chore(scripts): 移除无用的脚本文件
删除了两个已不再需要的脚本: - `run_multi_stage_smoke.py`: 用于早期烟雾测试,现已过时。 - `text_length_analysis.py`: 用于分析数据库中的消息文本长度,功能已不再需要。 feat(scripts):为来自MaiBot的插件提供了转换插件的 _manifest.json 文件的脚本
This commit is contained in:
396
scripts/test/text_length_analysis.py
Normal file
396
scripts/test/text_length_analysis.py
Normal file
@@ -0,0 +1,396 @@
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import time
|
||||
from datetime import datetime
|
||||
|
||||
# Add project root to Python path
|
||||
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
sys.path.insert(0, project_root)
|
||||
from src.common.database.database_model import Messages, ChatStreams # noqa
|
||||
|
||||
|
||||
def contains_emoji_or_image_tags(text: str) -> bool:
|
||||
"""Check if text contains [表情包xxxxx] or [图片xxxxx] tags"""
|
||||
if not text:
|
||||
return False
|
||||
|
||||
# 检查是否包含 [表情包] 或 [图片] 标记
|
||||
emoji_pattern = r"\[表情包[^\]]*\]"
|
||||
image_pattern = r"\[图片[^\]]*\]"
|
||||
|
||||
return bool(re.search(emoji_pattern, text) or re.search(image_pattern, text))
|
||||
|
||||
|
||||
def clean_reply_text(text: str) -> str:
|
||||
"""Remove reply references like [回复 xxxx...] from text"""
|
||||
if not text:
|
||||
return text
|
||||
|
||||
# 匹配 [回复 xxxx...] 格式的内容
|
||||
# 使用非贪婪匹配,匹配到第一个 ] 就停止
|
||||
cleaned_text = re.sub(r"\[回复[^\]]*\]", "", text)
|
||||
|
||||
# 去除多余的空白字符
|
||||
cleaned_text = cleaned_text.strip()
|
||||
|
||||
return cleaned_text
|
||||
|
||||
|
||||
def get_chat_name(chat_id: str) -> str:
|
||||
"""Get chat name from chat_id by querying ChatStreams table directly"""
|
||||
try:
|
||||
chat_stream = ChatStreams.get_or_none(ChatStreams.stream_id == chat_id)
|
||||
if chat_stream is None:
|
||||
return f"未知聊天 ({chat_id})"
|
||||
|
||||
if chat_stream.group_name:
|
||||
return f"{chat_stream.group_name} ({chat_id})"
|
||||
elif chat_stream.user_nickname:
|
||||
return f"{chat_stream.user_nickname}的私聊 ({chat_id})"
|
||||
else:
|
||||
return f"未知聊天 ({chat_id})"
|
||||
except Exception:
|
||||
return f"查询失败 ({chat_id})"
|
||||
|
||||
|
||||
def format_timestamp(timestamp: float) -> str:
|
||||
"""Format timestamp to readable date string"""
|
||||
try:
|
||||
return datetime.fromtimestamp(timestamp).strftime("%Y-%m-%d %H:%M:%S")
|
||||
except (ValueError, OSError):
|
||||
return "未知时间"
|
||||
|
||||
|
||||
def calculate_text_length_distribution(messages) -> dict[str, int]:
|
||||
"""Calculate distribution of processed_plain_text length"""
|
||||
distribution = {
|
||||
"0": 0, # 空文本
|
||||
"1-5": 0, # 极短文本
|
||||
"6-10": 0, # 很短文本
|
||||
"11-20": 0, # 短文本
|
||||
"21-30": 0, # 较短文本
|
||||
"31-50": 0, # 中短文本
|
||||
"51-70": 0, # 中等文本
|
||||
"71-100": 0, # 较长文本
|
||||
"101-150": 0, # 长文本
|
||||
"151-200": 0, # 很长文本
|
||||
"201-300": 0, # 超长文本
|
||||
"301-500": 0, # 极长文本
|
||||
"501-1000": 0, # 巨长文本
|
||||
"1000+": 0, # 超巨长文本
|
||||
}
|
||||
|
||||
for msg in messages:
|
||||
if msg.processed_plain_text is None:
|
||||
continue
|
||||
|
||||
# 排除包含表情包或图片标记的消息
|
||||
if contains_emoji_or_image_tags(msg.processed_plain_text):
