remove & fix:移除人格表达,修复过滤词失效,私聊强制focus

This commit is contained in:
SengokuCola
2025-07-03 12:24:38 +08:00
parent bb2a95e388
commit 0b2bf81f75
16 changed files with 140 additions and 390 deletions

0
s4u.s4u1 Normal file
View File

View File

@@ -109,3 +109,4 @@ async def get_system_basic_info():
def start_api_server(): def start_api_server():
"""启动API服务器""" """启动API服务器"""
get_global_server().register_router(router, prefix="/api/v1") get_global_server().register_router(router, prefix="/api/v1")
# pass

View File

@@ -80,14 +80,16 @@ class ExpressionSelector:
) )
def get_random_expressions( def get_random_expressions(
self, chat_id: str, style_num: int, grammar_num: int, personality_num: int self, chat_id: str, total_num: int, style_percentage: float, grammar_percentage: float
) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]: ) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]:
( (
learnt_style_expressions, learnt_style_expressions,
learnt_grammar_expressions, learnt_grammar_expressions,
personality_expressions,
) = self.expression_learner.get_expression_by_chat_id(chat_id) ) = self.expression_learner.get_expression_by_chat_id(chat_id)
style_num = int(total_num * style_percentage)
grammar_num = int(total_num * grammar_percentage)
# 按权重抽样使用count作为权重 # 按权重抽样使用count作为权重
if learnt_style_expressions: if learnt_style_expressions:
style_weights = [expr.get("count", 1) for expr in learnt_style_expressions] style_weights = [expr.get("count", 1) for expr in learnt_style_expressions]
@@ -101,13 +103,7 @@ class ExpressionSelector:
else: else:
selected_grammar = [] selected_grammar = []
if personality_expressions: return selected_style, selected_grammar
personality_weights = [expr.get("count", 1) for expr in personality_expressions]
selected_personality = weighted_sample(personality_expressions, personality_weights, personality_num)
else:
selected_personality = []
return selected_style, selected_grammar, selected_personality
def update_expressions_count_batch(self, expressions_to_update: List[Dict[str, str]], increment: float = 0.1): def update_expressions_count_batch(self, expressions_to_update: List[Dict[str, str]], increment: float = 0.1):
"""对一批表达方式更新count值按文件分组后一次性写入""" """对一批表达方式更新count值按文件分组后一次性写入"""
@@ -174,7 +170,7 @@ class ExpressionSelector:
"""使用LLM选择适合的表达方式""" """使用LLM选择适合的表达方式"""
# 1. 获取35个随机表达方式现在按权重抽取 # 1. 获取35个随机表达方式现在按权重抽取
style_exprs, grammar_exprs, personality_exprs = self.get_random_expressions(chat_id, 25, 25, 10) style_exprs, grammar_exprs= self.get_random_expressions(chat_id, 50, 0.5, 0.5)
# 2. 构建所有表达方式的索引和情境列表 # 2. 构建所有表达方式的索引和情境列表
all_expressions = [] all_expressions = []
@@ -196,13 +192,6 @@ class ExpressionSelector:
all_expressions.append(expr_with_type) all_expressions.append(expr_with_type)
all_situations.append(f"{len(all_expressions)}.{expr['situation']}") all_situations.append(f"{len(all_expressions)}.{expr['situation']}")
# 添加personality表达方式
for expr in personality_exprs:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
expr_with_type = expr.copy()
expr_with_type["type"] = "style_personality"
all_expressions.append(expr_with_type)
all_situations.append(f"{len(all_expressions)}.{expr['situation']}")
if not all_expressions: if not all_expressions:
logger.warning("没有找到可用的表达方式") logger.warning("没有找到可用的表达方式")
@@ -260,7 +249,7 @@ class ExpressionSelector:
# 对选中的所有表达方式一次性更新count数 # 对选中的所有表达方式一次性更新count数
if valid_expressions: if valid_expressions:
self.update_expressions_count_batch(valid_expressions, 0.003) self.update_expressions_count_batch(valid_expressions, 0.006)
# logger.info(f"LLM从{len(all_expressions)}个情境中选择了{len(valid_expressions)}个") # logger.info(f"LLM从{len(all_expressions)}个情境中选择了{len(valid_expressions)}个")
return valid_expressions return valid_expressions

