge_hash
|
||||
'hash': edge_hash,
|
||||
'created_time': created_time,
|
||||
'last_modified': last_modified
|
||||
}
|
||||
self.memory_graph.db.db.graph_data.edges.insert_one(edge_data)
|
||||
else:
|
||||
@@ -332,20 +430,12 @@ class Hippocampus:
|
||||
{'source': source, 'target': target},
|
||||
{'$set': {
|
||||
'hash': edge_hash,
|
||||
'strength': strength
|
||||
'strength': strength,
|
||||
'created_time': created_time,
|
||||
'last_modified': last_modified
|
||||
}}
|
||||
)
|
||||
|
||||
# 删除多余的边
|
||||
memory_edge_set = set(memory_edges)
|
||||
for edge_key in db_edge_dict:
|
||||
if edge_key not in memory_edge_set:
|
||||
source, target = edge_key
|
||||
self.memory_graph.db.db.graph_data.edges.delete_one({
|
||||
'source': source,
|
||||
'target': target
|
||||
})
|
||||
|
||||
def sync_memory_from_db(self):
|
||||
"""从数据库同步数据到内存中的图结构"""
|
||||
# 清空当前图
|
||||
@@ -359,61 +449,107 @@ class Hippocampus:
|
||||
# 确保memory_items是列表
|
||||
if not isinstance(memory_items, list):
|
||||
memory_items = [memory_items] if memory_items else []
|
||||
|
||||
# 获取时间信息
|
||||
created_time = node.get('created_time', datetime.datetime.now().timestamp())
|
||||
last_modified = node.get('last_modified', datetime.datetime.now().timestamp())
|
||||
|
||||
# 添加节点到图中
|
||||
self.memory_graph.G.add_node(concept, memory_items=memory_items)
|
||||
self.memory_graph.G.add_node(concept,
|
||||
memory_items=memory_items,
|
||||
created_time=created_time,
|
||||
last_modified=last_modified)
|
||||
|
||||
# 从数据库加载所有边
|
||||
edges = self.memory_graph.db.db.graph_data.edges.find()
|
||||
for edge in edges:
|
||||
source = edge['source']
|
||||
target = edge['target']
|
||||
strength = edge.get('strength', 1) # 获取 strength,默认为 1
|
||||
strength = edge.get('strength', 1) # 获取 strength,默认为 1
|
||||
|
||||
# 获取时间信息
|
||||
created_time = edge.get('created_time', datetime.datetime.now().timestamp())
|
||||
last_modified = edge.get('last_modified', datetime.datetime.now().timestamp())
|
||||
|
||||
# 只有当源节点和目标节点都存在时才添加边
|
||||
if source in self.memory_graph.G and target in self.memory_graph.G:
|
||||
self.memory_graph.G.add_edge(source, target, strength=strength)
|
||||
self.memory_graph.G.add_edge(source, target,
|
||||
strength=strength,
|
||||
created_time=created_time,
|
||||
last_modified=last_modified)
|
||||
|
||||
async def operation_forget_topic(self, percentage=0.1):
|
||||
"""随机选择图中一定比例的节点进行检查,根据条件决定是否遗忘"""
|
||||
# 获取所有节点
|
||||
"""随机选择图中一定比例的节点和边进行检查,根据时间条件决定是否遗忘"""
|
||||
all_nodes = list(self.memory_graph.G.nodes())
|
||||
# 计算要检查的节点数量
|
||||
check_count = max(1, int(len(all_nodes) * percentage))
|
||||
# 随机选择节点
|
||||
nodes_to_check = random.sample(all_nodes, check_count)
|
||||
all_edges = list(self.memory_graph.G.edges())
|
||||
|
||||
forgotten_nodes = []
|
||||
check_nodes_count = max(1, int(len(all_nodes) * percentage))
|
||||
check_edges_count = max(1, int(len(all_edges) * percentage))
|
||||
|
||||
nodes_to_check = random.sample(all_nodes, check_nodes_count)
|
||||
edges_to_check = random.sample(all_edges, check_edges_count)
|
||||
|
||||
edge_changes = {'weakened': 0, 'removed': 0}
|
||||
node_changes = {'reduced': 0, 'removed': 0}
|
||||
|
||||
current_time = datetime.datetime.now().timestamp()
|
||||
|
||||
# 检查并遗忘连接
|
||||
logger.info("开始检查连接...")
|
||||
for source, target in edges_to_check:
|
||||
edge_data = self.memory_graph.G[source][target]
|
||||
last_modified = edge_data.get('last_modified')
|
||||
# print(source,target)
|
||||
# print(f"float(last_modified):{float(last_modified)}" )
|
||||
# print(f"current_time:{current_time}")
|
||||
# print(f"current_time - last_modified:{current_time - last_modified}")
|
||||
if current_time - last_modified > 3600*24: # test
|
||||
current_strength = edge_data.get('strength', 1)
|
||||
new_strength = current_strength - 1
|
||||
|
||||
if new_strength <= 0:
|
||||
self.memory_graph.G.remove_edge(source, target)
|
||||
edge_changes['removed'] += 1
|
||||
logger.info(f"\033[1;31m[连接移除]\033[0m {source} - {target}")
|
||||
else:
|
||||
edge_data['strength'] = new_strength
|
||||
edge_data['last_modified'] = current_time
|
||||
edge_changes['weakened'] += 1
|
||||
logger.info(f"\033[1;34m[连接减弱]\033[0m {source} - {target} (强度: {current_strength} -> {new_strength})")
|
||||
|
||||
# 检查并遗忘话题
|
||||
logger.info("开始检查节点...")
|
||||
for node in nodes_to_check:
|
||||
# 获取节点的连接数
|
||||
connections = self.memory_graph.G.degree(node)
|
||||
node_data = self.memory_graph.G.nodes[node]
|
||||
last_modified = node_data.get('last_modified', current_time)
|
||||
|
||||
# 获取节点的内容条数
|
||||
memory_items = self.memory_graph.G.nodes[node].get('memory_items', [])
|
||||
if not isinstance(memory_items, list):
|
||||
memory_items = [memory_items] if memory_items else []
|
||||
content_count = len(memory_items)
|
||||
if current_time - last_modified > 3600*24: # test
|
||||
memory_items = node_data.get('memory_items', [])
|
||||
if not isinstance(memory_items, list):
|
||||
memory_items = [memory_items] if memory_items else []
|
||||
|
||||
# 检查连接强度
|
||||
weak_connections = True
|
||||
if connections > 1: # 只有当连接数大于1时才检查强度
|
||||
for neighbor in self.memory_graph.G.neighbors(node):
|
||||
strength = self.memory_graph.G[node][neighbor].get('strength', 1)
|
||||
if strength > 2:
|
||||
weak_connections = False
|
||||
break
|
||||
if memory_items:
|
||||
current_count = len(memory_items)
|
||||
removed_item = random.choice(memory_items)
|
||||
memory_items.remove(removed_item)
|
||||
|
||||
# 如果满足遗忘条件
|
||||
if (connections <= 1 and weak_connections) or content_count <= 2:
|
||||
removed_item = self.memory_graph.forget_topic(node)
|
||||
if removed_item:
|
||||
forgotten_nodes.append((node, removed_item))
|
||||
print(f"遗忘节点 {node} 的记忆: {removed_item}")
|
||||
if memory_items:
|
||||
self.memory_graph.G.nodes[node]['memory_items'] = memory_items
|
||||
self.memory_graph.G.nodes[node]['last_modified'] = current_time
|
||||
node_changes['reduced'] += 1
|
||||
logger.info(f"\033[1;33m[记忆减少]\033[0m {node} (记忆数量: {current_count} -> {len(memory_items)})")
|
||||
else:
|
||||
self.memory_graph.G.remove_node(node)
|
||||
node_changes['removed'] += 1
|
||||
logger.info(f"\033[1;31m[节点移除]\033[0m {node}")
|
||||
|
||||
# 同步到数据库
|
||||
if forgotten_nodes:
|
||||
if any(count > 0 for count in edge_changes.values()) or any(count > 0 for count in node_changes.values()):
|
||||
self.sync_memory_to_db()
|
||||
print(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆")
|
||||
logger.info("\n遗忘操作统计:")
|
||||
logger.info(f"连接变化: {edge_changes['weakened']} 个减弱, {edge_changes['removed']} 个移除")
|
||||
logger.info(f"节点变化: {node_changes['reduced']} 个减少记忆, {node_changes['removed']} 个移除")
|
||||
else:
|
||||
print("本次检查没有节点满足遗忘条件")
|
||||
logger.info("\n本次检查没有节点或连接满足遗忘条件")
|
||||
|
||||
async def merge_memory(self, topic):
|
||||
"""
|
||||
@@ -436,11 +572,11 @@ class Hippocampus:
|
||||
|
||||
# 拼接成文本
|
||||
merged_text = "\n".join(selected_memories)
|
||||
print(f"\n[合并记忆] 话题: {topic}")
|
||||
print(f"选择的记忆:\n{merged_text}")
|
||||
logger.debug(f"\n[合并记忆] 话题: {topic}")
|
||||
logger.debug(f"选择的记忆:\n{merged_text}")
|
||||
|
||||
# 使用memory_compress生成新的压缩记忆
|
||||
compressed_memories = await self.memory_compress(merged_text, 0.1)
|
||||
compressed_memories, _ = await self.memory_compress(selected_memories, 0.1)
|
||||
|
||||
# 从原记忆列表中移除被选中的记忆
|
||||
for memory in selected_memories:
|
||||
@@ -449,11 +585,11 @@ class Hippocampus:
|
||||
# 添加新的压缩记忆
|
||||
for _, compressed_memory in compressed_memories:
|
||||
memory_items.append(compressed_memory)
|
||||
print(f"添加压缩记忆: {compressed_memory}")
|
||||
logger.info(f"添加压缩记忆: {compressed_memory}")
|
||||
|
||||
# 更新节点的记忆项
|
||||