|
||||
continue
|
||||
|
||||
# 清理文本中的回复引用
|
||||
cleaned_text = clean_reply_text(msg.processed_plain_text)
|
||||
length = len(cleaned_text)
|
||||
|
||||
if length == 0:
|
||||
distribution["0"] += 1
|
||||
elif length <= 5:
|
||||
distribution["1-5"] += 1
|
||||
elif length <= 10:
|
||||
distribution["6-10"] += 1
|
||||
elif length <= 20:
|
||||
distribution["11-20"] += 1
|
||||
elif length <= 30:
|
||||
distribution["21-30"] += 1
|
||||
elif length <= 50:
|
||||
distribution["31-50"] += 1
|
||||
elif length <= 70:
|
||||
distribution["51-70"] += 1
|
||||
elif length <= 100:
|
||||
distribution["71-100"] += 1
|
||||
elif length <= 150:
|
||||
distribution["101-150"] += 1
|
||||
elif length <= 200:
|
||||
distribution["151-200"] += 1
|
||||
elif length <= 300:
|
||||
distribution["201-300"] += 1
|
||||
elif length <= 500:
|
||||
distribution["301-500"] += 1
|
||||
elif length <= 1000:
|
||||
distribution["501-1000"] += 1
|
||||
else:
|
||||
distribution["1000+"] += 1
|
||||
|
||||
return distribution
|
||||
|
||||
|
||||
def get_text_length_stats(messages) -> dict[str, float]:
|
||||
"""Calculate basic statistics for processed_plain_text length"""
|
||||
lengths = []
|
||||
null_count = 0
|
||||
excluded_count = 0 # 被排除的消息数量
|
||||
|
||||
for msg in messages:
|
||||
if msg.processed_plain_text is None:
|
||||
null_count += 1
|
||||
elif contains_emoji_or_image_tags(msg.processed_plain_text):
|
||||
# 排除包含表情包或图片标记的消息
|
||||
excluded_count += 1
|
||||
else:
|
||||
# 清理文本中的回复引用
|
||||
cleaned_text = clean_reply_text(msg.processed_plain_text)
|
||||
lengths.append(len(cleaned_text))
|
||||
|
||||
if not lengths:
|
||||
return {
|
||||
"count": 0,
|
||||
"null_count": null_count,
|
||||
"excluded_count": excluded_count,
|
||||
"min": 0,
|
||||
"max": 0,
|
||||
"avg": 0,
|
||||
"median": 0,
|
||||
}
|
||||
|
||||
lengths.sort()
|
||||
count = len(lengths)
|
||||
|
||||
return {
|
||||
"count": count,
|
||||
"null_count": null_count,
|
||||
"excluded_count": excluded_count,
|
||||
"min": min(lengths),
|
||||
"max": max(lengths),
|
||||
"avg": sum(lengths) / count,
|
||||
"median": lengths[count // 2] if count % 2 == 1 else (lengths[count // 2 - 1] + lengths[count // 2]) / 2,
|
||||
}
|
||||
|
||||
|
||||
def get_available_chats() -> list[tuple[str, str, int]]:
|
||||
"""Get all available chats with message counts"""
|
||||
try:
|
||||
# 获取所有有消息的chat_id,排除特殊类型消息
|
||||
chat_counts = {}
|
||||
for msg in Messages.select(Messages.chat_id).distinct():
|
||||
chat_id = msg.chat_id
|
||||
count = (
|
||||
Messages.select()
|
||||
.where(
|
||||
(Messages.chat_id == chat_id)
|
||||
& (Messages.is_emoji != 1)
|
||||
& (Messages.is_picid != 1)
|
||||
& (Messages.is_command != 1)
|
||||
)
|
||||
.count()
|
||||
)
|
||||
if count > 0:
|
||||
chat_counts[chat_id] = count
|
||||
|
||||
# 获取聊天名称
|
||||
result = []
|
||||
for chat_id, count in chat_counts.items():
|
||||
chat_name = get_chat_name(chat_id)
|
||||
result.append((chat_id, chat_name, count))
|
||||
|
||||
# 按消息数量排序
|
||||
result.sort(key=lambda x: x[2], reverse=True)