View File

@@ -76,14 +76,13 @@ class ExpressionLearner:
def get_expression_by_chat_id( def get_expression_by_chat_id(
self, chat_id: str self, chat_id: str
) -> Tuple[List[Dict[str, str]], List[Dict[str, str]], List[Dict[str, str]]]: ) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]:
""" """
获取指定chat_id的style和grammar表达方式, 同时获取全局的personality表达方式 获取指定chat_id的style和grammar表达方式
返回的每个表达方式字典中都包含了source_id, 用于后续的更新操作 返回的每个表达方式字典中都包含了source_id, 用于后续的更新操作
""" """
learnt_style_expressions = [] learnt_style_expressions = []
learnt_grammar_expressions = [] learnt_grammar_expressions = []
personality_expressions = []
# 获取style表达方式 # 获取style表达方式
style_dir = os.path.join("data", "expression", "learnt_style", str(chat_id)) style_dir = os.path.join("data", "expression", "learnt_style", str(chat_id))
@@ -111,19 +110,8 @@ class ExpressionLearner:
except Exception as e: except Exception as e:
logger.error(f"读取grammar表达方式失败: {e}") logger.error(f"读取grammar表达方式失败: {e}")
# 获取personality表达方式
personality_file = os.path.join("data", "expression", "personality", "expressions.json")
if os.path.exists(personality_file):
try:
with open(personality_file, "r", encoding="utf-8") as f:
expressions = json.load(f)
for expr in expressions:
expr["source_id"] = "personality" # 添加来源ID
personality_expressions.append(expr)
except Exception as e:
logger.error(f"读取personality表达方式失败: {e}")
return learnt_style_expressions, learnt_grammar_expressions, personality_expressions return learnt_style_expressions, learnt_grammar_expressions
def is_similar(self, s1: str, s2: str) -> bool: def is_similar(self, s1: str, s2: str) -> bool:
""" """
@@ -428,11 +416,12 @@ class ExpressionLearner:
init_prompt() init_prompt()
expression_learner = None
if global_config.expression.enable_expression:
expression_learner = None
def get_expression_learner(): def get_expression_learner():
global expression_learner global expression_learner
if expression_learner is None: if expression_learner is None:
expression_learner = ExpressionLearner() expression_learner = ExpressionLearner()
return expression_learner return expression_learner

View File

@@ -3,16 +3,14 @@ from src.config.config import global_config
from src.chat.message_receive.message import MessageRecv from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.storage import MessageStorage from src.chat.message_receive.storage import MessageStorage
from src.chat.heart_flow.heartflow import heartflow from src.chat.heart_flow.heartflow import heartflow
from src.chat.message_receive.chat_stream import get_chat_manager, ChatStream from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.utils.utils import is_mentioned_bot_in_message from src.chat.utils.utils import is_mentioned_bot_in_message
from src.chat.utils.timer_calculator import Timer from src.chat.utils.timer_calculator import Timer
from src.common.logger import get_logger from src.common.logger import get_logger
import math
import re import re
import math
import traceback import traceback
from typing import Optional, Tuple from typing import Optional, Tuple
from maim_message import UserInfo
from src.person_info.relationship_manager import get_relationship_manager from src.person_info.relationship_manager import get_relationship_manager
@@ -90,44 +88,7 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
return interested_rate, is_mentioned return interested_rate, is_mentioned
def _check_ban_words(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
"""检查消息是否包含过滤词
Args:
text: 待检查的文本
chat: 聊天对象
userinfo: 用户信息
Returns:
bool: 是否包含过滤词
"""
for word in global_config.message_receive.ban_words:
if word in text:
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
logger.info(f"[过滤词识别]消息中含有{word}filtered")
return True
return False
def _check_ban_regex(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
"""检查消息是否匹配过滤正则表达式
Args:
text: 待检查的文本
chat: 聊天对象
userinfo: 用户信息
Returns:
bool: 是否匹配过滤正则
"""
for pattern in global_config.message_receive.ban_msgs_regex:
if re.search(pattern, text):
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
logger.info(f"[正则表达式过滤]消息匹配到{pattern}filtered")
return True
return False
class HeartFCMessageReceiver: class HeartFCMessageReceiver:
@@ -167,12 +128,6 @@ class HeartFCMessageReceiver:
subheartflow = await heartflow.get_or_create_subheartflow(chat.stream_id) subheartflow = await heartflow.get_or_create_subheartflow(chat.stream_id)
message.update_chat_stream(chat) message.update_chat_stream(chat)
# 3. 过滤检查
if _check_ban_words(message.processed_plain_text, chat, userinfo) or _check_ban_regex(
message.raw_message, chat, userinfo
):
return
# 6. 兴趣度计算与更新 # 6. 兴趣度计算与更新
interested_rate, is_mentioned = await _calculate_interest(message) interested_rate, is_mentioned = await _calculate_interest(message)
subheartflow.add_message_to_normal_chat_cache(message, interested_rate, is_mentioned) subheartflow.add_message_to_normal_chat_cache(message, interested_rate, is_mentioned)
@@ -183,7 +138,6 @@ class HeartFCMessageReceiver:
current_talk_frequency = global_config.chat.get_current_talk_frequency(chat.stream_id) current_talk_frequency = global_config.chat.get_current_talk_frequency(chat.stream_id)
# 如果消息中包含图片标识,则日志展示为图片 # 如果消息中包含图片标识,则日志展示为图片
import re
picid_match = re.search(r"\[picid:([^\]]+)\]", message.processed_plain_text) picid_match = re.search(r"\[picid:([^\]]+)\]", message.processed_plain_text)
if picid_match: if picid_match:

View File

@@ -62,7 +62,10 @@ class SubHeartflow:
"""异步初始化方法,创建兴趣流并确定聊天类型""" """异步初始化方法,创建兴趣流并确定聊天类型"""
# 根据配置决定初始状态 # 根据配置决定初始状态
if global_config.chat.chat_mode == "focus": if not self.is_group_chat:
logger.debug(f"{self.log_prefix} 检测到是私聊,将直接尝试进入 FOCUSED 状态。")
await self.change_chat_state(ChatState.FOCUSED)
elif global_config.chat.chat_mode == "focus":
logger.debug(f"{self.log_prefix} 配置为 focus 模式,将直接尝试进入 FOCUSED 状态。") logger.debug(f"{self.log_prefix} 配置为 focus 模式,将直接尝试进入 FOCUSED 状态。")
await self.change_chat_state(ChatState.FOCUSED) await self.change_chat_state(ChatState.FOCUSED)
else: # "auto" 或其他模式保持原有逻辑或默认为 NORMAL else: # "auto" 或其他模式保持原有逻辑或默认为 NORMAL

View File

@@ -91,16 +91,10 @@ class SubHeartflowManager:
return subflow return subflow
try: try:
# 初始化子心流, 传入 mai_state_info
new_subflow = SubHeartflow( new_subflow = SubHeartflow(
subheartflow_id, subheartflow_id,
) )
# 首先创建并添加聊天观察者
# observation = ChattingObservation(chat_id=subheartflow_id)
# await observation.initialize()
# new_subflow.add_observation(observation)
# 然后再进行异步初始化,此时 SubHeartflow 内部若需启动 HeartFChatting就能拿到 observation # 然后再进行异步初始化,此时 SubHeartflow 内部若需启动 HeartFChatting就能拿到 observation
await new_subflow.initialize() await new_subflow.initialize()

View File

@@ -15,6 +15,9 @@ from src.config.config import global_config
from src.plugin_system.core.component_registry import component_registry # 导入新插件系统 from src.plugin_system.core.component_registry import component_registry # 导入新插件系统
from src.plugin_system.base.base_command import BaseCommand from src.plugin_system.base.base_command import BaseCommand
from src.mais4u.mais4u_chat.s4u_msg_processor import S4UMessageProcessor from src.mais4u.mais4u_chat.s4u_msg_processor import S4UMessageProcessor
from maim_message import UserInfo
from src.chat.message_receive.chat_stream import ChatStream
import re
# 定义日志配置 # 定义日志配置
# 获取项目根目录假设本文件在src/chat/message_receive/下,根目录为上上上级目录) # 获取项目根目录假设本文件在src/chat/message_receive/下,根目录为上上上级目录)
@@ -29,6 +32,44 @@ if ENABLE_S4U_CHAT:
# 配置主程序日志格式 # 配置主程序日志格式
logger = get_logger("chat") logger = get_logger("chat")
def _check_ban_words(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
"""检查消息是否包含过滤词
Args:
text: 待检查的文本
chat: 聊天对象
userinfo: 用户信息
Returns:
bool: 是否包含过滤词
"""
for word in global_config.message_receive.ban_words:
if word in text:
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
logger.info(f"[过滤词识别]消息中含有{word}filtered")
return True
return False
def _check_ban_regex(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
"""检查消息是否匹配过滤正则表达式
Args:
text: 待检查的文本
chat: 聊天对象
userinfo: 用户信息
Returns:
bool: 是否匹配过滤正则
"""
for pattern in global_config.message_receive.ban_msgs_regex:
if re.search(pattern, text):
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
logger.info(f"[正则表达式过滤]消息匹配到{pattern}filtered")
return True
return False
class ChatBot: class ChatBot:
def __init__(self): def __init__(self):
@@ -49,17 +90,6 @@ class ChatBot:
self._started = True self._started = True
async def _create_pfc_chat(self, message: MessageRecv):
try:
if global_config.experimental.pfc_chatting:
chat_id = str(message.chat_stream.stream_id)
private_name = str(message.message_info.user_info.user_nickname)
await self.pfc_manager.get_or_create_conversation(chat_id, private_name)
except Exception as e:
logger.error(f"创建PFC聊天失败: {e}")
async def _process_commands_with_new_system(self, message: MessageRecv): async def _process_commands_with_new_system(self, message: MessageRecv):
# sourcery skip: use-named-expression # sourcery skip: use-named-expression
"""使用新插件系统处理命令""" """使用新插件系统处理命令"""
@@ -149,14 +179,20 @@ class ChatBot:
return return
get_chat_manager().register_message(message) get_chat_manager().register_message(message)
# 创建聊天流
chat = await get_chat_manager().get_or_create_stream( chat = await get_chat_manager().get_or_create_stream(
platform=message.message_info.platform, platform=message.message_info.platform,
user_info=user_info, user_info=user_info,
group_info=group_info, group_info=group_info,
) )
message.update_chat_stream(chat) message.update_chat_stream(chat)
# 过滤检查
if _check_ban_words(message.processed_plain_text, chat, user_info) or _check_ban_regex(
message.raw_message, chat, user_info
):
return
# 处理消息内容,生成纯文本 # 处理消息内容,生成纯文本
await message.process() await message.process()
@@ -183,26 +219,12 @@ class ChatBot:
template_group_name = None template_group_name = None
async def preprocess(): async def preprocess():
logger.debug("开始预处理消息...") if ENABLE_S4U_CHAT:
# 如果在私聊中 logger.info("进入S4U流程")
if group_info is None: await self.s4u_message_processor.process_message(message)
logger.debug("检测到私聊消息") return
if ENABLE_S4U_CHAT:
logger.debug("进入S4U私聊处理流程") await self.heartflow_message_receiver.process_message(message)
await self.s4u_message_processor.process_message(message)
return
else:
logger.debug("进入普通心流私聊处理")
await self.heartflow_message_receiver.process_message(message)
# 群聊默认进入心流消息处理逻辑
else:
if ENABLE_S4U_CHAT:
logger.debug("进入S4U私聊处理流程")
await self.s4u_message_processor.process_message(message)
return
else:
logger.debug(f"检测到群聊消息群ID: {group_info.group_id}")
await self.heartflow_message_receiver.process_message(message)
if template_group_name: if template_group_name:
async with global_prompt_manager.async_message_scope(template_group_name): async with global_prompt_manager.async_message_scope(template_group_name):