self.memory_graph.G.nodes[topic]['memory_items'] = memory_items
|
||||
print(f"完成记忆合并,当前记忆数量: {len(memory_items)}")
|
||||
logger.debug(f"完成记忆合并,当前记忆数量: {len(memory_items)}")
|
||||
|
||||
async def operation_merge_memory(self, percentage=0.1):
|
||||
"""
|
||||
@@ -479,23 +615,23 @@ class Hippocampus:
|
||||
|
||||
# 如果内容数量超过100,进行合并
|
||||
if content_count > 100:
|
||||
print(f"\n检查节点: {node}, 当前记忆数量: {content_count}")
|
||||
logger.debug(f"检查节点: {node}, 当前记忆数量: {content_count}")
|
||||
await self.merge_memory(node)
|
||||
merged_nodes.append(node)
|
||||
|
||||
# 同步到数据库
|
||||
if merged_nodes:
|
||||
self.sync_memory_to_db()
|
||||
print(f"\n完成记忆合并操作,共处理 {len(merged_nodes)} 个节点")
|
||||
logger.debug(f"完成记忆合并操作,共处理 {len(merged_nodes)} 个节点")
|
||||
else:
|
||||
print("\n本次检查没有需要合并的节点")
|
||||
logger.debug("本次检查没有需要合并的节点")
|
||||
|
||||
def find_topic_llm(self,text, topic_num):
|
||||
def find_topic_llm(self, text, topic_num):
|
||||
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。'
|
||||
return prompt
|
||||
|
||||
def topic_what(self,text, topic):
|
||||
prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||
def topic_what(self, text, topic, time_info):
|
||||
prompt = f'这是一段文字,{time_info}:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||
return prompt
|
||||
|
||||
async def _identify_topics(self, text: str) -> list:
|
||||
@@ -509,7 +645,8 @@ class Hippocampus:
|
||||
"""
|
||||
topics_response = await self.llm_topic_judge.generate_response(self.find_topic_llm(text, 5))
|
||||
# print(f"话题: {topics_response[0]}")
|
||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
topics = [topic.strip() for topic in
|
||||
topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
# print(f"话题: {topics}")
|
||||
|
||||
return topics
|
||||
@@ -582,7 +719,7 @@ class Hippocampus:
|
||||
|
||||
async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int:
|
||||
"""计算输入文本对记忆的激活程度"""
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 识别主题: {await self._identify_topics(text)}")
|
||||
logger.info(f"识别主题: {await self._identify_topics(text)}")
|
||||
|
||||
# 识别主题
|
||||
identified_topics = await self._identify_topics(text)
|
||||
@@ -613,7 +750,8 @@ class Hippocampus:
|
||||
penalty = 1.0 / (1 + math.log(content_count + 1))
|
||||
|
||||
activation = int(score * 50 * penalty)
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}")
|
||||
logger.info(
|
||||
f"[记忆激活]单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}")
|
||||
return activation
|
||||
|
||||
# 计算关键词匹配率,同时考虑内容数量
|
||||
@@ -640,7 +778,8 @@ class Hippocampus:
|
||||
matched_topics.add(input_topic)
|
||||
adjusted_sim = sim * penalty
|
||||
topic_similarities[input_topic] = max(topic_similarities.get(input_topic, 0), adjusted_sim)
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})")
|
||||
logger.info(
|
||||
f"[记忆激活]主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})")
|
||||
|
||||
# 计算主题匹配率和平均相似度
|
||||
topic_match = len(matched_topics) / len(identified_topics)
|
||||
@@ -648,11 +787,13 @@ class Hippocampus:
|
||||
|
||||
# 计算最终激活值
|
||||
activation = int((topic_match + average_similarities) / 2 * 100)
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}")
|
||||
logger.info(
|
||||
f"[记忆激活]匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}")
|
||||
|
||||
return activation
|
||||
|
||||
async def get_relevant_memories(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.4, max_memory_num: int = 5) -> list:
|
||||
async def get_relevant_memories(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.4,
|
||||
max_memory_num: int = 5) -> list:
|
||||
"""根据输入文本获取相关的记忆内容"""
|
||||
# 识别主题
|
||||
identified_topics = await self._identify_topics(text)
|
||||
@@ -674,8 +815,8 @@ class Hippocampus:
|
||||
first_layer, _ = self.memory_graph.get_related_item(topic, depth=1)
|
||||
if first_layer:
|
||||
# 如果记忆条数超过限制,随机选择指定数量的记忆
|
||||
if len(first_layer) > max_memory_num/2:
|
||||
first_layer = random.sample(first_layer, max_memory_num//2)
|
||||
if len(first_layer) > max_memory_num / 2:
|
||||
first_layer = random.sample(first_layer, max_memory_num // 2)
|
||||
# 为每条记忆添加来源主题和相似度信息
|
||||
for memory in first_layer:
|
||||
relevant_memories.append({
|
||||
@@ -707,19 +848,19 @@ config = driver.config
|
||||
start_time = time.time()
|
||||
|
||||
Database.initialize(
|
||||
host= config.MONGODB_HOST,
|
||||
port= config.MONGODB_PORT,
|
||||
db_name= config.DATABASE_NAME,
|
||||
username= config.MONGODB_USERNAME,
|
||||
password= config.MONGODB_PASSWORD,
|
||||
host=config.MONGODB_HOST,
|
||||
port=config.MONGODB_PORT,
|
||||
db_name=config.DATABASE_NAME,
|
||||
username=config.MONGODB_USERNAME,
|
||||
password=config.MONGODB_PASSWORD,
|
||||
auth_source=config.MONGODB_AUTH_SOURCE
|
||||
)
|
||||
#创建记忆图
|
||||
# 创建记忆图
|
||||
memory_graph = Memory_graph()
|
||||
#创建海马体
|
||||
# 创建海马体
|
||||
hippocampus = Hippocampus(memory_graph)
|
||||
#从数据库加载记忆图
|
||||
# 从数据库加载记忆图
|
||||
hippocampus.sync_memory_from_db()
|
||||
|
||||
end_time = time.time()
|
||||
print(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")
|
||||
logger.success(f"加载海马体耗时: {end_time - start_time:.2f} 秒")
|
||||
|
||||
@@ -13,6 +13,7 @@ import networkx as nx
|
||||
import pymongo
|
||||
from dotenv import load_dotenv
|
||||
from loguru import logger
|
||||
import jieba
|
||||
|
||||
# from chat.config import global_config
|
||||
sys.path.append("C:/GitHub/MaiMBot") # 添加项目根目录到 Python 路径
|
||||
@@ -86,23 +87,26 @@ def calculate_information_content(text):
|
||||
return entropy
|
||||
|
||||
def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数"""
|
||||
chat_text = ''
|
||||
"""从数据库中获取最接近指定时间戳的聊天记录,并记录读取次数
|
||||
|
||||
Returns:
|
||||
list: 消息记录字典列表,每个字典包含消息内容和时间信息
|
||||
"""
|
||||
chat_records = []
|
||||
closest_record = db.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)])
|
||||
|
||||
if closest_record and closest_record.get('memorized', 0) < 4:
|
||||
closest_time = closest_record['time']
|
||||
group_id = closest_record['group_id'] # 获取groupid
|
||||
group_id = closest_record['group_id']
|
||||
# 获取该时间戳之后的length条消息,且groupid相同
|
||||
chat_records = list(db.db.messages.find(
|
||||
records = list(db.db.messages.find(
|
||||
{"time": {"$gt": closest_time}, "group_id": group_id}
|
||||
).sort('time', 1).limit(length))
|
||||
|
||||
# 更新每条消息的memorized属性
|
||||
for record in chat_records:
|
||||
# 检查当前记录的memorized值
|
||||
for record in records:
|
||||
current_memorized = record.get('memorized', 0)
|
||||
if current_memorized > 3:
|
||||
if current_memorized > 3:
|
||||
print("消息已读取3次,跳过")
|
||||
return ''
|
||||
|
||||
@@ -112,11 +116,14 @@ def get_cloest_chat_from_db(db, length: int, timestamp: str):
|
||||
{"$set": {"memorized": current_memorized + 1}}
|
||||
)
|
||||
|
||||
chat_text += record["detailed_plain_text"]
|
||||
# 添加到记录列表中
|
||||
chat_records.append({
|
||||
'text': record["detailed_plain_text"],
|
||||
'time': record["time"],
|
||||
'group_id': record["group_id"]
|
||||
})
|
||||
|
||||
return chat_text
|
||||
print("消息已读取3次,跳过")
|
||||
return ''
|
||||
return chat_records
|
||||
|
||||
class Memory_graph:
|
||||
def __init__(self):
|
||||
@@ -205,22 +212,34 @@ class Hippocampus:
|
||||
self.llm_model_summary = LLMModel(model_name="Qwen/Qwen2.5-32B-Instruct")
|
||||
|
||||
def get_memory_sample(self, chat_size=20, time_frequency:dict={'near':2,'mid':4,'far':3}):
|
||||
"""获取记忆样本
|
||||
|
||||
Returns:
|
||||
list: 消息记录列表,每个元素是一个消息记录字典列表
|
||||
"""
|
||||
current_timestamp = datetime.datetime.now().timestamp()
|
||||
chat_text = []
|
||||
#短期:1h 中期:4h 长期:24h
|
||||
for _ in range(time_frequency.get('near')): # 循环10次
|
||||
random_time = current_timestamp - random.randint(1, 3600*4) # 随机时间
|
||||
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