|
||||
return result
|
||||
except Exception as e:
|
||||
print(f"获取聊天列表失败: {e}")
|
||||
return []
|
||||
|
||||
|
||||
def get_time_range_input() -> tuple[float | None, float | None]:
|
||||
"""Get time range input from user"""
|
||||
print("\n时间范围选择:")
|
||||
print("1. 最近1天")
|
||||
print("2. 最近3天")
|
||||
print("3. 最近7天")
|
||||
print("4. 最近30天")
|
||||
print("5. 自定义时间范围")
|
||||
print("6. 不限制时间")
|
||||
|
||||
choice = input("请选择时间范围 (1-6): ").strip()
|
||||
|
||||
now = time.time()
|
||||
|
||||
if choice == "1":
|
||||
return now - 24 * 3600, now
|
||||
elif choice == "2":
|
||||
return now - 3 * 24 * 3600, now
|
||||
elif choice == "3":
|
||||
return now - 7 * 24 * 3600, now
|
||||
elif choice == "4":
|
||||
return now - 30 * 24 * 3600, now
|
||||
elif choice == "5":
|
||||
print("请输入开始时间 (格式: YYYY-MM-DD HH:MM:SS):")
|
||||
start_str = input().strip()
|
||||
print("请输入结束时间 (格式: YYYY-MM-DD HH:MM:SS):")
|
||||
end_str = input().strip()
|
||||
|
||||
try:
|
||||
start_time = datetime.strptime(start_str, "%Y-%m-%d %H:%M:%S").timestamp()
|
||||
end_time = datetime.strptime(end_str, "%Y-%m-%d %H:%M:%S").timestamp()
|
||||
return start_time, end_time
|
||||
except ValueError:
|
||||
print("时间格式错误,将不限制时间范围")
|
||||
return None, None
|
||||
else:
|
||||
return None, None
|
||||
|
||||
|
||||
def get_top_longest_messages(messages, top_n: int = 10) -> list[tuple[str, int, str, str]]:
|
||||
"""Get top N longest messages"""
|
||||
message_lengths = []
|
||||
|
||||
for msg in messages:
|
||||
if msg.processed_plain_text is not None:
|
||||
# 排除包含表情包或图片标记的消息
|
||||
if contains_emoji_or_image_tags(msg.processed_plain_text):
|
||||
continue
|
||||
|
||||
# 清理文本中的回复引用
|
||||
cleaned_text = clean_reply_text(msg.processed_plain_text)
|
||||
length = len(cleaned_text)
|
||||
chat_name = get_chat_name(msg.chat_id)
|
||||
time_str = format_timestamp(msg.time)
|
||||
# 截取前100个字符作为预览
|
||||
preview = cleaned_text[:100] + "..." if len(cleaned_text) > 100 else cleaned_text
|
||||
message_lengths.append((chat_name, length, time_str, preview))
|
||||
|
||||
# 按长度排序,取前N个
|
||||
message_lengths.sort(key=lambda x: x[1], reverse=True)
|
||||
return message_lengths[:top_n]
|
||||
|
||||
|
||||
def analyze_text_lengths(
|
||||
chat_id: str | None = None, start_time: float | None = None, end_time: float | None = None
|
||||
) -> None:
|
||||
"""Analyze processed_plain_text lengths with optional filters"""
|
||||
|
||||
# 构建查询条件,排除特殊类型的消息
|
||||
query = Messages.select().where((Messages.is_emoji != 1) & (Messages.is_picid != 1) & (Messages.is_command != 1))
|
||||
|
||||
if chat_id:
|
||||
query = query.where(Messages.chat_id == chat_id)
|
||||
|
||||
if start_time:
|
||||
query = query.where(Messages.time >= start_time)
|
||||
|
||||
if end_time:
|
||||
query = query.where(Messages.time <= end_time)
|
||||
|
||||
messages = list(query)
|
||||
|
||||
if not messages:
|
||||
print("没有找到符合条件的消息")
|
||||
return
|
||||
|
||||
# 计算统计信息
|
||||
distribution = calculate_text_length_distribution(messages)
|
||||
stats = get_text_length_stats(messages)