View File

@@ -336,6 +336,9 @@ class DefaultReplyer:
return False, None return False, None
async def build_relation_info(self, reply_data=None, chat_history=None): async def build_relation_info(self, reply_data=None, chat_history=None):
if not global_config.relationship.enable_relationship:
return ""
relationship_fetcher = relationship_fetcher_manager.get_fetcher(self.chat_stream.stream_id) relationship_fetcher = relationship_fetcher_manager.get_fetcher(self.chat_stream.stream_id)
if not reply_data: if not reply_data:
return "" return ""
@@ -355,6 +358,9 @@ class DefaultReplyer:
return relation_info return relation_info
async def build_expression_habits(self, chat_history, target): async def build_expression_habits(self, chat_history, target):
if not global_config.expression.enable_expression:
return ""
style_habbits = [] style_habbits = []
grammar_habbits = [] grammar_habbits = []
@@ -390,6 +396,9 @@ class DefaultReplyer:
return expression_habits_block return expression_habits_block
async def build_memory_block(self, chat_history, target): async def build_memory_block(self, chat_history, target):
if not global_config.memory.enable_memory:
return ""
running_memorys = await self.memory_activator.activate_memory_with_chat_history( running_memorys = await self.memory_activator.activate_memory_with_chat_history(
target_message=target, chat_history_prompt=chat_history target_message=target, chat_history_prompt=chat_history
) )
@@ -415,6 +424,7 @@ class DefaultReplyer:
Returns: Returns:
str: 工具信息字符串 str: 工具信息字符串
""" """
if not reply_data: if not reply_data:
return "" return ""

View File

@@ -322,6 +322,9 @@ class FocusChatConfig(ConfigBase):
class ExpressionConfig(ConfigBase): class ExpressionConfig(ConfigBase):
"""表达配置类""" """表达配置类"""
enable_expression: bool = True
"""是否启用表达方式"""
expression_style: str = "" expression_style: str = ""
"""表达风格""" """表达风格"""