chat_text.append(chat_)
|
||||
for _ in range(time_frequency.get('mid')): # 循环10次
|
||||
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
|
||||
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
chat_text.append(chat_)
|
||||
for _ in range(time_frequency.get('far')): # 循环10次
|
||||
random_time = current_timestamp - random.randint(3600*24, 3600*24*7) # 随机时间
|
||||
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
chat_text.append(chat_)
|
||||
return [chat for chat in chat_text if chat]
|
||||
chat_samples = []
|
||||
|
||||
# 短期:1h 中期:4h 长期:24h
|
||||
for _ in range(time_frequency.get('near')):
|
||||
random_time = current_timestamp - random.randint(1, 3600*4)
|
||||
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
if messages:
|
||||
chat_samples.append(messages)
|
||||
|
||||
for _ in range(time_frequency.get('mid')):
|
||||
random_time = current_timestamp - random.randint(3600*4, 3600*24)
|
||||
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
if messages:
|
||||
chat_samples.append(messages)
|
||||
|
||||
for _ in range(time_frequency.get('far')):
|
||||
random_time = current_timestamp - random.randint(3600*24, 3600*24*7)
|
||||
messages = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
|
||||
if messages:
|
||||
chat_samples.append(messages)
|
||||
|
||||
return chat_samples
|
||||
|
||||
def calculate_topic_num(self,text, compress_rate):
|
||||
"""计算文本的话题数量"""
|
||||
@@ -231,16 +250,49 @@ class Hippocampus:
|
||||
print(f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, topic_num: {topic_num}")
|
||||
return topic_num
|
||||
|
||||
async def memory_compress(self, input_text, compress_rate=0.1):
|
||||
async def memory_compress(self, messages: list, compress_rate=0.1):
|
||||
"""压缩消息记录为记忆
|
||||
|
||||
Args:
|
||||
messages: 消息记录字典列表,每个字典包含text和time字段
|
||||
compress_rate: 压缩率
|
||||
|
||||
Returns:
|
||||
set: (话题, 记忆) 元组集合
|
||||
"""
|
||||
if not messages:
|
||||
return set()
|
||||
|
||||
# 合并消息文本,同时保留时间信息
|
||||
input_text = ""
|
||||
time_info = ""
|
||||
# 计算最早和最晚时间
|
||||
earliest_time = min(msg['time'] for msg in messages)
|
||||
latest_time = max(msg['time'] for msg in messages)
|
||||
|
||||
earliest_dt = datetime.datetime.fromtimestamp(earliest_time)
|
||||
latest_dt = datetime.datetime.fromtimestamp(latest_time)
|
||||
|
||||
# 如果是同一年
|
||||
if earliest_dt.year == latest_dt.year:
|
||||
earliest_str = earliest_dt.strftime("%m-%d %H:%M:%S")
|
||||
latest_str = latest_dt.strftime("%m-%d %H:%M:%S")
|
||||
time_info += f"是在{earliest_dt.year}年,{earliest_str} 到 {latest_str} 的对话:\n"
|
||||
else:
|
||||
earliest_str = earliest_dt.strftime("%Y-%m-%d %H:%M:%S")
|
||||
latest_str = latest_dt.strftime("%Y-%m-%d %H:%M:%S")
|
||||
time_info += f"是从 {earliest_str} 到 {latest_str} 的对话:\n"
|
||||
|
||||
for msg in messages:
|
||||
input_text += f"{msg['text']}\n"
|
||||
|
||||
print(input_text)
|
||||
|
||||
topic_num = self.calculate_topic_num(input_text, compress_rate)
|
||||
topics_response = self.llm_model_get_topic.generate_response(self.find_topic_llm(input_text, topic_num))
|
||||
# 修改话题处理逻辑
|
||||
# 定义需要过滤的关键词
|
||||
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
|
||||
|
||||
# 过滤topics
|
||||
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
|
||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
|
||||
|
||||
@@ -250,7 +302,7 @@ class Hippocampus:
|
||||
# 创建所有话题的请求任务
|
||||
tasks = []
|
||||
for topic in filtered_topics:
|
||||
topic_what_prompt = self.topic_what(input_text, topic)
|
||||
topic_what_prompt = self.topic_what(input_text, topic , time_info)
|
||||
# 创建异步任务
|
||||
task = self.llm_model_small.generate_response_async(topic_what_prompt)
|
||||
tasks.append((topic.strip(), task))
|
||||
@@ -267,38 +319,36 @@ class Hippocampus:
|
||||
async def operation_build_memory(self, chat_size=12):
|
||||
# 最近消息获取频率
|
||||
time_frequency = {'near': 3, 'mid': 8, 'far': 5}
|
||||
memory_sample = self.get_memory_sample(chat_size, time_frequency)
|
||||
memory_samples = self.get_memory_sample(chat_size, time_frequency)
|
||||
|
||||
all_topics = [] # 用于存储所有话题
|
||||
|
||||
for i, input_text in enumerate(memory_sample, 1):
|
||||
for i, messages in enumerate(memory_samples, 1):
|
||||
# 加载进度可视化
|
||||
all_topics = []
|
||||
progress = (i / len(memory_sample)) * 100
|
||||
progress = (i / len(memory_samples)) * 100
|
||||
bar_length = 30
|
||||
filled_length = int(bar_length * i // len(memory_sample))
|
||||
filled_length = int(bar_length * i // len(memory_samples))
|
||||
bar = '█' * filled_length + '-' * (bar_length - filled_length)
|
||||
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
|
||||
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_samples)})")
|
||||
|
||||
# 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
|
||||
compressed_memory = set()
|
||||
# 生成压缩后记忆
|
||||
compress_rate = 0.1
|
||||
compressed_memory = await self.memory_compress(input_text, compress_rate)
|
||||
compressed_memory = await self.memory_compress(messages, compress_rate)
|
||||
print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
|
||||
|
||||
# 将记忆加入到图谱中
|
||||
for topic, memory in compressed_memory:
|
||||
print(f"\033[1;32m添加节点\033[0m: {topic}")
|
||||
self.memory_graph.add_dot(topic, memory)
|
||||
all_topics.append(topic) # 收集所有话题
|
||||
all_topics.append(topic)
|
||||
|
||||
# 连接相关话题
|
||||
for i in range(len(all_topics)):
|
||||
for j in range(i + 1, len(all_topics)):
|
||||
print(f"\033[1;32m连接节点\033[0m: {all_topics[i]} 和 {all_topics[j]}")
|
||||
self.memory_graph.connect_dot(all_topics[i], all_topics[j])
|
||||
|
||||
|
||||
|
||||
|
||||
self.sync_memory_to_db()
|
||||
|
||||
def sync_memory_from_db(self):
|
||||
@@ -375,7 +425,7 @@ class Hippocampus:
|
||||
|
||||
if concept not in db_nodes_dict:
|
||||
# 数据库中缺少的节点,添加
|
||||
logger.info(f"添加新节点: {concept}")
|
||||
# logger.info(f"添加新节点: {concept}")
|
||||
node_data = {
|
||||
'concept': concept,
|
||||
'memory_items': memory_items,
|
||||
@@ -389,7 +439,7 @@ class Hippocampus:
|
||||
|
||||
# 如果特征值不同,则更新节点
|
||||
if db_hash != memory_hash:
|
||||
logger.info(f"更新节点内容: {concept}")
|
||||
# logger.info(f"更新节点内容: {concept}")
|
||||
self.memory_graph.db.db.graph_data.nodes.update_one(
|
||||
{'concept': concept},
|
||||
{'$set': {
|
||||
@@ -402,7 +452,7 @@ class Hippocampus:
|
||||
memory_concepts = set(node[0] for node in memory_nodes)
|
||||
for db_node in db_nodes:
|
||||
if db_node['concept'] not in memory_concepts:
|
||||
logger.info(f"删除多余节点: {db_node['concept']}")
|
||||
# logger.info(f"删除多余节点: {db_node['concept']}")
|
||||
self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']})
|
||||
|
||||
# 处理边的信息
|
||||
@@ -460,9 +510,10 @@ class Hippocampus:
|
||||
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。'
|
||||
return prompt
|
||||
|
||||
def topic_what(self,text, topic):
|
||||
def topic_what(self,text, topic, time_info):
|
||||
# prompt = f'这是一段文字:{text}。我想知道这段文字里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||
prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||
# 获取当前时间
|
||||
prompt = f'这是一段文字,{time_info}:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
|
||||
return prompt
|
||||
|
||||
def remove_node_from_db(self, topic):
|
||||
@@ -597,7 +648,7 @@ class Hippocampus:
|
||||
print(f"选择的记忆:\n{merged_text}")
|
||||
|
||||
# 使用memory_compress生成新的压缩记忆
|
||||
compressed_memories = await self.memory_compress(merged_text, 0.1)
|
||||
compressed_memories = await self.memory_compress(selected_memories, 0.1)
|
||||
|
||||
# 从原记忆列表中移除被选中的记忆
|
||||
for memory in selected_memories:
|
||||
@@ -647,6 +698,164 @@ class Hippocampus:
|
||||
else:
|
||||
print("\n本次检查没有需要合并的节点")
|
||||
|
||||
async def _identify_topics(self, text: str) -> list:
|
||||
"""从文本中识别可能的主题"""
