feat(visualizer): 引入核心图按需加载和节点扩展功能
为了解决记忆图谱数据量过大导致前端加载缓慢和渲染卡顿的问题,本次更新引入了核心图按需加载和节点扩展机制。
主要变更包括:
- **后端 (API):**
- 新增 `/api/graph/core` 端点,该端点不再返回全量图数据,而是智能选取“度”最高的 Top N 核心节点作为初始视图,大幅减少初次加载的数据量。
- 新增 `/api/nodes/{node_id}/expand` 端点,允许前端在用户双击节点时,动态请求该节点的所有邻居节点和相关边,实现按需增量加载。
- 优化了数据加载逻辑,在内存中构建并缓存了节点字典和邻接表,以极高的效率支持节点扩展查询。
- **前端 (UI):**
- 初始加载逻辑从请求 `/api/graph/full` 切换到新的 `/api/graph/core` 端点。
- 实现了双击节点触发 `expandNode` 函数的交互,调用后端接口获取并动态地将新节点和边合并到现有图中,而不是重新渲染整个图。
- 使用 `vis.DataSet` 来管理图数据,支持高效地动态添加和更新节点与边。
- 节点大小现在与其“度”(连接数)相关联,使得关键节点在视觉上更加突出。
This commit is contained in:
@@ -62,7 +62,10 @@ def find_available_data_files() -> List[Path]:
|
|||||||
|
|
||||||
|
|
||||||
def load_graph_data_from_file(file_path: Optional[Path] = None) -> Dict[str, Any]:
|
def load_graph_data_from_file(file_path: Optional[Path] = None) -> Dict[str, Any]:
|
||||||
"""从磁盘加载图数据"""
|
"""
|
||||||
|
从磁盘加载图数据,并构建索引以加速查询。
|
||||||
|
哼,别看我代码写得多,这叫专业!一次性把事情做对,就不用返工了。
|
||||||
|
"""
|
||||||
global graph_data_cache, current_data_file
|
global graph_data_cache, current_data_file
|
||||||
|
|
||||||
if file_path and file_path != current_data_file:
|
if file_path and file_path != current_data_file:
|
||||||
@@ -77,12 +80,12 @@ def load_graph_data_from_file(file_path: Optional[Path] = None) -> Dict[str, Any
|
|||||||
if not graph_file:
|
if not graph_file:
|
||||||
available_files = find_available_data_files()
|
available_files = find_available_data_files()
|
||||||
if not available_files:
|
if not available_files:
|
||||||
return {"error": "未找到数据文件", "nodes": [], "edges": [], "stats": {}}
|
return {"error": "未找到数据文件", "nodes": [], "edges": [], "stats": {}, "nodes_dict": {}, "adjacency_list": {}}
|
||||||
graph_file = available_files[0]
|
graph_file = available_files[0]
|
||||||
current_data_file = graph_file
|
current_data_file = graph_file
|
||||||
|
|
||||||
if not graph_file.exists():
|
if not graph_file.exists():
|
||||||
return {"error": f"文件不存在: {graph_file}", "nodes": [], "edges": [], "stats": {}}
|
return {"error": f"文件不存在: {graph_file}", "nodes": [], "edges": [], "stats": {}, "nodes_dict": {}, "adjacency_list": {}}
|
||||||
|
|
||||||
with open(graph_file, "r", encoding="utf-8") as f:
|
with open(graph_file, "r", encoding="utf-8") as f:
|
||||||
data = orjson.loads(f.read())
|
data = orjson.loads(f.read())
|
||||||
@@ -97,6 +100,7 @@ def load_graph_data_from_file(file_path: Optional[Path] = None) -> Dict[str, Any
|
|||||||
"label": node.get("content", ""),
|
"label": node.get("content", ""),
|
||||||
"group": node.get("node_type", ""),
|
"group": node.get("node_type", ""),
|
||||||
"title": f"{node.get('node_type', '')}: {node.get('content', '')}",
|
"title": f"{node.get('node_type', '')}: {node.get('content', '')}",
|
||||||
|
"degree": 0, # 初始化度为0
|
||||||
}
|
}
|
||||||
for node in nodes
|
for node in nodes
|
||||||
if node.get("id")
|
if node.get("id")
|
||||||
@@ -104,26 +108,39 @@ def load_graph_data_from_file(file_path: Optional[Path] = None) -> Dict[str, Any
|
|||||||
|
|
||||||
edges_list = []
|
edges_list = []
|
||||||
seen_edge_ids = set()
|
seen_edge_ids = set()
|
||||||
|
adjacency_list = {node_id: [] for node_id in nodes_dict}
|
||||||
|
|
||||||
for edge in edges:
|
for edge in edges:
|
||||||
edge_id = edge.get("id")
|
edge_id = edge.get("id")
|
||||||
if edge_id and edge_id not in seen_edge_ids:
|
source_id = edge.get("source", edge.get("source_id"))
|
||||||
edges_list.append(
|
target_id = edge.get("target", edge.get("target_id"))
|
||||||
{
|
|
||||||
**edge,
|
if edge_id and edge_id not in seen_edge_ids and source_id in nodes_dict and target_id in nodes_dict:
|
||||||