View File

@@ -1,238 +0,0 @@
import random
from src.common.logger import get_logger
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from typing import List, Tuple
import os
import json
from datetime import datetime
logger = get_logger("expressor")
def init_prompt() -> None:
personality_expression_prompt = """
你的人物设定:{personality}
你说话的表达方式:{expression_style}
请从以上表达方式中总结出这个角色可能的语言风格,你必须严格根据人设引申,不要输出例子
思考回复的特殊内容和情感
思考有没有特殊的梗,一并总结成语言风格
总结成如下格式的规律,总结的内容要详细,但具有概括性:
"xxx"时,可以"xxx", xxx不超过10个字
例如(不要输出例子):
"表示十分惊叹"时,使用"我嘞个xxxx"
"表示讽刺的赞同,不想讲道理"时,使用"对对对"
"想说明某个观点,但懒得明说",使用"懂的都懂"
现在请你概括
"""
Prompt(personality_expression_prompt, "personality_expression_prompt")
class PersonalityExpression:
def __init__(self):
self.express_learn_model: LLMRequest = LLMRequest(
model=global_config.model.replyer_1,
max_tokens=512,
request_type="expressor.learner",
)
self.meta_file_path = os.path.join("data", "expression", "personality", "expression_style_meta.json")
self.expressions_file_path = os.path.join("data", "expression", "personality", "expressions.json")
self.max_calculations = 20
def _read_meta_data(self):
if os.path.exists(self.meta_file_path):
try:
with open(self.meta_file_path, "r", encoding="utf-8") as meta_file:
meta_data = json.load(meta_file)
# 检查是否有last_update_time字段
if "last_update_time" not in meta_data:
logger.warning(f"{self.meta_file_path} 中缺少last_update_time字段将重新开始。")
# 清空并重写元数据文件
self._write_meta_data({"last_style_text": None, "count": 0, "last_update_time": None})
# 清空并重写表达文件
if os.path.exists(self.expressions_file_path):
with open(self.expressions_file_path, "w", encoding="utf-8") as expressions_file:
json.dump([], expressions_file, ensure_ascii=False, indent=2)
logger.debug(f"已清空表达文件: {self.expressions_file_path}")
return {"last_style_text": None, "count": 0, "last_update_time": None}
return meta_data
except json.JSONDecodeError:
logger.warning(f"无法解析 {self.meta_file_path} 中的JSON数据将重新开始。")
# 清空并重写元数据文件
self._write_meta_data({"last_style_text": None, "count": 0, "last_update_time": None})
# 清空并重写表达文件
if os.path.exists(self.expressions_file_path):
with open(self.expressions_file_path, "w", encoding="utf-8") as expressions_file:
json.dump([], expressions_file, ensure_ascii=False, indent=2)
logger.debug(f"已清空表达文件: {self.expressions_file_path}")
return {"last_style_text": None, "count": 0, "last_update_time": None}
return {"last_style_text": None, "count": 0, "last_update_time": None}
def _write_meta_data(self, data):
os.makedirs(os.path.dirname(self.meta_file_path), exist_ok=True)
with open(self.meta_file_path, "w", encoding="utf-8") as meta_file:
json.dump(data, meta_file, ensure_ascii=False, indent=2)
async def extract_and_store_personality_expressions(self):
"""
检查data/expression/personality目录不存在则创建。
用peronality变量作为chat_str调用LLM生成表达风格解析后count=100存储到expressions.json。
如果expression_style、personality或identity发生变化则删除旧的expressions.json并重置计数。
对于相同的expression_style最多计算self.max_calculations次。
"""
os.makedirs(os.path.dirname(self.expressions_file_path), exist_ok=True)
current_style_text = global_config.expression.expression_style
current_personality = global_config.personality.personality_core
meta_data = self._read_meta_data()
last_style_text = meta_data.get("last_style_text")
last_personality = meta_data.get("last_personality")
count = meta_data.get("count", 0)
# 检查是否有任何变化
if current_style_text != last_style_text or current_personality != last_personality:
logger.info(
f"检测到变化:\n风格: '{last_style_text}' -> '{current_style_text}'\n人格: '{last_personality}' -> '{current_personality}'"
)
count = 0
if os.path.exists(self.expressions_file_path):
try:
os.remove(self.expressions_file_path)
