remove & fix:移除人格表达,修复过滤词失效,私聊强制focus

This commit is contained in:
SengokuCola
2025-07-03 12:24:38 +08:00
parent bb2a95e388
commit 0b2bf81f75
16 changed files with 140 additions and 390 deletions

View File

@@ -80,14 +80,16 @@ class ExpressionSelector:
)
def get_random_expressions(
self, chat_id: str, style_num: int, grammar_num: int, personality_num: int
self, chat_id: str, total_num: int, style_percentage: float, grammar_percentage: float
) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]:
(
learnt_style_expressions,
learnt_grammar_expressions,
personality_expressions,
) = self.expression_learner.get_expression_by_chat_id(chat_id)
style_num = int(total_num * style_percentage)
grammar_num = int(total_num * grammar_percentage)
# 按权重抽样使用count作为权重
if learnt_style_expressions:
style_weights = [expr.get("count", 1) for expr in learnt_style_expressions]
@@ -101,13 +103,7 @@ class ExpressionSelector:
else:
selected_grammar = []
if personality_expressions:
personality_weights = [expr.get("count", 1) for expr in personality_expressions]
selected_personality = weighted_sample(personality_expressions, personality_weights, personality_num)
else:
selected_personality = []
return selected_style, selected_grammar, selected_personality
return selected_style, selected_grammar
def update_expressions_count_batch(self, expressions_to_update: List[Dict[str, str]], increment: float = 0.1):
"""对一批表达方式更新count值按文件分组后一次性写入"""
@@ -174,7 +170,7 @@ class ExpressionSelector:
"""使用LLM选择适合的表达方式"""
# 1. 获取35个随机表达方式现在按权重抽取
style_exprs, grammar_exprs, personality_exprs = self.get_random_expressions(chat_id, 25, 25, 10)
style_exprs, grammar_exprs= self.get_random_expressions(chat_id, 50, 0.5, 0.5)
# 2. 构建所有表达方式的索引和情境列表
all_expressions = []
@@ -196,13 +192,6 @@ class ExpressionSelector:
all_expressions.append(expr_with_type)
all_situations.append(f"{len(all_expressions)}.{expr['situation']}")
# 添加personality表达方式
for expr in personality_exprs:
if isinstance(expr, dict) and "situation" in expr and "style" in expr:
expr_with_type = expr.copy()
expr_with_type["type"] = "style_personality"
all_expressions.append(expr_with_type)
all_situations.append(f"{len(all_expressions)}.{expr['situation']}")
if not all_expressions:
logger.warning("没有找到可用的表达方式")
@@ -260,7 +249,7 @@ class ExpressionSelector:
# 对选中的所有表达方式一次性更新count数
if valid_expressions:
self.update_expressions_count_batch(valid_expressions, 0.003)
self.update_expressions_count_batch(valid_expressions, 0.006)
# logger.info(f"LLM从{len(all_expressions)}个情境中选择了{len(valid_expressions)}个")
return valid_expressions

View File

@@ -76,14 +76,13 @@ class ExpressionLearner:
def get_expression_by_chat_id(
self, chat_id: str
) -> Tuple[List[Dict[str, str]], List[Dict[str, str]], List[Dict[str, str]]]:
) -> Tuple[List[Dict[str, str]], List[Dict[str, str]]]:
"""
获取指定chat_id的style和grammar表达方式, 同时获取全局的personality表达方式
获取指定chat_id的style和grammar表达方式
返回的每个表达方式字典中都包含了source_id, 用于后续的更新操作
"""
learnt_style_expressions = []
learnt_grammar_expressions = []
personality_expressions = []
# 获取style表达方式
style_dir = os.path.join("data", "expression", "learnt_style", str(chat_id))
@@ -111,19 +110,8 @@ class ExpressionLearner:
except Exception as e:
logger.error(f"读取grammar表达方式失败: {e}")
# 获取personality表达方式
personality_file = os.path.join("data", "expression", "personality", "expressions.json")
if os.path.exists(personality_file):
try:
with open(personality_file, "r", encoding="utf-8") as f:
expressions = json.load(f)
for expr in expressions:
expr["source_id"] = "personality" # 添加来源ID
personality_expressions.append(expr)
except Exception as e:
logger.error(f"读取personality表达方式失败: {e}")
return learnt_style_expressions, learnt_grammar_expressions, personality_expressions
return learnt_style_expressions, learnt_grammar_expressions
def is_similar(self, s1: str, s2: str) -> bool:
"""
@@ -428,11 +416,12 @@ class ExpressionLearner:
init_prompt()
expression_learner = None
if global_config.expression.enable_expression:
expression_learner = None
def get_expression_learner():
global expression_learner
if expression_learner is None:
expression_learner = ExpressionLearner()
return expression_learner
def get_expression_learner():
global expression_learner
if expression_learner is None:
expression_learner = ExpressionLearner()
return expression_learner