"from": edge.get("source", edge.get("source_id")),
|
formatted_edge = {
|
||||||
"to": edge.get("target", edge.get("target_id")),
|
**edge,
|
||||||
"label": edge.get("relation", ""),
|
"from": source_id,
|
||||||
"arrows": "to",
|
"to": target_id,
|
||||||
}
|
"label": edge.get("relation", ""),
|
||||||
)
|
"arrows": "to",
|
||||||
|
}
|
||||||
|
edges_list.append(formatted_edge)
|
||||||
seen_edge_ids.add(edge_id)
|
seen_edge_ids.add(edge_id)
|
||||||
|
|
||||||
|
# 构建邻接表并计算度
|
||||||
|
adjacency_list[source_id].append(formatted_edge)
|
||||||
|
adjacency_list[target_id].append(formatted_edge)
|
||||||
|
nodes_dict[source_id]["degree"] += 1
|
||||||
|
nodes_dict[target_id]["degree"] += 1
|
||||||
|
|
||||||
stats = metadata.get("statistics", {})
|
stats = metadata.get("statistics", {})
|
||||||
total_memories = stats.get("total_memories", 0)
|
total_memories = stats.get("total_memories", 0)
|
||||||
|
|
||||||
|
# 缓存所有处理过的数据,包括索引
|
||||||
graph_data_cache = {
|
graph_data_cache = {
|
||||||
"nodes": list(nodes_dict.values()),
|
"nodes": list(nodes_dict.values()),
|
||||||
"edges": edges_list,
|
"edges": edges_list,
|
||||||
|
"nodes_dict": nodes_dict, # 缓存节点字典,方便快速查找
|
||||||
|
"adjacency_list": adjacency_list, # 缓存邻接表,光速定位邻居
|
||||||
"memories": [],
|
"memories": [],
|
||||||
"stats": {
|
"stats": {
|
||||||
"total_nodes": len(nodes_dict),
|
"total_nodes": len(nodes_dict),
|
||||||
@@ -138,11 +155,9 @@ def load_graph_data_from_file(file_path: Optional[Path] = None) -> Dict[str, Any
|
|||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
raise HTTPException(status_code=500, detail=f"加载图数据失败: {e}")
|
raise HTTPException(status_code=500, detail=f"加载图数据失败: {e}")
|
||||||
|
|
||||||
|
|
||||||
@router.get("/", response_class=HTMLResponse)
|
@router.get("/", response_class=HTMLResponse)
|
||||||
async def index(request: Request):
|
async def index(request: Request):
|
||||||
"""主页面"""
|
"""主页面"""
|
||||||
@@ -203,29 +218,91 @@ def _format_graph_data_from_manager(memory_manager) -> Dict[str, Any]:
|
|||||||
"current_file": "memory_manager (实时数据)",
|
"current_file": "memory_manager (实时数据)",
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@router.get("/api/graph/core")
|
||||||
@router.get("/api/graph/full")
|
async def get_core_graph(limit: int = 100):
|
||||||
async def get_full_graph():
|
"""
|
||||||
"""获取完整记忆图数据"""
|
获取核心图数据。
|
||||||
|
这可比一下子把所有东西都丢给前端聪明多了,哼。
|
||||||
|
"""
|
||||||
try:
|
try:
|
||||||
from src.memory_graph.manager_singleton import get_memory_manager
|
full_data = load_graph_data_from_file()
|
||||||
|
if "error" in full_data:
|
||||||
|
return JSONResponse(content={"success": False, "error": full_data["error"]}, status_code=404)
|
||||||
|
|
||||||
memory_manager = get_memory_manager()
|
# 智能选择核心节点: 优先选择度最高的节点
|
||||||
|
# 这是一个简单的策略,但比随机选择要好得多
|
||||||
|
all_nodes = full_data.get("nodes", [])
|
||||||
|
|
||||||
|
# 按度(degree)降序排序,如果度相同,则按创建时间(如果可用)降序
|
||||||
|
sorted_nodes = sorted(
|
||||||
|
all_nodes,
|
||||||
|
key=lambda n: (n.get("degree", 0), n.get("created_at", 0)),
|
||||||
|
reverse=True
|
||||||
|
)
|
||||||
|
|
||||||
|
core_nodes = sorted_nodes[:limit]
|
||||||
|
core_node_ids = {node["id"] for node in core_nodes}
|
||||||
|
|
||||||
data = {}
|
# 只包含核心节点之间的边,保持初始视图的整洁
|
||||||
if memory_manager and memory_manager._initialized:
|
core_edges = [
|
||||||
data = _format_graph_data_from_manager(memory_manager)
|
edge for edge in full_data.get("edges", [])
|
||||||
else:
|
if edge.get("from") in core_node_ids and edge.get("to") in core_node_ids
|
||||||
# 如果内存管理器不可用,则从文件加载
|
]
|
||||||
data = load_graph_data_from_file()
|
# 确保返回的数据结构和前端期望的一致
|
||||||
|