logger.info(f"已删除旧的表达文件: {self.expressions_file_path}")
except OSError as e:
logger.error(f"删除旧的表达文件 {self.expressions_file_path} 失败: {e}")
if count >= self.max_calculations:
logger.debug(f"对于当前配置已达到最大计算次数 ({self.max_calculations})。跳过提取。")
# 即使跳过,也更新元数据以反映当前配置已被识别且计数已满
self._write_meta_data(
{
"last_style_text": current_style_text,
"last_personality": current_personality,
"count": count,
"last_update_time": meta_data.get("last_update_time"),
}
)
return
# 构建prompt
prompt = await global_prompt_manager.format_prompt(
"personality_expression_prompt",
personality=current_personality,
expression_style=current_style_text,
)
try:
response, _ = await self.express_learn_model.generate_response_async(prompt)
except Exception as e:
logger.error(f"个性表达方式提取失败: {e}")
# 如果提取失败,保存当前的配置和未增加的计数
self._write_meta_data(
{
"last_style_text": current_style_text,
"last_personality": current_personality,
"count": count,
"last_update_time": meta_data.get("last_update_time"),
}
)
return
logger.info(f"个性表达方式提取response: {response}")
# 转为dict并count=100
if response != "":
expressions = self.parse_expression_response(response, "personality")
# 读取已有的表达方式
existing_expressions = []
if os.path.exists(self.expressions_file_path):
try:
with open(self.expressions_file_path, "r", encoding="utf-8") as f:
existing_expressions = json.load(f)
except (json.JSONDecodeError, FileNotFoundError):
logger.warning(f"无法读取或解析 {self.expressions_file_path},将创建新的表达文件。")
# 创建新的表达方式
new_expressions = []
for _, situation, style in expressions:
new_expressions.append({"situation": situation, "style": style, "count": 1})
# 合并表达方式如果situation和style相同则累加count
merged_expressions = existing_expressions.copy()
for new_expr in new_expressions:
found = False
for existing_expr in merged_expressions:
if (
existing_expr["situation"] == new_expr["situation"]
and existing_expr["style"] == new_expr["style"]
):
existing_expr["count"] += new_expr["count"]
found = True
break
if not found:
merged_expressions.append(new_expr)
# 超过50条时随机删除多余的只保留50条
if len(merged_expressions) > 50:
remove_count = len(merged_expressions) - 50
remove_indices = set(random.sample(range(len(merged_expressions)), remove_count))
merged_expressions = [item for idx, item in enumerate(merged_expressions) if idx not in remove_indices]
with open(self.expressions_file_path, "w", encoding="utf-8") as f:
json.dump(merged_expressions, f, ensure_ascii=False, indent=2)
logger.info(f"已写入{len(merged_expressions)}条表达到{self.expressions_file_path}")
# 成功提取后更新元数据
count += 1
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self._write_meta_data(
{
"last_style_text": current_style_text,
"last_personality": current_personality,
"count": count,
"last_update_time": current_time,
}
)
logger.info(f"成功处理。当前配置的计数现在是 {count},最后更新时间:{current_time}")
else:
logger.warning(f"个性表达方式提取失败,模型返回空内容: {response}")
def parse_expression_response(self, response: str, chat_id: str) -> List[Tuple[str, str, str]]:
"""
解析LLM返回的表达风格总结每一行提取"""使用"之间的内容,存储为(situation, style)元组
"""
expressions: List[Tuple[str, str, str]] = []
for line in response.splitlines():
line = line.strip()
if not line:
continue
# 查找"当"和下一个引号
idx_when = line.find('"')
if idx_when == -1:
continue
idx_quote1 = idx_when + 1
idx_quote2 = line.find('"', idx_quote1 + 1)
if idx_quote2 == -1:
continue
situation = line[idx_quote1 + 1 : idx_quote2]
# 查找"使用"
idx_use = line.find('使用"', idx_quote2)
if idx_use == -1:
continue
idx_quote3 = idx_use + 2
idx_quote4 = line.find('"', idx_quote3 + 1)
if idx_quote4 == -1:
continue
style = line[idx_quote3 + 1 : idx_quote4]
expressions.append((chat_id, situation, style))
return expressions
init_prompt()