|
||||
top_longest = get_top_longest_messages(messages, 10)
|
||||
|
||||
# 显示结果
|
||||
print("\n=== Processed Plain Text 长度分析结果 ===")
|
||||
print("(已排除表情、图片ID、命令类型消息,已排除[表情包]和[图片]标记消息,已清理回复引用)")
|
||||
if chat_id:
|
||||
print(f"聊天: {get_chat_name(chat_id)}")
|
||||
else:
|
||||
print("聊天: 全部聊天")
|
||||
|
||||
if start_time and end_time:
|
||||
print(f"时间范围: {format_timestamp(start_time)} 到 {format_timestamp(end_time)}")
|
||||
elif start_time:
|
||||
print(f"时间范围: {format_timestamp(start_time)} 之后")
|
||||
elif end_time:
|
||||
print(f"时间范围: {format_timestamp(end_time)} 之前")
|
||||
else:
|
||||
print("时间范围: 不限制")
|
||||
|
||||
print("\n基本统计:")
|
||||
print(f"总消息数量: {len(messages)}")
|
||||
print(f"有文本消息数量: {stats['count']}")
|
||||
print(f"空文本消息数量: {stats['null_count']}")
|
||||
print(f"被排除的消息数量: {stats['excluded_count']}")
|
||||
if stats["count"] > 0:
|
||||
print(f"最短长度: {stats['min']} 字符")
|
||||
print(f"最长长度: {stats['max']} 字符")
|
||||
print(f"平均长度: {stats['avg']:.2f} 字符")
|
||||
print(f"中位数长度: {stats['median']:.2f} 字符")
|
||||
|
||||
print("\n文本长度分布:")
|
||||
total = stats["count"]
|
||||
if total > 0:
|
||||
for range_name, count in distribution.items():
|
||||
if count > 0:
|
||||
percentage = count / total * 100
|
||||
print(f"{range_name} 字符: {count} ({percentage:.2f}%)")
|
||||
|
||||
# 显示最长的消息
|
||||
if top_longest:
|
||||
print(f"\n最长的 {len(top_longest)} 条消息:")
|
||||
for i, (chat_name, length, time_str, preview) in enumerate(top_longest, 1):
|
||||
print(f"{i}. [{chat_name}] {time_str}")
|
||||
print(f" 长度: {length} 字符")
|
||||
print(f" 预览: {preview}")
|
||||
print()
|
||||
|
||||
|
||||
def interactive_menu() -> None:
|
||||
"""Interactive menu for text length analysis"""
|
||||
|
||||
while True:
|
||||
print("\n" + "=" * 50)
|
||||
print("Processed Plain Text 长度分析工具")
|
||||
print("=" * 50)
|
||||
print("1. 分析全部聊天")
|
||||
print("2. 选择特定聊天分析")
|
||||
print("q. 退出")
|
||||
|
||||
choice = input("\n请选择分析模式 (1-2, q): ").strip()
|
||||
|
||||
if choice.lower() == "q":
|
||||
print("再见!")
|
||||
break
|
||||
|
||||
chat_id = None
|
||||
|
||||
if choice == "2":
|
||||
# 显示可用的聊天列表
|
||||
chats = get_available_chats()
|
||||
if not chats:
|
||||
print("没有找到聊天数据")
|
||||
continue
|
||||
|
||||
print(f"\n可用的聊天 (共{len(chats)}个):")
|
||||
for i, (_cid, name, count) in enumerate(chats, 1):
|
||||
print(f"{i}. {name} ({count}条消息)")
|
||||
|
||||
try:
|
||||
chat_choice = int(input(f"\n请选择聊天 (1-{len(chats)}): ").strip())
|
||||
if 1 <= chat_choice <= len(chats):
|
||||
chat_id = chats[chat_choice - 1][0]
|
||||
else:
|
||||
print("无效选择")
|
||||
continue
|
||||
except ValueError:
|
||||
print("请输入有效数字")
|
||||
continue
|
||||
|
||||
elif choice != "1":
|
||||
print("无效选择")
|
||||
continue
|
||||
|
||||
# 获取时间范围
|
||||
start_time, end_time = get_time_range_input()
|
||||
|
||||
# 执行分析
|
||||
analyze_text_lengths(chat_id, start_time, end_time)
|
||||
|
||||
input("\n按回车键继续...")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
interactive_menu()
|
||||
Reference in New Issue
Block a user