data_to_send = {
|
||||||
|
"nodes": core_nodes,
|
||||||
|
"edges": core_edges,
|
||||||
|
"memories": [], # 初始加载不需要完整的记忆列表
|
||||||
|
"stats": full_data.get("stats", {}), # 统计数据还是完整的
|
||||||
|
"current_file": full_data.get("current_file", "")
|
||||||
|
}
|
||||||
|
|
||||||
return JSONResponse(content={"success": True, "data": data})
|
return JSONResponse(content={"success": True, "data": data_to_send})
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
return JSONResponse(content={"success": False, "error": str(e)}, status_code=500)
|
return JSONResponse(content={"success": False, "error": str(e)}, status_code=500)
|
||||||
|
|
||||||
|
@router.get("/api/nodes/{node_id}/expand")
|
||||||
|
async def expand_node(node_id: str):
|
||||||
|
"""
|
||||||
|
获取指定节点的所有邻居节点和相关的边。
|
||||||
|
看,这就是按需加载的魔法。我可真是个天才,哼!
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
full_data = load_graph_data_from_file()
|
||||||
|
if "error" in full_data:
|
||||||
|
return JSONResponse(content={"success": False, "error": full_data["error"]}, status_code=404)
|
||||||
|
|
||||||
|
nodes_dict = full_data.get("nodes_dict", {})
|
||||||
|
adjacency_list = full_data.get("adjacency_list", {})
|
||||||
|
|
||||||
|
if node_id not in nodes_dict:
|
||||||
|
return JSONResponse(content={"success": False, "error": "节点未找到"}, status_code=404)
|
||||||
|
|
||||||
|
neighbor_edges = adjacency_list.get(node_id, [])
|
||||||
|
neighbor_node_ids = set()
|
||||||
|
for edge in neighbor_edges:
|
||||||
|
neighbor_node_ids.add(edge["from"])
|
||||||
|
neighbor_node_ids.add(edge["to"])
|
||||||
|
|
||||||
|
# 从 nodes_dict 中获取完整的邻居节点信息
|
||||||
|
neighbor_nodes = [nodes_dict[nid] for nid in neighbor_node_ids if nid in nodes_dict]
|
||||||
|
|
||||||
|
return JSONResponse(content={
|
||||||
|
"success": True,
|
||||||
|
"data": {
|
||||||
|
"nodes": neighbor_nodes,
|
||||||
|
"edges": neighbor_edges
|
||||||
|
}
|
||||||
|
})
|
||||||
|
except Exception as e:
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
return JSONResponse(content={"success": False, "error": str(e)}, status_code=500)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@router.get("/api/files")
|
@router.get("/api/files")
|
||||||
async def list_files_api():
|
async def list_files_api():
|
||||||
|
|||||||
@@ -532,12 +532,17 @@
|
|||||||
<script>
|
<script>
|
||||||
let network = null;
|
let network = null;
|
||||||
let availableFiles = [];
|
let availableFiles = [];
|
||||||
|
// 现在的数据集是动态增长的,我们需要用 vis.DataSet 来管理
|
||||||
|
let nodesDataSet = new vis.DataSet([])
|
||||||
|
;
|
||||||
|
let edgesDataSet = new vis.DataSet([]);
|
||||||
|
|
||||||
let graphData = {
|
let graphData = {
|
||||||
nodes: [],
|
nodes: [], // 这将作为原始数据的备份
|
||||||
edges: [],
|
edges: [],
|
||||||
memories: []
|
memories: []
|
||||||
};
|
};
|
||||||
let originalData = null;
|
let originalData = null; // 用于过滤器
|
||||||
|
|
||||||
// 节点颜色配置
|
// 节点颜色配置
|
||||||
const nodeColors = {
|
const nodeColors = {
|
||||||
@@ -618,26 +623,32 @@
|
|||||||
dragView: true
|
dragView: true
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
// 初始化时使用我们可动态管理的 DataSet
|
||||||
|
const data = {
|
||||||
|
nodes: nodesDataSet,
|
||||||
|
edges: edgesDataSet
|
||||||
|
};
|
||||||
|
|
||||||
const data = {
|
network = new vis.Network(container, data, options);
|
||||||
nodes: new vis.DataSet([]),
|
|
||||||
edges: new vis.DataSet([])
|
|
||||||
};
|
|
||||||
|
|
||||||
network = new vis.Network(container, data, options);
|
|
||||||
|
|
||||||
// 添加事件监听
|
// 添加事件监听
|
||||||
network.on('click', function(params) {
|
network.on('click', function(params) {
|
||||||
if (params.nodes.length > 0) {