View File

@@ -1,11 +1,9 @@
from typing import Optional from typing import Optional
import asyncio
import ast import ast
from src.llm_models.utils_model import LLMRequest from src.llm_models.utils_model import LLMRequest
from .personality import Personality from .personality import Personality
from .identity import Identity from .identity import Identity
from .expression_style import PersonalityExpression
import random import random
import json import json
import os import os
@@ -27,7 +25,6 @@ class Individuality:
# 正常初始化实例属性 # 正常初始化实例属性
self.personality: Optional[Personality] = None self.personality: Optional[Personality] = None
self.identity: Optional[Identity] = None self.identity: Optional[Identity] = None
self.express_style: PersonalityExpression = PersonalityExpression()
self.name = "" self.name = ""
self.bot_person_id = "" self.bot_person_id = ""
@@ -151,8 +148,6 @@ class Individuality:
else: else:
logger.error("人设构建失败") logger.error("人设构建失败")
asyncio.create_task(self.express_style.extract_and_store_personality_expressions())
def to_dict(self) -> dict: def to_dict(self) -> dict:
"""将个体特征转换为字典格式""" """将个体特征转换为字典格式"""
return { return {

View File

@@ -19,7 +19,7 @@ from src.common.logger import get_logger
from src.individuality.individuality import get_individuality, Individuality from src.individuality.individuality import get_individuality, Individuality
from src.common.server import get_global_server, Server from src.common.server import get_global_server, Server
from rich.traceback import install from rich.traceback import install
from src.api.main import start_api_server # from src.api.main import start_api_server
# 导入新的插件管理器 # 导入新的插件管理器
from src.plugin_system.core.plugin_manager import plugin_manager from src.plugin_system.core.plugin_manager import plugin_manager
@@ -85,8 +85,8 @@ class MainSystem:
await async_task_manager.add_task(TelemetryHeartBeatTask()) await async_task_manager.add_task(TelemetryHeartBeatTask())
# 启动API服务器 # 启动API服务器
start_api_server() # start_api_server()
logger.info("API服务器启动成功") # logger.info("API服务器启动成功")
# 加载所有actions包括默认的和插件的 # 加载所有actions包括默认的和插件的
plugin_count, component_count = plugin_manager.load_all_plugins() plugin_count, component_count = plugin_manager.load_all_plugins()

View File

@@ -155,13 +155,18 @@ class S4UChat:
self._vip_queue = asyncio.PriorityQueue() self._vip_queue = asyncio.PriorityQueue()
self._normal_queue = asyncio.PriorityQueue() self._normal_queue = asyncio.PriorityQueue()
# 优先级管理配置
self.normal_queue_max_size = 20 # 普通队列最大容量,可以后续移到配置文件
self.interest_dict = {} # 用户兴趣分字典,可以后续移到配置文件. e.g. {"user_id": 5.0}
self.at_bot_priority_bonus = 100.0 # @机器人时的额外优先分
self._entry_counter = 0 # 保证FIFO的全局计数器 self._entry_counter = 0 # 保证FIFO的全局计数器
self._new_message_event = asyncio.Event() # 用于唤醒处理器 self._new_message_event = asyncio.Event() # 用于唤醒处理器
self._processing_task = asyncio.create_task(self._message_processor()) self._processing_task = asyncio.create_task(self._message_processor())
self._current_generation_task: Optional[asyncio.Task] = None self._current_generation_task: Optional[asyncio.Task] = None
# 当前消息的元数据:(队列类型, 优先级, 计数器, 消息对象) # 当前消息的元数据:(队列类型, 优先级分数, 计数器, 消息对象)
self._current_message_being_replied: Optional[Tuple[str, int, int, MessageRecv]] = None self._current_message_being_replied: Optional[Tuple[str, float, int, MessageRecv]] = None
self._is_replying = False self._is_replying = False
self.gpt = S4UStreamGenerator() self.gpt = S4UStreamGenerator()
@@ -174,23 +179,35 @@ class S4UChat:
vip_user_ids = [""] vip_user_ids = [""]
return message.message_info.user_info.user_id in vip_user_ids return message.message_info.user_info.user_id in vip_user_ids
def _get_message_priority(self, message: MessageRecv) -> int: def _get_interest_score(self, user_id: str) -> float:
"""为消息分配优先级。数字越小,优先级越高。""" """获取用户的兴趣分默认为1.0"""
return self.interest_dict.get(user_id, 1.0)
def _calculate_base_priority_score(self, message: MessageRecv) -> float:
"""
为消息计算基础优先级分数。分数越高,优先级越高。
"""
score = 0.0
# 如果消息 @ 了机器人,则增加一个很大的分数
if f"@{global_config.bot.nickname}" in message.processed_plain_text or any( if f"@{global_config.bot.nickname}" in message.processed_plain_text or any(
f"@{alias}" in message.processed_plain_text for alias in global_config.bot.alias_names f"@{alias}" in message.processed_plain_text for alias in global_config.bot.alias_names
): ):
return 0 score += self.at_bot_priority_bonus
return 1
# 加上用户的固有兴趣分
score += self._get_interest_score(message.message_info.user_info.user_id)
return score
async def add_message(self, message: MessageRecv) -> None: async def add_message(self, message: MessageRecv) -> None:
"""根据VIP状态和中断逻辑将消息放入相应队列。""" """根据VIP状态和中断逻辑将消息放入相应队列。"""
is_vip = self._is_vip(message) is_vip = self._is_vip(message)
new_priority = self._get_message_priority(message) # 优先级分数越高,优先级越高。
new_priority_score = self._calculate_base_priority_score(message)