View File

@@ -3,16 +3,14 @@ from src.config.config import global_config
from src.chat.message_receive.message import MessageRecv
from src.chat.message_receive.storage import MessageStorage
from src.chat.heart_flow.heartflow import heartflow
from src.chat.message_receive.chat_stream import get_chat_manager, ChatStream
from src.chat.message_receive.chat_stream import get_chat_manager
from src.chat.utils.utils import is_mentioned_bot_in_message
from src.chat.utils.timer_calculator import Timer
from src.common.logger import get_logger
import math
import re
import math
import traceback
from typing import Optional, Tuple
from maim_message import UserInfo
from src.person_info.relationship_manager import get_relationship_manager
@@ -90,44 +88,7 @@ async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool]:
return interested_rate, is_mentioned
def _check_ban_words(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
"""检查消息是否包含过滤词
Args:
text: 待检查的文本
chat: 聊天对象
userinfo: 用户信息
Returns:
bool: 是否包含过滤词
"""
for word in global_config.message_receive.ban_words:
if word in text:
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
logger.info(f"[过滤词识别]消息中含有{word}filtered")
return True
return False
def _check_ban_regex(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
"""检查消息是否匹配过滤正则表达式
Args:
text: 待检查的文本
chat: 聊天对象
userinfo: 用户信息
Returns:
bool: 是否匹配过滤正则
"""
for pattern in global_config.message_receive.ban_msgs_regex:
if re.search(pattern, text):
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
logger.info(f"[正则表达式过滤]消息匹配到{pattern}filtered")
return True
return False
class HeartFCMessageReceiver:
@@ -167,12 +128,6 @@ class HeartFCMessageReceiver:
subheartflow = await heartflow.get_or_create_subheartflow(chat.stream_id)
message.update_chat_stream(chat)
# 3. 过滤检查
if _check_ban_words(message.processed_plain_text, chat, userinfo) or _check_ban_regex(
message.raw_message, chat, userinfo
):
return
# 6. 兴趣度计算与更新
interested_rate, is_mentioned = await _calculate_interest(message)
subheartflow.add_message_to_normal_chat_cache(message, interested_rate, is_mentioned)
@@ -183,7 +138,6 @@ class HeartFCMessageReceiver:
current_talk_frequency = global_config.chat.get_current_talk_frequency(chat.stream_id)
# 如果消息中包含图片标识,则日志展示为图片
import re
picid_match = re.search(r"\[picid:([^\]]+)\]", message.processed_plain_text)
if picid_match:

View File

@@ -62,7 +62,10 @@ class SubHeartflow:
"""异步初始化方法,创建兴趣流并确定聊天类型"""
# 根据配置决定初始状态
if global_config.chat.chat_mode == "focus":
if not self.is_group_chat:
logger.debug(f"{self.log_prefix} 检测到是私聊,将直接尝试进入 FOCUSED 状态。")
await self.change_chat_state(ChatState.FOCUSED)
elif global_config.chat.chat_mode == "focus":
logger.debug(f"{self.log_prefix} 配置为 focus 模式,将直接尝试进入 FOCUSED 状态。")
await self.change_chat_state(ChatState.FOCUSED)
else: # "auto" 或其他模式保持原有逻辑或默认为 NORMAL

View File

@@ -91,16 +91,10 @@ class SubHeartflowManager:
return subflow
try:
# 初始化子心流, 传入 mai_state_info
new_subflow = SubHeartflow(
subheartflow_id,
)
# 首先创建并添加聊天观察者
# observation = ChattingObservation(chat_id=subheartflow_id)
# await observation.initialize()
# new_subflow.add_observation(observation)
# 然后再进行异步初始化,此时 SubHeartflow 内部若需启动 HeartFChatting就能拿到 observation
await new_subflow.initialize()