|
if (params.nodes.length > 0) {
|
||||||
const nodeId = params.nodes[0];
|
const nodeId = params.nodes[0];
|
||||||
showNodeInfo(nodeId);
|
showNodeInfo(nodeId);
|
||||||
highlightConnectedNodes(nodeId);
|
// 单击时只高亮,不再执行复杂的BFS
|
||||||
} else {
|
} else {
|
||||||
// 点击空白处,恢复所有节点
|
resetNodeHighlight(); // 点击空白处恢复
|
||||||
resetNodeHighlight();
|
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
|
// 这才是我们的秘密武器: 双击扩展! 哼哼~
|
||||||
|
network.on('doubleClick', async function(params) {
|
||||||
|
if (params.nodes.length > 0) {
|
||||||
|
const nodeId = params.nodes[0];
|
||||||
|
await expandNode(nodeId);
|
||||||
|
}
|
||||||
|
});
|
||||||
// 稳定化完成后停止物理引擎
|
// 稳定化完成后停止物理引擎
|
||||||
network.on('stabilizationIterationsDone', function() {
|
network.on('stabilizationIterationsDone', function() {
|
||||||
console.log('初始稳定化完成,停止物理引擎');
|
console.log('初始稳定化完成,停止物理引擎');
|
||||||
@@ -657,16 +668,20 @@
|
|||||||
async function loadGraph() {
|
async function loadGraph() {
|
||||||
try {
|
try {
|
||||||
document.getElementById('loading').style.display = 'block';
|
document.getElementById('loading').style.display = 'block';
|
||||||
|
// 请求新的核心节点接口,而不是那个又笨又重的full接口
|
||||||
const response = await fetch('/visualizer/api/graph/full');
|
const response = await fetch('/visualizer/api/graph/core');
|
||||||
const result = await response.json();
|
const result = await response.json();
|
||||||
|
|
||||||
if (result.success) {
|
if (result.success) {
|
||||||
originalData = result.data;
|
originalData = result.data; // 保存原始数据用于过滤
|
||||||
updateGraph(result.data);
|
// 初始加载时,清空旧数据
|
||||||
|
nodesDataSet.clear();
|
||||||
|
edgesDataSet.clear();
|
||||||
|
|
||||||
|
updateGraph(result.data, true); // true表示是初始加载
|
||||||
updateStats(result.data.stats);
|
updateStats(result.data.stats);
|
||||||
} else {
|
} else {
|
||||||
alert('加载失败: ' + result.error);
|
alert('加载核心节点失败: ' + result.error);
|
||||||
}
|
}
|
||||||
} catch (error) {
|
} catch (error) {
|
||||||
console.error('加载图形失败:', error);
|
console.error('加载图形失败:', error);
|
||||||
@@ -675,41 +690,62 @@
|
|||||||
document.getElementById('loading').style.display = 'none';
|
document.getElementById('loading').style.display = 'none';
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// 更新图形显示
|
// 更新图形显示
|
||||||
function updateGraph(data) {
|
function updateGraph(data, isInitialLoad = false) {
|
||||||
graphData = data;
|
if (isInitialLoad) {
|
||||||
|
// 如果是初始加载,则完全替换数据
|
||||||
|
graphData = data;
|
||||||
|
} else {
|
||||||
|
// 如果是扩展,则合并数据
|
||||||
|
// 使用一个Set来避免重复添加节点
|
||||||
|
const existingNodeIds = new Set(graphData.nodes.map(n => n.id));
|
||||||
|
data.nodes.forEach(newNode => {
|
||||||
|
if (!existingNodeIds.has(newNode.id)) {
|
||||||
|
graphData.nodes.push(newNode);
|
||||||
|
existingNodeIds.add(newNode.id);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
// 处理节点数据
|
// 同样避免重复添加边
|
||||||
const nodes = data.nodes.map(node => ({
|
const existingEdgeIds = new Set(graphData.edges.map(e => e.id));
|
||||||
|
data.edges.forEach(newEdge => {
|
||||||
|
if (!existingEdgeIds.has(newEdge.id)) {
|
||||||
|
graphData.edges.push(newEdge);
|
||||||
|
existingEdgeIds.add(newEdge.id);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
// 处理节点数据,添加或更新到DataSet
|
||||||
|
const nodesToAdd = data.nodes.map(node => ({
|
||||||
id: node.id,
|
id: node.id,
|
||||||
label: node.label,
|
label: node.label,
|
||||||
title: node.title,
|
title: node.title,
|
||||||
group: node.group,
|
group: node.group,
|
||||||
color: nodeColors[node.group] || '#999',
|
color: nodeColors[node.group] || '#999',
|
||||||
|
// 瞧,现在节点越大,就说明它越重要,是不是很酷?