|
||||
topics_response = self.llm_model_get_topic.generate_response(self.find_topic_llm(text, 5))
|
||||
topics = [topic.strip() for topic in topics_response[0].replace(",", ",").replace("、", ",").replace(" ", ",").split(",") if topic.strip()]
|
||||
return topics
|
||||
|
||||
def _find_similar_topics(self, topics: list, similarity_threshold: float = 0.4, debug_info: str = "") -> list:
|
||||
"""查找与给定主题相似的记忆主题"""
|
||||
all_memory_topics = list(self.memory_graph.G.nodes())
|
||||
all_similar_topics = []
|
||||
|
||||
for topic in topics:
|
||||
if debug_info:
|
||||
pass
|
||||
|
||||
topic_vector = text_to_vector(topic)
|
||||
has_similar_topic = False
|
||||
|
||||
for memory_topic in all_memory_topics:
|
||||
memory_vector = text_to_vector(memory_topic)
|
||||
all_words = set(topic_vector.keys()) | set(memory_vector.keys())
|
||||
v1 = [topic_vector.get(word, 0) for word in all_words]
|
||||
v2 = [memory_vector.get(word, 0) for word in all_words]
|
||||
similarity = cosine_similarity(v1, v2)
|
||||
|
||||
if similarity >= similarity_threshold:
|
||||
has_similar_topic = True
|
||||
all_similar_topics.append((memory_topic, similarity))
|
||||
|
||||
return all_similar_topics
|
||||
|
||||
def _get_top_topics(self, similar_topics: list, max_topics: int = 5) -> list:
|
||||
"""获取相似度最高的主题"""
|
||||
seen_topics = set()
|
||||
top_topics = []
|
||||
|
||||
for topic, score in sorted(similar_topics, key=lambda x: x[1], reverse=True):
|
||||
if topic not in seen_topics and len(top_topics) < max_topics:
|
||||
seen_topics.add(topic)
|
||||
top_topics.append((topic, score))
|
||||
|
||||
return top_topics
|
||||
|
||||
async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int:
|
||||
"""计算输入文本对记忆的激活程度"""
|
||||
logger.info(f"[记忆激活]识别主题: {await self._identify_topics(text)}")
|
||||
|
||||
identified_topics = await self._identify_topics(text)
|
||||
if not identified_topics:
|
||||
return 0
|
||||
|
||||
all_similar_topics = self._find_similar_topics(
|
||||
identified_topics,
|
||||
similarity_threshold=similarity_threshold,
|
||||
debug_info="记忆激活"
|
||||
)
|
||||
|
||||
if not all_similar_topics:
|
||||
return 0
|
||||
|
||||
top_topics = self._get_top_topics(all_similar_topics, max_topics)
|
||||
|
||||
if len(top_topics) == 1:
|
||||
topic, score = top_topics[0]
|
||||
memory_items = self.memory_graph.G.nodes[topic].get('memory_items', [])
|
||||
if not isinstance(memory_items, list):
|
||||
memory_items = [memory_items] if memory_items else []
|
||||
content_count = len(memory_items)
|
||||
penalty = 1.0 / (1 + math.log(content_count + 1))
|
||||
|
||||
activation = int(score * 50 * penalty)
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 单主题「{topic}」- 相似度: {score:.3f}, 内容数: {content_count}, 激活值: {activation}")
|
||||
return activation
|
||||
|
||||
matched_topics = set()
|
||||
topic_similarities = {}
|
||||
|
||||
for memory_topic, similarity in top_topics:
|
||||
memory_items = self.memory_graph.G.nodes[memory_topic].get('memory_items', [])
|
||||
if not isinstance(memory_items, list):
|
||||
memory_items = [memory_items] if memory_items else []
|
||||
content_count = len(memory_items)
|
||||
penalty = 1.0 / (1 + math.log(content_count + 1))
|
||||
|
||||
for input_topic in identified_topics:
|
||||
topic_vector = text_to_vector(input_topic)
|
||||
memory_vector = text_to_vector(memory_topic)
|
||||
all_words = set(topic_vector.keys()) | set(memory_vector.keys())
|
||||
v1 = [topic_vector.get(word, 0) for word in all_words]
|
||||
v2 = [memory_vector.get(word, 0) for word in all_words]
|
||||
sim = cosine_similarity(v1, v2)
|
||||
if sim >= similarity_threshold:
|
||||
matched_topics.add(input_topic)
|
||||
adjusted_sim = sim * penalty
|
||||
topic_similarities[input_topic] = max(topic_similarities.get(input_topic, 0), adjusted_sim)
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 主题「{input_topic}」-> 「{memory_topic}」(内容数: {content_count}, 相似度: {adjusted_sim:.3f})")
|
||||
|
||||
topic_match = len(matched_topics) / len(identified_topics)
|
||||
average_similarities = sum(topic_similarities.values()) / len(topic_similarities) if topic_similarities else 0
|
||||
|
||||
activation = int((topic_match + average_similarities) / 2 * 100)
|
||||
print(f"\033[1;32m[记忆激活]\033[0m 匹配率: {topic_match:.3f}, 平均相似度: {average_similarities:.3f}, 激活值: {activation}")
|
||||
|
||||
return activation
|
||||
|
||||
async def get_relevant_memories(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.4, max_memory_num: int = 5) -> list:
|
||||
"""根据输入文本获取相关的记忆内容"""
|
||||
identified_topics = await self._identify_topics(text)
|
||||
|
||||
all_similar_topics = self._find_similar_topics(
|
||||
identified_topics,
|
||||
similarity_threshold=similarity_threshold,
|
||||
debug_info="记忆检索"
|
||||
)
|
||||
|
||||
relevant_topics = self._get_top_topics(all_similar_topics, max_topics)
|
||||
|
||||
relevant_memories = []
|
||||
for topic, score in relevant_topics:
|
||||
first_layer, _ = self.memory_graph.get_related_item(topic, depth=1)
|
||||
if first_layer:
|
||||
if len(first_layer) > max_memory_num/2:
|
||||
first_layer = random.sample(first_layer, max_memory_num//2)
|
||||
for memory in first_layer:
|
||||
relevant_memories.append({
|
||||
'topic': topic,
|
||||
'similarity': score,
|
||||
'content': memory
|
||||
})
|
||||
|
||||
relevant_memories.sort(key=lambda x: x['similarity'], reverse=True)
|
||||
|
||||
if len(relevant_memories) > max_memory_num:
|
||||
relevant_memories = random.sample(relevant_memories, max_memory_num)
|
||||
|
||||
return relevant_memories
|
||||
|
||||
def segment_text(text):
|
||||
"""使用jieba进行文本分词"""
|
||||
seg_text = list(jieba.cut(text))
|
||||
return seg_text
|
||||
|
||||
def text_to_vector(text):
|
||||
"""将文本转换为词频向量"""
|
||||
words = segment_text(text)
|
||||
vector = {}
|
||||
for word in words:
|
||||
vector[word] = vector.get(word, 0) + 1
|
||||
return vector
|
||||
|
||||
def cosine_similarity(v1, v2):
|
||||
"""计算两个向量的余弦相似度"""
|
||||
dot_product = sum(a * b for a, b in zip(v1, v2))
|
||||
norm1 = math.sqrt(sum(a * a for a in v1))
|
||||
norm2 = math.sqrt(sum(b * b for b in v2))
|
||||
if norm1 == 0 or norm2 == 0:
|
||||
return 0
|
||||
return dot_product / (norm1 * norm2)
|
||||
|
||||
def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = False):
|
||||
# 设置中文字体
|
||||
@@ -735,7 +944,7 @@ async def main():
|
||||
db = Database.get_instance()
|
||||
start_time = time.time()
|
||||
|
||||
test_pare = {'do_build_memory':True,'do_forget_topic':False,'do_visualize_graph':True,'do_query':False,'do_merge_memory':False}
|
||||
test_pare = {'do_build_memory':False,'do_forget_topic':False,'do_visualize_graph':True,'do_query':False,'do_merge_memory':False}
|
||||
|
||||
# 创建记忆图
|
||||
memory_graph = Memory_graph()
|
||||
|
||||
1208
src/plugins/memory_system/memory_test1.py
Normal file
1208
src/plugins/memory_system/memory_test1.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -24,6 +24,7 @@ class LLM_request:
|
||||
self.api_key = getattr(config, model["key"])
|
||||
self.base_url = getattr(config, model["base_url"])
|
||||
except AttributeError as e:
|
||||
logger.error(f"原始 model dict 信息:{model}")
|
||||
logger.error(f"配置错误:找不到对应的配置项 - {str(e)}")
|
||||
raise ValueError(f"配置错误:找不到对应的配置项 - {str(e)}") from e
|
||||
self.model_name = model["name"]
|
||||
@@ -44,12 +45,12 @@ class LLM_request:
|
||||
self.db.db.llm_usage.create_index([("model_name", 1)])
|
||||
self.db.db.llm_usage.create_index([("user_id", 1)])
|
||||
self.db.db.llm_usage.create_index([("request_type", 1)])
|
||||
except Exception as e:
|
||||
logger.error(f"创建数据库索引失败: {e}")
|
||||
except Exception:
|
||||
logger.error("创建数据库索引失败")
|
||||
|
||||
def _record_usage(self, prompt_tokens: int, completion_tokens: int, total_tokens: int,