View File

@@ -15,6 +15,9 @@ from src.config.config import global_config
from src.plugin_system.core.component_registry import component_registry # 导入新插件系统
from src.plugin_system.base.base_command import BaseCommand
from src.mais4u.mais4u_chat.s4u_msg_processor import S4UMessageProcessor
from maim_message import UserInfo
from src.chat.message_receive.chat_stream import ChatStream
import re
# 定义日志配置
# 获取项目根目录假设本文件在src/chat/message_receive/下,根目录为上上上级目录)
@@ -29,6 +32,44 @@ if ENABLE_S4U_CHAT:
# 配置主程序日志格式
logger = get_logger("chat")
def _check_ban_words(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
"""检查消息是否包含过滤词
Args:
text: 待检查的文本
chat: 聊天对象
userinfo: 用户信息
Returns:
bool: 是否包含过滤词
"""
for word in global_config.message_receive.ban_words:
if word in text:
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
logger.info(f"[过滤词识别]消息中含有{word}filtered")
return True
return False
def _check_ban_regex(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
"""检查消息是否匹配过滤正则表达式
Args:
text: 待检查的文本
chat: 聊天对象
userinfo: 用户信息
Returns:
bool: 是否匹配过滤正则
"""
for pattern in global_config.message_receive.ban_msgs_regex:
if re.search(pattern, text):
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
logger.info(f"[正则表达式过滤]消息匹配到{pattern}filtered")
return True
return False
class ChatBot:
def __init__(self):
@@ -49,17 +90,6 @@ class ChatBot:
self._started = True
async def _create_pfc_chat(self, message: MessageRecv):
try:
if global_config.experimental.pfc_chatting:
chat_id = str(message.chat_stream.stream_id)
private_name = str(message.message_info.user_info.user_nickname)
await self.pfc_manager.get_or_create_conversation(chat_id, private_name)
except Exception as e:
logger.error(f"创建PFC聊天失败: {e}")
async def _process_commands_with_new_system(self, message: MessageRecv):
# sourcery skip: use-named-expression
"""使用新插件系统处理命令"""
@@ -149,14 +179,20 @@ class ChatBot:
return
get_chat_manager().register_message(message)
# 创建聊天流
chat = await get_chat_manager().get_or_create_stream(
platform=message.message_info.platform,
user_info=user_info,
group_info=group_info,
)
message.update_chat_stream(chat)
# 过滤检查
if _check_ban_words(message.processed_plain_text, chat, user_info) or _check_ban_regex(
message.raw_message, chat, user_info
):
return
# 处理消息内容,生成纯文本
await message.process()
@@ -183,26 +219,12 @@ class ChatBot:
template_group_name = None
async def preprocess():
logger.debug("开始预处理消息...")
# 如果在私聊中
if group_info is None:
logger.debug("检测到私聊消息")
if ENABLE_S4U_CHAT:
logger.debug("进入S4U私聊处理流程")
await self.s4u_message_processor.process_message(message)
return
else:
logger.debug("进入普通心流私聊处理")
await self.heartflow_message_receiver.process_message(message)
# 群聊默认进入心流消息处理逻辑
else:
if ENABLE_S4U_CHAT:
logger.debug("进入S4U私聊处理流程")
await self.s4u_message_processor.process_message(message)
return
else:
logger.debug(f"检测到群聊消息群ID: {group_info.group_id}")
await self.heartflow_message_receiver.process_message(message)
if ENABLE_S4U_CHAT:
logger.info("进入S4U流程")
await self.s4u_message_processor.process_message(message)
return
await self.heartflow_message_receiver.process_message(message)
if template_group_name:
async with global_prompt_manager.async_message_scope(template_group_name):

View File

@@ -336,6 +336,9 @@ class DefaultReplyer:
return False, None
async def build_relation_info(self, reply_data=None, chat_history=None):
if not global_config.relationship.enable_relationship:
return ""
relationship_fetcher = relationship_fetcher_manager.get_fetcher(self.chat_stream.stream_id)
if not reply_data:
return ""
@@ -355,6 +358,9 @@ class DefaultReplyer:
return relation_info
async def build_expression_habits(self, chat_history, target):
if not global_config.expression.enable_expression:
return ""
style_habbits = []
grammar_habbits = []
@@ -390,6 +396,9 @@ class DefaultReplyer:
return expression_habits_block
async def build_memory_block(self, chat_history, target):
if not global_config.memory.enable_memory:
return ""
running_memorys = await self.memory_activator.activate_memory_with_chat_history(
target_message=target, chat_history_prompt=chat_history
)
@@ -415,6 +424,7 @@ class DefaultReplyer:
Returns:
str: 工具信息字符串
"""
if not reply_data:
return ""