should_interrupt = False should_interrupt = False
if self._current_generation_task and not self._current_generation_task.done(): if self._current_generation_task and not self._current_generation_task.done():
if self._current_message_being_replied: if self._current_message_being_replied:
current_queue, current_priority, _, current_msg = self._current_message_being_replied current_queue, current_priority_score, _, current_msg = self._current_message_being_replied
# 规则VIP从不被打断 # 规则VIP从不被打断
if current_queue == "vip": if current_queue == "vip":
@@ -207,11 +224,11 @@ class S4UChat:
new_sender_id = message.message_info.user_info.user_id new_sender_id = message.message_info.user_info.user_id
current_sender_id = current_msg.message_info.user_info.user_id current_sender_id = current_msg.message_info.user_info.user_id
# 新消息优先级更高 # 新消息优先级更高
if new_priority < current_priority: if new_priority_score > current_priority_score:
should_interrupt = True should_interrupt = True
logger.info(f"[{self.stream_name}] New normal message has higher priority, interrupting.") logger.info(f"[{self.stream_name}] New normal message has higher priority, interrupting.")
# 同用户,同级或更高级 # 同用户,新消息的优先级不能更低
elif new_sender_id == current_sender_id and new_priority <= current_priority: elif new_sender_id == current_sender_id and new_priority_score >= current_priority_score:
should_interrupt = True should_interrupt = True
logger.info(f"[{self.stream_name}] Same user sent new message, interrupting.") logger.info(f"[{self.stream_name}] Same user sent new message, interrupting.")
@@ -220,12 +237,21 @@ class S4UChat:
logger.warning(f"[{self.stream_name}] Interrupting reply. Already generated: '{self.gpt.partial_response}'") logger.warning(f"[{self.stream_name}] Interrupting reply. Already generated: '{self.gpt.partial_response}'")
self._current_generation_task.cancel() self._current_generation_task.cancel()
# 将消息放入对应的队列 # asyncio.PriorityQueue 是最小堆,所以我们存入分数的相反数
item = (new_priority, self._entry_counter, time.time(), message) # 这样,原始分数越高的消息,在队列中的优先级数字越小,越靠前
item = (-new_priority_score, self._entry_counter, time.time(), message)
if is_vip: if is_vip:
await self._vip_queue.put(item) await self._vip_queue.put(item)
logger.info(f"[{self.stream_name}] VIP message added to queue.") logger.info(f"[{self.stream_name}] VIP message added to queue.")
else: else:
# 应用普通队列的最大容量限制
if self._normal_queue.qsize() >= self.normal_queue_max_size:
# 队列已满,简单忽略新消息
# 更复杂的逻辑(如替换掉队列中优先级最低的)对于 asyncio.PriorityQueue 来说实现复杂
logger.debug(f"[{self.stream_name}] Normal queue is full, ignoring new message from {message.message_info.user_info.user_id}")
return
await self._normal_queue.put(item) await self._normal_queue.put(item)
self._entry_counter += 1 self._entry_counter += 1
@@ -241,11 +267,13 @@ class S4UChat:
# 优先处理VIP队列 # 优先处理VIP队列
if not self._vip_queue.empty(): if not self._vip_queue.empty():
priority, entry_count, _, message = self._vip_queue.get_nowait() neg_priority, entry_count, _, message = self._vip_queue.get_nowait()
priority = -neg_priority
queue_name = "vip" queue_name = "vip"
# 其次处理普通队列 # 其次处理普通队列
elif not self._normal_queue.empty(): elif not self._normal_queue.empty():
priority, entry_count, timestamp, message = self._normal_queue.get_nowait() neg_priority, entry_count, timestamp, message = self._normal_queue.get_nowait()
priority = -neg_priority
# 检查普通消息是否超时 # 检查普通消息是否超时
if time.time() - timestamp > self._MESSAGE_TIMEOUT_SECONDS: if time.time() - timestamp > self._MESSAGE_TIMEOUT_SECONDS:
logger.info(f"[{self.stream_name}] Discarding stale normal message: {message.processed_plain_text[:20]}...") logger.info(f"[{self.stream_name}] Discarding stale normal message: {message.processed_plain_text[:20]}...")

View File

@@ -1,6 +1,5 @@
from src.config.config import global_config from src.config.config import global_config
from src.common.logger import get_logger from src.common.logger import get_logger
from src.individuality.individuality import get_individuality
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_before_timestamp_with_chat
import time import time

View File

@@ -1,5 +1,5 @@
[inner] [inner]
version = "3.0.0" version = "3.1.0"
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读---- #----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
#如果你想要修改配置文件请在修改后将version的值进行变更 #如果你想要修改配置文件请在修改后将version的值进行变更
@@ -44,6 +44,7 @@ compress_indentity = true # 是否压缩身份,压缩后会精简身份信息
[expression] [expression]
# 表达方式 # 表达方式
enable_expression = true # 是否启用表达方式
expression_style = "描述麦麦说话的表达风格,表达习惯,例如:(请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景。)" expression_style = "描述麦麦说话的表达风格,表达习惯,例如:(请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景。)"
enable_expression_learning = false # 是否启用表达学习,麦麦会学习不同群里人类说话风格(群之间不互通) enable_expression_learning = false # 是否启用表达学习,麦麦会学习不同群里人类说话风格(群之间不互通)
learning_interval = 600 # 学习间隔 单位秒 learning_interval = 600 # 学习间隔 单位秒