|
||||
user_id: str = "system", request_type: str = "chat",
|
||||
endpoint: str = "/chat/completions"):
|
||||
user_id: str = "system", request_type: str = "chat",
|
||||
endpoint: str = "/chat/completions"):
|
||||
"""记录模型使用情况到数据库
|
||||
Args:
|
||||
prompt_tokens: 输入token数
|
||||
@@ -79,8 +80,8 @@ class LLM_request:
|
||||
f"提示词: {prompt_tokens}, 完成: {completion_tokens}, "
|
||||
f"总计: {total_tokens}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"记录token使用情况失败: {e}")
|
||||
except Exception:
|
||||
logger.error("记录token使用情况失败")
|
||||
|
||||
def _calculate_cost(self, prompt_tokens: int, completion_tokens: int) -> float:
|
||||
"""计算API调用成本
|
||||
@@ -140,12 +141,12 @@ class LLM_request:
|
||||
}
|
||||
|
||||
api_url = f"{self.base_url.rstrip('/')}/{endpoint.lstrip('/')}"
|
||||
#判断是否为流式
|
||||
# 判断是否为流式
|
||||
stream_mode = self.params.get("stream", False)
|
||||
if self.params.get("stream", False) is True:
|
||||
logger.info(f"进入流式输出模式,发送请求到URL: {api_url}")
|
||||
logger.debug(f"进入流式输出模式,发送请求到URL: {api_url}")
|
||||
else:
|
||||
logger.info(f"发送请求到URL: {api_url}")
|
||||
logger.debug(f"发送请求到URL: {api_url}")
|
||||
logger.info(f"使用模型: {self.model_name}")
|
||||
|
||||
# 构建请求体
|
||||
@@ -158,7 +159,7 @@ class LLM_request:
|
||||
try:
|
||||
# 使用上下文管理器处理会话
|
||||
headers = await self._build_headers()
|
||||
#似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响
|
||||
# 似乎是openai流式必须要的东西,不过阿里云的qwq-plus加了这个没有影响
|
||||
if stream_mode:
|
||||
headers["Accept"] = "text/event-stream"
|
||||
|
||||
@@ -182,11 +183,33 @@ class LLM_request:
|
||||
continue
|
||||
elif response.status in policy["abort_codes"]:
|
||||
logger.error(f"错误码: {response.status} - {error_code_mapping.get(response.status)}")
|
||||
if response.status == 403:
|
||||
# 尝试降级Pro模型
|
||||
if self.model_name.startswith(
|
||||
"Pro/") and self.base_url == "https://api.siliconflow.cn/v1/":
|
||||
old_model_name = self.model_name
|
||||
self.model_name = self.model_name[4:] # 移除"Pro/"前缀
|
||||
logger.warning(f"检测到403错误,模型从 {old_model_name} 降级为 {self.model_name}")
|
||||
|
||||
# 对全局配置进行更新
|
||||
if hasattr(global_config, 'llm_normal') and global_config.llm_normal.get(
|
||||
'name') == old_model_name:
|
||||
global_config.llm_normal['name'] = self.model_name
|
||||
logger.warning("已将全局配置中的 llm_normal 模型降级")
|
||||
|
||||
# 更新payload中的模型名
|
||||
if payload and 'model' in payload:
|
||||
payload['model'] = self.model_name
|
||||
|
||||
# 重新尝试请求
|
||||
retry -= 1 # 不计入重试次数
|
||||
continue
|
||||
|
||||
raise RuntimeError(f"请求被拒绝: {error_code_mapping.get(response.status)}")
|
||||
|
||||
response.raise_for_status()
|
||||
|
||||
#将流式输出转化为非流式输出
|
||||
# 将流式输出转化为非流式输出
|
||||
if stream_mode:
|
||||
accumulated_content = ""
|
||||
async for line_bytes in response.content:
|
||||
@@ -204,8 +227,8 @@ class LLM_request:
|
||||
if delta_content is None:
|
||||
delta_content = ""
|
||||
accumulated_content += delta_content
|
||||
except Exception as e:
|
||||
logger.error(f"解析流式输出错误: {e}")
|
||||
except Exception:
|
||||
logger.exception("解析流式输出错")
|
||||
content = accumulated_content
|
||||
reasoning_content = ""
|
||||
think_match = re.search(r'<think>(.*?)</think>', content, re.DOTALL)
|
||||
@@ -213,12 +236,15 @@ class LLM_request:
|
||||
reasoning_content = think_match.group(1).strip()
|
||||
content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
|
||||
# 构造一个伪result以便调用自定义响应处理器或默认处理器
|
||||
result = {"choices": [{"message": {"content": content, "reasoning_content": reasoning_content}}]}
|
||||
return response_handler(result) if response_handler else self._default_response_handler(result, user_id, request_type, endpoint)
|
||||
result = {
|
||||
"choices": [{"message": {"content": content, "reasoning_content": reasoning_content}}]}
|
||||
return response_handler(result) if response_handler else self._default_response_handler(
|
||||
result, user_id, request_type, endpoint)
|
||||
else:
|
||||
result = await response.json()
|
||||
# 使用自定义处理器或默认处理
|
||||
return response_handler(result) if response_handler else self._default_response_handler(result, user_id, request_type, endpoint)
|
||||
return response_handler(result) if response_handler else self._default_response_handler(
|
||||
result, user_id, request_type, endpoint)
|
||||
|
||||
except Exception as e:
|
||||
if retry < policy["max_retries"] - 1:
|
||||
@@ -233,7 +259,7 @@ class LLM_request:
|
||||
logger.error("达到最大重试次数,请求仍然失败")
|
||||
raise RuntimeError("达到最大重试次数,API请求仍然失败")
|
||||
|
||||
async def _transform_parameters(self, params: dict) ->dict:
|
||||
async def _transform_parameters(self, params: dict) -> dict:
|
||||
"""
|
||||
根据模型名称转换参数:
|
||||
- 对于需要转换的OpenAI CoT系列模型(例如 "o3-mini"),删除 'temprature' 参数,
|
||||
@@ -242,7 +268,8 @@ class LLM_request:
|
||||
# 复制一份参数,避免直接修改原始数据
|
||||
new_params = dict(params)
|
||||
# 定义需要转换的模型列表
|
||||
models_needing_transformation = ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12", "o3-mini-2025-01-31", "o1-mini-2024-09-12"]
|
||||
models_needing_transformation = ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12",
|
||||
"o3-mini-2025-01-31", "o1-mini-2024-09-12"]
|
||||
if self.model_name.lower() in models_needing_transformation:
|
||||
# 删除 'temprature' 参数(如果存在)
|
||||
new_params.pop("temperature", None)
|
||||
@@ -278,13 +305,13 @@ class LLM_request:
|
||||
**params_copy
|
||||
}
|
||||
# 如果 payload 中依然存在 max_tokens 且需要转换,在这里进行再次检查
|
||||
if self.model_name.lower() in ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12", "o3-mini-2025-01-31", "o1-mini-2024-09-12"] and "max_tokens" in payload:
|
||||
if self.model_name.lower() in ["o3-mini", "o1-mini", "o1-preview", "o1-2024-12-17", "o1-preview-2024-09-12",
|
||||
"o3-mini-2025-01-31", "o1-mini-2024-09-12"] and "max_tokens" in payload:
|
||||
payload["max_completion_tokens"] = payload.pop("max_tokens")
|
||||
return payload
|
||||
|
||||
|
||||
def _default_response_handler(self, result: dict, user_id: str = "system",
|
||||
request_type: str = "chat", endpoint: str = "/chat/completions") -> Tuple:
|
||||
request_type: str = "chat", endpoint: str = "/chat/completions") -> Tuple:
|
||||
"""默认响应解析"""
|
||||
if "choices" in result and result["choices"]:
|
||||
message = result["choices"][0]["message"]
|
||||
@@ -329,7 +356,7 @@ class LLM_request:
|
||||
"""构建请求头"""
|
||||
if no_key:
|
||||
return {
|
||||
"Authorization": f"Bearer **********",
|
||||
"Authorization": "Bearer **********",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
else:
|
||||
@@ -337,7 +364,7 @@ class LLM_request:
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
# 防止小朋友们截图自己的key
|
||||
# 防止小朋友们截图自己的key
|
||||
|
||||
async def generate_response(self, prompt: str) -> Tuple[str, str]:
|
||||
"""根据输入的提示生成模型的异步响应"""
|
||||
@@ -384,6 +411,7 @@ class LLM_request:
|
||||
Returns:
|
||||
list: embedding向量,如果失败则返回None
|
||||
"""
|
||||
|
||||
def embedding_handler(result):
|
||||
"""处理响应"""
|
||||
if "data" in result and len(result["data"]) > 0:
|
||||
|
||||
@@ -4,7 +4,7 @@ import time
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..chat.config import global_config
|
||||
|
||||
from loguru import logger
|
||||
|
||||
@dataclass
|
||||
class MoodState:
|
||||
@@ -51,11 +51,11 @@ class MoodManager:
|
||||
# 情绪词映射表 (valence, arousal)
|
||||
self.emotion_map = {
|
||||
'happy': (0.8, 0.6), # 高愉悦度,中等唤醒度
|
||||
'angry': (-0.7, 0.8), # 负愉悦度,高唤醒度
|
||||
'angry': (-0.7, 0.7), # 负愉悦度,高唤醒度
|
||||
'sad': (-0.6, 0.3), # 负愉悦度,低唤醒度
|
||||
'surprised': (0.4, 0.9), # 中等愉悦度,高唤醒度
|
||||
'surprised': (0.4, 0.8), # 中等愉悦度,高唤醒度
|
||||
'disgusted': (-0.8, 0.5), # 高负愉悦度,中等唤醒度
|
||||
'fearful': (-0.7, 0.7), # 负愉悦度,高唤醒度
|
||||
'fearful': (-0.7, 0.6), # 负愉悦度,高唤醒度
|
||||