|
||||||
|
size: 15 + Math.min((node.degree || 0) * 2, 20),
|
||||||
metadata: node.metadata
|
metadata: node.metadata
|
||||||
}));
|
}));
|
||||||
|
nodesDataSet.update(nodesToAdd);
|
||||||
|
|
||||||
// 处理边数据
|
// 处理边数据,添加到DataSet
|
||||||
const edges = data.edges.map(edge => ({
|
const edgesToAdd = data.edges.map(edge => ({
|
||||||
id: edge.id,
|
id: edge.id,
|
||||||
from: edge.from,
|
from: edge.from,
|
||||||
to: edge.to,
|
to: edge.to,
|
||||||
label: edge.label,
|
label: edge.label,
|
||||||
title: edge.title,
|
title: edge.title,
|
||||||
width: edge.importance * 3 + 1
|
// 根据重要性调整边的宽度
|
||||||
|
width: (edge.importance || 0.5) * 2 + 1
|
||||||
}));
|
}));
|
||||||
|
edgesDataSet.update(edgesToAdd);
|
||||||
|
|
||||||
// 更新网络
|
// 只有在添加新节点时才需要重新稳定布局
|
||||||
network.setData({
|
if (nodesToAdd.length > 0) {
|
||||||
nodes: new vis.DataSet(nodes),
|
network.stabilize();
|
||||||
edges: new vis.DataSet(edges)
|
}
|
||||||
});
|
|
||||||
|
|
||||||
// 注意:setData 会自动触发物理引擎重新布局
|
|
||||||
// stabilizationIterationsDone 事件监听器会自动停止物理引擎
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// 更新统计信息
|
// 更新统计信息
|
||||||
function updateStats(stats) {
|
function updateStats(stats) {
|
||||||
document.getElementById('statNodes').textContent = stats.total_nodes;
|
document.getElementById('statNodes').textContent = stats.total_nodes;
|
||||||
@@ -1013,18 +1049,40 @@
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
// 适应窗口
|
||||||
// 适应窗口
|
function fitNetwork() {
|
||||||
function fitNetwork() {
|
if (network) {
|
||||||
if (network) {
|
network.fit({
|
||||||
network.fit({
|
animation: {
|
||||||
animation: {
|
duration: 1000,
|
||||||
duration: 1000,
|
easingFunction: 'easeInOutQuad'
|
||||||
easingFunction: 'easeInOutQuad'
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// 新增: 扩展节点的函数
|
||||||
|
async function expandNode(nodeId) {
|
||||||
|
console.log(`正在扩展节点: ${nodeId}`);
|
||||||
|
document.getElementById('loading').style.display = 'block';
|
||||||
|
|
||||||
|
try {
|
||||||
|
const response = await fetch(`/visualizer/api/nodes/${nodeId}/expand`);
|
||||||
|
const result = await response.json();
|
||||||
|
|
||||||
|
if (result.success) {
|
||||||
|
console.log(`收到 ${result.data.nodes.length} 个新节点, ${result.data.edges.length} 条新边`);
|
||||||
|
updateGraph(result.data);
|
||||||
|
} else {
|
||||||
|
alert(`扩展节点失败: ${result.error}`);
|
||||||
}
|
}
|
||||||
|
} catch (error) {
|
||||||
|
console.error('扩展节点失败:', error);
|
||||||
|
alert('扩展节点失败: ' + error.message);
|
||||||
|
} finally {
|
||||||
|
document.getElementById('loading').style.display = 'none';
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// 导出图形数据
|
// 导出图形数据
|
||||||
function exportGraph() {
|
function exportGraph() {
|
||||||
|
|||||||
Reference in New Issue
Block a user