'neutral': (0.0, 0.5), # 中性愉悦度,中等唤醒度
|
||||
}
|
||||
|
||||
@@ -64,15 +64,20 @@ class MoodManager:
|
||||
# 第一象限:高唤醒,正愉悦
|
||||
(0.5, 0.7): "兴奋",
|
||||
(0.3, 0.8): "快乐",
|
||||
(0.2, 0.65): "满足",
|
||||
# 第二象限:高唤醒,负愉悦
|
||||
(-0.5, 0.7): "愤怒",
|
||||
(-0.3, 0.8): "焦虑",
|
||||
(-0.2, 0.65): "烦躁",
|
||||
# 第三象限:低唤醒,负愉悦
|
||||
(-0.5, 0.3): "悲伤",
|
||||
(-0.3, 0.2): "疲倦",
|
||||
(-0.3, 0.35): "疲倦",
|
||||
(-0.4, 0.15): "疲倦",
|
||||
# 第四象限:低唤醒,正愉悦
|
||||
(0.5, 0.3): "放松",
|
||||
(0.3, 0.2): "平静"
|
||||
(0.2, 0.45): "平静",
|
||||
(0.3, 0.4): "安宁",
|
||||
(0.5, 0.3): "放松"
|
||||
|
||||
}
|
||||
|
||||
@classmethod
|
||||
@@ -119,9 +124,13 @@ class MoodManager:
|
||||
current_time = time.time()
|
||||
time_diff = current_time - self.last_update
|
||||
|
||||
# 应用衰减公式
|
||||
self.current_mood.valence *= math.pow(1 - self.decay_rate_valence, time_diff)
|
||||
self.current_mood.arousal *= math.pow(1 - self.decay_rate_arousal, time_diff)
|
||||
# Valence 向中性(0)回归
|
||||
valence_target = 0.0
|
||||
self.current_mood.valence = valence_target + (self.current_mood.valence - valence_target) * math.exp(-self.decay_rate_valence * time_diff)
|
||||
|
||||
# Arousal 向中性(0.5)回归
|
||||
arousal_target = 0.5
|
||||
self.current_mood.arousal = arousal_target + (self.current_mood.arousal - arousal_target) * math.exp(-self.decay_rate_arousal * time_diff)
|
||||
|
||||
# 确保值在合理范围内
|
||||
self.current_mood.valence = max(-1.0, min(1.0, self.current_mood.valence))
|
||||
@@ -201,7 +210,7 @@ class MoodManager:
|
||||
|
||||
def print_mood_status(self) -> None:
|
||||
"""打印当前情绪状态"""
|
||||
print(f"\033[1;35m[情绪状态]\033[0m 愉悦度: {self.current_mood.valence:.2f}, "
|
||||
logger.info(f"[情绪状态]愉悦度: {self.current_mood.valence:.2f}, "
|
||||
f"唤醒度: {self.current_mood.arousal:.2f}, "
|
||||
f"心情: {self.current_mood.text}")
|
||||
|
||||
|
||||
@@ -13,21 +13,21 @@ from ..models.utils_model import LLM_request
|
||||
driver = get_driver()
|
||||
config = driver.config
|
||||
|
||||
|
||||
Database.initialize(
|
||||
host= config.MONGODB_HOST,
|
||||
port= int(config.MONGODB_PORT),
|
||||
db_name= config.DATABASE_NAME,
|
||||
username= config.MONGODB_USERNAME,
|
||||
password= config.MONGODB_PASSWORD,
|
||||
auth_source=config.MONGODB_AUTH_SOURCE
|
||||
)
|
||||
host=config.MONGODB_HOST,
|
||||
port=int(config.MONGODB_PORT),
|
||||
db_name=config.DATABASE_NAME,
|
||||
username=config.MONGODB_USERNAME,
|
||||
password=config.MONGODB_PASSWORD,
|
||||
auth_source=config.MONGODB_AUTH_SOURCE
|
||||
)
|
||||
|
||||
|
||||
class ScheduleGenerator:
|
||||
def __init__(self):
|
||||
#根据global_config.llm_normal这一字典配置指定模型
|
||||
# 根据global_config.llm_normal这一字典配置指定模型
|
||||
# self.llm_scheduler = LLMModel(model = global_config.llm_normal,temperature=0.9)
|
||||
self.llm_scheduler = LLM_request(model = global_config.llm_normal,temperature=0.9)
|
||||
self.llm_scheduler = LLM_request(model=global_config.llm_normal, temperature=0.9)
|
||||
self.db = Database.get_instance()
|
||||
self.today_schedule_text = ""
|
||||
self.today_schedule = {}
|
||||
@@ -42,31 +42,33 @@ class ScheduleGenerator:
|
||||
yesterday = datetime.datetime.now() - datetime.timedelta(days=1)
|
||||
|
||||
self.today_schedule_text, self.today_schedule = await self.generate_daily_schedule(target_date=today)
|
||||
self.tomorrow_schedule_text, self.tomorrow_schedule = await self.generate_daily_schedule(target_date=tomorrow,read_only=True)
|
||||
self.yesterday_schedule_text, self.yesterday_schedule = await self.generate_daily_schedule(target_date=yesterday,read_only=True)
|
||||
self.tomorrow_schedule_text, self.tomorrow_schedule = await self.generate_daily_schedule(target_date=tomorrow,
|
||||
read_only=True)
|
||||
self.yesterday_schedule_text, self.yesterday_schedule = await self.generate_daily_schedule(
|
||||
target_date=yesterday, read_only=True)
|
||||
|
||||
async def generate_daily_schedule(self, target_date: datetime.datetime = None,read_only:bool = False) -> Dict[str, str]:
|
||||
async def generate_daily_schedule(self, target_date: datetime.datetime = None, read_only: bool = False) -> Dict[
|
||||
str, str]:
|
||||
|
||||
date_str = target_date.strftime("%Y-%m-%d")
|
||||
weekday = target_date.strftime("%A")
|
||||
|
||||
|
||||
schedule_text = str
|
||||
|
||||
existing_schedule = self.db.db.schedule.find_one({"date": date_str})
|
||||
if existing_schedule:
|
||||
print(f"{date_str}的日程已存在:")
|
||||
logger.debug(f"{date_str}的日程已存在:")
|
||||
schedule_text = existing_schedule["schedule"]
|
||||
# print(self.schedule_text)
|
||||
|
||||
elif read_only == False:
|
||||
print(f"{date_str}的日程不存在,准备生成新的日程。")
|
||||
prompt = f"""我是{global_config.BOT_NICKNAME},{global_config.PROMPT_SCHEDULE_GEN},请为我生成{date_str}({weekday})的日程安排,包括:"""+\
|
||||
"""
|
||||
elif not read_only:
|
||||
logger.debug(f"{date_str}的日程不存在,准备生成新的日程。")
|
||||
prompt = f"""我是{global_config.BOT_NICKNAME},{global_config.PROMPT_SCHEDULE_GEN},请为我生成{date_str}({weekday})的日程安排,包括:""" + \
|
||||
"""
|
||||
1. 早上的学习和工作安排
|
||||
2. 下午的活动和任务
|
||||
3. 晚上的计划和休息时间
|
||||
请按照时间顺序列出具体时间点和对应的活动,用一个时间点而不是时间段来表示时间,用JSON格式返回日程表,仅返回内容,不要返回注释,时间采用24小时制,格式为{"时间": "活动","时间": "活动",...}。"""
|
||||
请按照时间顺序列出具体时间点和对应的活动,用一个时间点而不是时间段来表示时间,用JSON格式返回日程表,仅返回内容,不要返回注释,不要添加任何markdown或代码块样式,时间采用24小时制,格式为{"时间": "活动","时间": "活动",...}。"""
|
||||
|
||||
try:
|
||||
schedule_text, _ = await self.llm_scheduler.generate_response(prompt)
|
||||
@@ -76,22 +78,21 @@ class ScheduleGenerator:
|
||||
schedule_text = "生成日程时出错了"
|
||||
# print(self.schedule_text)
|
||||
else:
|
||||
print(f"{date_str}的日程不存在。")
|
||||
logger.debug(f"{date_str}的日程不存在。")
|
||||
schedule_text = "忘了"
|
||||
|
||||
return schedule_text,None
|
||||
return schedule_text, None
|
||||
|
||||
schedule_form = self._parse_schedule(schedule_text)
|
||||
return schedule_text,schedule_form
|
||||
return schedule_text, schedule_form
|
||||
|
||||
def _parse_schedule(self, schedule_text: str) -> Union[bool, Dict[str, str]]:
|
||||
"""解析日程文本,转换为时间和活动的字典"""
|
||||
try:
|
||||
schedule_dict = json.loads(schedule_text)
|
||||
return schedule_dict
|
||||
except json.JSONDecodeError as e:
|
||||
print(schedule_text)
|
||||
print(f"解析日程失败: {str(e)}")
|
||||
except json.JSONDecodeError:
|
||||
logger.exception("解析日程失败: {}".format(schedule_text))
|
||||
return False
|
||||
|
||||
def _parse_time(self, time_str: str) -> str:
|
||||
@@ -132,10 +133,10 @@ class ScheduleGenerator:
|
||||
|
||||
def _time_diff(self, time1: str, time2: str) -> int:
|
||||
"""计算两个时间字符串之间的分钟差"""
|
||||
if time1=="24:00":
|
||||
time1="23:59"
|
||||
if time2=="24:00":
|
||||
time2="23:59"
|
||||
if time1 == "24:00":
|
||||
time1 = "23:59"
|
||||
if time2 == "24:00":
|
||||
time2 = "23:59"
|
||||
t1 = datetime.datetime.strptime(time1, "%H:%M")
|
||||
t2 = datetime.datetime.strptime(time2, "%H:%M")
|
||||
diff = int((t2 - t1).total_seconds() / 60)
|
||||
@@ -150,13 +151,14 @@ class ScheduleGenerator:
|
||||
def print_schedule(self):
|
||||
"""打印完整的日程安排"""
|
||||
if not self._parse_schedule(self.today_schedule_text):
|
||||
print("今日日程有误,将在下次运行时重新生成")
|
||||
logger.warning("今日日程有误,将在下次运行时重新生成")
|
||||
self.db.db.schedule.delete_one({"date": datetime.datetime.now().strftime("%Y-%m-%d")})
|
||||
else:
|
||||
print("\n=== 今日日程安排 ===")
|
||||
logger.info("=== 今日日程安排 ===")
|
||||
for time_str, activity in self.today_schedule.items():
|
||||
print(f"时间[{time_str}]: 活动[{activity}]")
|
||||
print("==================\n")
|
||||
logger.info(f"时间[{time_str}]: 活动[{activity}]")
|
||||
logger.info("==================")
|
||||
|
||||
|
||||
# def main():
|
||||
# # 使用示例
|
||||
|
||||
@@ -3,6 +3,7 @@ import time
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict
|
||||
from loguru import logger
|
||||
|
||||
from ...common.database import Database
|
||||
|
||||
@@ -153,8 +154,8 @@ class LLMStatistics:
|
||||
try:
|
||||
all_stats = self._collect_all_statistics()
|
||||
self._save_statistics(all_stats)
|
||||
except Exception as e:
|
||||
print(f"\033[1;31m[错误]\033[0m 统计数据处理失败: {e}")
|
||||
except Exception:
|
||||
logger.exception("统计数据处理失败")
|
||||
|
||||
# 等待1分钟
|
||||
for _ in range(60):
|
||||
|
||||
@@ -284,10 +284,13 @@ class ChineseTypoGenerator:
|
||||
|
||||
返回:
|
||||
typo_sentence: 包含错别字的句子
|
||||
typo_info: 错别字信息列表
|
||||
correction_suggestion: 随机选择的一个纠正建议,返回正确的字/词
|
||||
"""
|
||||
result = []
|
||||
typo_info = []
|
||||
word_typos = [] # 记录词语错误对(错词,正确词)
|
||||
char_typos = [] # 记录单字错误对(错字,正确字)
|
||||
current_pos = 0
|
||||
|
||||
# 分词
|
||||
words = self._segment_sentence(sentence)
|
||||
@@ -296,6 +299,7 @@ class ChineseTypoGenerator:
|
||||
# 如果是标点符号或空格,直接添加
|
||||
if all(not self._is_chinese_char(c) for c in word):
|
||||
result.append(word)
|
||||
current_pos += len(word)
|
||||
continue
|
||||
|
||||
# 获取词语的拼音
|
||||
@@ -316,6 +320,8 @@ class ChineseTypoGenerator:
|
||||
' '.join(word_pinyin),
|
||||
' '.join(self._get_word_pinyin(typo_word)),
|
||||
orig_freq, typo_freq))
|
||||
word_typos.append((typo_word, word)) # 记录(错词,正确词)对
|
||||
current_pos += len(typo_word)
|
||||
continue
|
||||
|
||||
# 如果不进行整词替换,则进行单字替换
|
||||
@@ -333,11 +339,15 @@ class ChineseTypoGenerator:
|
||||
result.append(typo_char)
|
||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||
char_typos.append((typo_char, char)) # 记录(错字,正确字)对
|
||||
current_pos += 1
|
||||
continue
|
||||
result.append(char)
|
||||
current_pos += 1
|
||||
else:
|
||||
# 处理多字词的单字替换
|
||||
word_result = []
|
||||
word_start_pos = current_pos
|
||||
for i, (char, py) in enumerate(zip(word, word_pinyin)):
|
||||
# 词中的字替换概率降低
|
||||
word_error_rate = self.error_rate * (0.7 ** (len(word) - 1))
|
||||
@@ -353,11 +363,24 @@ class ChineseTypoGenerator:
|
||||
word_result.append(typo_char)
|
||||
typo_py = pinyin(typo_char, style=Style.TONE3)[0][0]
|
||||
typo_info.append((char, typo_char, py, typo_py, orig_freq, typo_freq))
|
||||
char_typos.append((typo_char, char)) # 记录(错字,正确字)对
|
||||
continue
|
||||
word_result.append(char)
|
||||
result.append(''.join(word_result))
|
||||
current_pos += len(word)
|
||||
|
||||
return ''.join(result), typo_info
|
||||
# 优先从词语错误中选择,如果没有则从单字错误中选择
|
||||
correction_suggestion = None
|
||||
# 50%概率返回纠正建议
|
||||
if random.random() < 0.5:
|
||||
if word_typos:
|
||||
wrong_word, correct_word = random.choice(word_typos)
|
||||
correction_suggestion = correct_word
|
||||
elif char_typos:
|
||||
wrong_char, correct_char = random.choice(char_typos)
|
||||
correction_suggestion = correct_char
|
||||
|
||||
return ''.join(result), correction_suggestion
|
||||
|
||||
def format_typo_info(self, typo_info):
|
||||
"""
|
||||
@@ -419,16 +442,16 @@ def main():
|
||||
|
||||
# 创建包含错别字的句子
|
||||
start_time = time.time()
|
||||
typo_sentence, typo_info = typo_generator.create_typo_sentence(sentence)
|
||||
typo_sentence, correction_suggestion = typo_generator.create_typo_sentence(sentence)
|
||||
|
||||
# 打印结果
|
||||
print("\n原句:", sentence)
|
||||
print("错字版:", typo_sentence)
|
||||
|
||||
# 打印错别字信息
|
||||
if typo_info:
|
||||
print("\n错别字信息:")
|
||||
print(typo_generator.format_typo_info(typo_info))
|
||||
# 打印纠正建议
|
||||
if correction_suggestion:
|
||||
print("\n随机纠正建议:")
|
||||
print(f"应该改为:{correction_suggestion}")
|
||||
|
||||
# 计算并打印总耗时
|
||||
end_time = time.time()
|
||||
|
||||
@@ -11,6 +11,8 @@ from pathlib import Path
|
||||
import random
|
||||
import math
|
||||
import time
|
||||
from loguru import logger
|
||||
|
||||
|
||||
class ChineseTypoGenerator:
|
||||
def __init__(self,
|
||||
@@ -36,7 +38,7 @@ class ChineseTypoGenerator:
|
||||
self.max_freq_diff = max_freq_diff
|
||||
|
||||
# 加载数据
|
||||
print("正在加载汉字数据库,请稍候...")
|
||||
logger.debug("正在加载汉字数据库,请稍候...")
|
||||
self.pinyin_dict = self._create_pinyin_dict()
|
||||
self.char_frequency = self._load_or_create_char_frequency()
|
||||
|
||||
@@ -66,7 +68,7 @@ class ChineseTypoGenerator:
|
||||
|
||||
# 归一化频率值
|
||||
max_freq = max(char_freq.values())
|
||||
normalized_freq = {char: freq/max_freq * 1000 for char, freq in char_freq.items()}
|
||||
normalized_freq = {char: freq / max_freq * 1000 for char, freq in char_freq.items()}
|
||||
|
||||
# 保存到缓存文件
|
||||
with open(cache_file, 'w', encoding='utf-8') as f:
|
||||
@@ -183,8 +185,8 @@ class ChineseTypoGenerator:
|
||||
|
||||
# 计算所有同音字与原字的频率差,并过滤掉低频字
|
||||
freq_diff = [(h, self.char_frequency.get(h, 0))
|
||||
for h in homophones
|
||||
if h != char and self.char_frequency.get(h, 0) >= self.min_freq]
|
||||
for h in homophones
|
||||
if h != char and self.char_frequency.get(h, 0) >= self.min_freq]
|
||||
|
||||
if not freq_diff:
|
||||
return None
|
||||
@@ -311,9 +313,9 @@ class ChineseTypoGenerator:
|
||||
# 添加到结果中
|
||||
result.append(typo_word)
|
||||
typo_info.append((word, typo_word,
|
||||
' '.join(word_pinyin),
|
||||
' '.join(self._get_word_pinyin(typo_word)),
|
||||
orig_freq, typo_freq))
|
||||
' '.join(word_pinyin),
|
||||
' '.join(self._get_word_pinyin(typo_word)),
|
||||
orig_freq, typo_freq))
|
||||
continue
|
||||
|
||||
# 如果不进行整词替换,则进行单字替换
|
||||
@@ -381,7 +383,7 @@ class ChineseTypoGenerator:
|
||||
error_type = "声调错误" if tone_error else "同音字替换"
|
||||
|
||||
result.append(f"原文:{orig}({orig_py}) [频率:{orig_freq:.2f}] -> "
|
||||
f"替换:{typo}({typo_py}) [频率:{typo_freq:.2f}] [{error_type}]")
|
||||
f"替换:{typo}({typo_py}) [频率:{typo_freq:.2f}] [{error_type}]")
|
||||
|
||||
return "\n".join(result)
|
||||
|
||||
@@ -399,9 +401,10 @@ class ChineseTypoGenerator:
|
||||
for key, value in kwargs.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
print(f"参数 {key} 已设置为 {value}")
|
||||
logger.debug(f"参数 {key} 已设置为 {value}")
|
||||
else:
|
||||
print(f"警告: 参数 {key} 不存在")
|
||||
logger.warning(f"警告: 参数 {key} 不存在")
|
||||
|
||||
|
||||
def main():
|
||||
# 创建错别字生成器实例
|
||||
@@ -420,18 +423,18 @@ def main():
|
||||
typo_sentence, typo_info = typo_generator.create_typo_sentence(sentence)
|
||||
|
||||
# 打印结果
|
||||
print("\n原句:", sentence)
|
||||
print("错字版:", typo_sentence)
|
||||
logger.debug("原句:", sentence)
|
||||
logger.debug("错字版:", typo_sentence)
|
||||
|
||||
# 打印错别字信息
|
||||
if typo_info:
|
||||
print("\n错别字信息:")
|
||||
print(typo_generator.format_typo_info(typo_info))
|
||||
logger.debug(f"错别字信息:{typo_generator.format_typo_info(typo_info)})")
|
||||
|
||||
# 计算并打印总耗时
|
||||
end_time = time.time()
|
||||
total_time = end_time - start_time
|
||||
print(f"\n总耗时:{total_time:.2f}秒")
|
||||
logger.debug(f"总耗时:{total_time:.2f}秒")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -1,48 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import tomli
|
||||
import tomli_w
|
||||
|
||||
|
||||
def sync_configs():
|
||||
# 读取两个配置文件
|
||||
try:
|
||||
with open('bot_config_dev.toml', 'rb') as f: # tomli需要使用二进制模式读取
|
||||
dev_config = tomli.load(f)
|
||||
|
||||
with open('bot_config.toml', 'rb') as f:
|
||||
prod_config = tomli.load(f)
|
||||
except FileNotFoundError as e:
|
||||
print(f"错误:找不到配置文件 - {e}")
|
||||
sys.exit(1)
|
||||
except tomli.TOMLDecodeError as e:
|
||||
print(f"错误:TOML格式解析失败 - {e}")
|
||||
sys.exit(1)
|
||||
|
||||
# 递归合并配置
|
||||
def merge_configs(source, target):
|
||||
for key, value in source.items():
|
||||
if key not in target:
|
||||
target[key] = value
|
||||
elif isinstance(value, dict) and isinstance(target[key], dict):
|
||||
merge_configs(value, target[key])
|
||||
|
||||
# 将dev配置的新属性合并到prod配置中
|
||||
merge_configs(dev_config, prod_config)
|
||||
|
||||
# 保存更新后的配置
|
||||
try:
|
||||
with open('bot_config.toml', 'wb') as f: # tomli_w需要使用二进制模式写入
|
||||
tomli_w.dump(prod_config, f)
|
||||
print("配置文件同步完成!")
|
||||
except Exception as e:
|
||||
print(f"错误:保存配置文件失败 - {e}")
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# 确保在正确的目录下运行
|
||||
script_dir = Path(__file__).parent
|
||||
os.chdir(script_dir)
|
||||
sync_configs()
|
||||
@@ -1,6 +1,21 @@
|
||||
[inner]
|
||||
version = "0.0.6"
|
||||
|
||||
#如果你想要修改配置文件,请在修改后将version的值进行变更
|
||||
#如果新增项目,请在BotConfig类下新增相应的变量
|
||||
#1.如果你修改的是[]层级项目,例如你新增了 [memory],那么请在config.py的 load_config函数中的include_configs字典中新增"内容":{
|
||||
#"func":memory,
|
||||
#"support":">=0.0.0", #新的版本号
|
||||
#"necessary":False #是否必须
|
||||
#}
|
||||
#2.如果你修改的是[]下的项目,例如你新增了[memory]下的 memory_ban_words ,那么请在config.py的 load_config函数中的 memory函数下新增版本判断:
|
||||
# if config.INNER_VERSION in SpecifierSet(">=0.0.2"):
|
||||
# config.memory_ban_words = set(memory_config.get("memory_ban_words", []))
|
||||
|
||||
[bot]
|
||||
qq = 123
|
||||
nickname = "麦麦"
|
||||
alias_names = ["小麦", "阿麦"]
|
||||
|
||||
[personality]
|
||||
prompt_personality = [
|
||||
@@ -26,6 +41,13 @@ ban_words = [
|
||||
# "403","张三"
|
||||
]
|
||||
|
||||
ban_msgs_regex = [
|
||||
# 需要过滤的消息(原始消息)匹配的正则表达式,匹配到的消息将被过滤(支持CQ码),若不了解正则表达式请勿修改
|
||||
#"https?://[^\\s]+", # 匹配https链接
|
||||
#"\\d{4}-\\d{2}-\\d{2}", # 匹配日期
|
||||
# "\\[CQ:at,qq=\\d+\\]" # 匹配@
|
||||
]
|
||||
|
||||
[emoji]
|
||||
check_interval = 120 # 检查表情包的时间间隔
|
||||
register_interval = 10 # 注册表情包的时间间隔
|
||||
@@ -46,11 +68,35 @@ max_response_length = 1024 # 麦麦回答的最大token数
|
||||
build_memory_interval = 300 # 记忆构建间隔 单位秒
|
||||
forget_memory_interval = 300 # 记忆遗忘间隔 单位秒
|
||||
|
||||
memory_ban_words = [ #不希望记忆的词
|
||||
# "403","张三"
|
||||
]
|
||||
|
||||
[mood]
|
||||
mood_update_interval = 1.0 # 情绪更新间隔 单位秒
|
||||
mood_decay_rate = 0.95 # 情绪衰减率
|
||||
mood_intensity_factor = 1.0 # 情绪强度因子
|
||||
|
||||
[keywords_reaction] # 针对某个关键词作出反应
|
||||
enable = true # 关键词反应功能的总开关
|
||||
|
||||
[[keywords_reaction.rules]] # 如果想要新增多个关键词,直接复制本条,修改keywords和reaction即可
|
||||
enable = true # 是否启用此条(为了人类在未来AI战争能更好地识别AI(bushi),默认开启)
|
||||
keywords = ["人机", "bot", "机器", "入机", "robot", "机器人"] # 会触发反应的关键词
|
||||
reaction = "有人说你是人机或者机器人,否定这一事实,攻击或反问他。注意,只有认为你是机器人才回复,否则不要否认" # 触发之后添加的提示词
|
||||
|
||||
[[keywords_reaction.rules]] # 就像这样复制
|
||||
enable = false # 仅作示例,不会触发
|
||||
keywords = ["测试关键词回复","test",""]
|
||||
reaction = "回答“测试成功”"
|
||||
|
||||
[chinese_typo]
|
||||
enable = true # 是否启用中文错别字生成器
|
||||
error_rate=0.006 # 单字替换概率
|
||||
min_freq=7 # 最小字频阈值
|
||||
tone_error_rate=0.2 # 声调错误概率
|
||||
word_replace_rate=0.006 # 整词替换概率
|
||||
|
||||
[others]
|
||||
enable_advance_output = true # 是否启用高级输出
|
||||
enable_kuuki_read = true # 是否启用读空气功能
|
||||
@@ -80,49 +126,42 @@ ban_user_id = [] #禁止回复消息的QQ号
|
||||
|
||||
[model.llm_reasoning] #回复模型1 主要回复模型
|
||||
name = "Pro/deepseek-ai/DeepSeek-R1"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 0 #模型的输入价格(非必填,可以记录消耗)
|
||||
pri_out = 0 #模型的输出价格(非必填,可以记录消耗)
|
||||
|
||||
|
||||
[model.llm_reasoning_minor] #回复模型3 次要回复模型
|
||||
name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
provider = "SILICONFLOW"
|
||||
|
||||
#非推理模型
|
||||
|
||||
[model.llm_normal] #V3 回复模型2 次要回复模型
|
||||
name = "Pro/deepseek-ai/DeepSeek-V3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
provider = "SILICONFLOW"
|
||||
|
||||
[model.llm_normal_minor] #V2.5
|
||||
name = "deepseek-ai/DeepSeek-V2.5"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
provider = "SILICONFLOW"
|
||||
|
||||
[model.llm_emotion_judge] #主题判断 0.7/m
|
||||
name = "Qwen/Qwen2.5-14B-Instruct"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
provider = "SILICONFLOW"
|
||||
|
||||
[model.llm_topic_judge] #主题判断:建议使用qwen2.5 7b
|
||||
name = "Pro/Qwen/Qwen2.5-7B-Instruct"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
provider = "SILICONFLOW"
|
||||
|
||||
[model.llm_summary_by_topic] #建议使用qwen2.5 32b 及以上
|
||||
name = "Qwen/Qwen2.5-32B-Instruct"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 0
|
||||
pri_out = 0
|
||||
|
||||
[model.moderation] #内容审核 未启用
|
||||
name = ""
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
provider = "SILICONFLOW"
|
||||
pri_in = 0
|
||||
pri_out = 0
|
||||
|
||||
@@ -130,8 +169,7 @@ pri_out = 0
|
||||
|
||||
[model.vlm] #图像识别 0.35/m
|
||||
name = "Pro/Qwen/Qwen2-VL-7B-Instruct"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
provider = "SILICONFLOW"
|
||||
|
||||
|
||||
|
||||
@@ -139,5 +177,4 @@ key = "SILICONFLOW_KEY"
|
||||
|
||||
[model.embedding] #嵌入
|
||||
name = "BAAI/bge-m3"
|
||||
base_url = "SILICONFLOW_BASE_URL"
|
||||
key = "SILICONFLOW_KEY"
|
||||
provider = "SILICONFLOW"
|
||||
|
||||
Reference in New Issue
Block a user