Remove rust-video keyframe extraction API and related files

Deleted the entire src/chat/utils/rust-video directory, including Rust and Python source files, configuration, and documentation. Updated utils_video.py, official_configs.py, and bot_config_template.toml to remove or adjust references to the removed rust-video module. This cleans up the codebase by removing the integrated Rust-based keyframe extraction API and its supporting infrastructure.
This commit is contained in:
雅诺狐
2025-08-29 19:13:42 +08:00
parent f33bb57c75
commit 0a647376f7
12 changed files with 328 additions and 2790 deletions

View File

@@ -1,12 +1,12 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
视频分析器模块 - 优化版本
支持多种分析模式:批处理、逐帧、自动选择
视频分析器模块 - Rust优化版本
集成了Rust视频关键帧提取模块提供高性能的视频分析功能
支持SIMD优化、多线程处理和智能关键帧检测
"""
import os
import cv2
import tempfile
import asyncio
import base64
@@ -17,7 +17,6 @@ from PIL import Image
from pathlib import Path
from typing import List, Tuple, Optional, Dict
import io
from concurrent.futures import ThreadPoolExecutor
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config, model_config
@@ -26,6 +25,11 @@ from src.common.database.sqlalchemy_models import get_db_session, Videos
logger = get_logger("utils_video")
# 导入 Rust 视频处理模块
import rust_video
logger.info("✅ Rust 视频处理模块加载成功")
# 全局正在处理的视频哈希集合,用于防止重复处理
processing_videos = set()
processing_lock = asyncio.Lock()
@@ -35,110 +39,6 @@ video_events = {}
video_lock_manager = asyncio.Lock()
def _extract_frames_worker(video_path: str,
max_frames: int,
frame_quality: int,
max_image_size: int,
frame_extraction_mode: str,
frame_interval_seconds: Optional[float]) -> List[Tuple[str, float]]:
"""线程池中提取视频帧的工作函数"""
frames = []
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = total_frames / fps if fps > 0 else 0
if frame_extraction_mode == "time_interval":
# 新模式:按时间间隔抽帧
time_interval = frame_interval_seconds
next_frame_time = 0.0
extracted_count = 0 # 初始化提取帧计数器
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
current_time = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.0
if current_time >= next_frame_time:
# 转换为PIL图像并压缩
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
# 调整图像大小
if max(pil_image.size) > max_image_size:
ratio = max_image_size / max(pil_image.size)
new_size = tuple(int(dim * ratio) for dim in pil_image.size)
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
# 转换为base64
buffer = io.BytesIO()
pil_image.save(buffer, format='JPEG', quality=frame_quality)
frame_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
frames.append((frame_base64, current_time))
extracted_count += 1
# 注意这里不能使用logger因为在线程池中
# logger.debug(f"提取第{extracted_count}帧 (时间: {current_time:.2f}s)")
next_frame_time += time_interval
else:
# 使用numpy优化帧间隔计算
if duration > 0:
frame_interval = max(1, int(duration / max_frames * fps))
else:
frame_interval = 30 # 默认间隔
# 使用numpy计算目标帧位置
target_frames = np.arange(0, min(max_frames, total_frames // frame_interval + 1)) * frame_interval
target_frames = target_frames[target_frames < total_frames].astype(int)
for target_frame in target_frames:
# 跳转到目标帧
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame)
ret, frame = cap.read()
if not ret:
continue
# 使用numpy优化图像处理
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 转换为PIL图像并使用numpy进行尺寸计算
height, width = frame_rgb.shape[:2]
max_dim = max(height, width)
if max_dim > max_image_size:
# 使用numpy计算缩放比例
ratio = max_image_size / max_dim
new_width = int(width * ratio)
new_height = int(height * ratio)
# 使用opencv进行高效缩放
frame_resized = cv2.resize(frame_rgb, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4)
pil_image = Image.fromarray(frame_resized)
else:
pil_image = Image.fromarray(frame_rgb)
# 转换为base64
buffer = io.BytesIO()
pil_image.save(buffer, format='JPEG', quality=frame_quality)
frame_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
# 计算时间戳
timestamp = target_frame / fps if fps > 0 else 0
frames.append((frame_base64, timestamp))
cap.release()
return frames
except Exception as e:
# 返回错误信息
return [("ERROR", str(e))]
class VideoAnalyzer:
"""优化的视频分析器类"""
@@ -168,6 +68,13 @@ class VideoAnalyzer:
self.max_image_size = getattr(config, 'max_image_size', 600)
self.enable_frame_timing = getattr(config, 'enable_frame_timing', True)
# Rust模块相关配置
self.rust_keyframe_threshold = getattr(config, 'rust_keyframe_threshold', 2.0)
self.rust_use_simd = getattr(config, 'rust_use_simd', True)
self.rust_block_size = getattr(config, 'rust_block_size', 8192)
self.rust_threads = getattr(config, 'rust_threads', 0)
self.ffmpeg_path = getattr(config, 'ffmpeg_path', 'ffmpeg')
# 从personality配置中获取人格信息
try:
personality_config = global_config.personality
@@ -225,6 +132,34 @@ class VideoAnalyzer:
self.system_prompt = "你是一个专业的视频内容分析助手。请仔细观察用户提供的视频关键帧,详细描述视频内容。"
logger.info(f"✅ 视频分析器初始化完成,分析模式: {self.analysis_mode}, 线程池: {self.use_multiprocessing}")
# 获取Rust模块系统信息
self._log_system_info()
def _log_system_info(self):
"""记录系统信息"""
try:
system_info = rust_video.get_system_info()
logger.info(f"🔧 系统信息: 线程数={system_info.get('threads', '未知')}")
# 记录CPU特性
features = []
if system_info.get('avx2_supported'):
features.append('AVX2')
if system_info.get('sse2_supported'):
features.append('SSE2')
if system_info.get('simd_supported'):
features.append('SIMD')
if features:
logger.info(f"🚀 CPU特性: {', '.join(features)}")
else:
logger.info("⚠️ 未检测到SIMD支持")
logger.info(f"📦 Rust模块版本: {system_info.get('version', '未知')}")
except Exception as e:
logger.warning(f"获取系统信息失败: {e}")
def _calculate_video_hash(self, video_data: bytes) -> str:
"""计算视频文件的hash值"""
@@ -245,6 +180,11 @@ class VideoAnalyzer:
def _store_video_result(self, video_hash: str, description: str, metadata: Optional[Dict] = None) -> Optional[Videos]:
"""存储视频分析结果到数据库"""
# 检查描述是否为错误信息,如果是则不保存
if description.startswith(""):
logger.warning(f"⚠️ 检测到错误信息,不保存到数据库: {description[:50]}...")
return None
try:
with get_db_session() as session:
# 只根据video_hash查找
@@ -299,171 +239,169 @@ class VideoAnalyzer:
logger.warning(f"无效的分析模式: {mode}")
async def extract_frames(self, video_path: str) -> List[Tuple[str, float]]:
"""提取视频帧 - 支持多进程和单线程模式"""
# 先获取视频信息
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = total_frames / fps if fps > 0 else 0
cap.release()
logger.info(f"视频信息: {total_frames}帧, {fps:.2f}FPS, {duration:.2f}")
# 估算提取帧数
if duration > 0:
frame_interval = max(1, int(duration / self.max_frames * fps))
estimated_frames = min(self.max_frames, total_frames // frame_interval + 1)
else:
estimated_frames = self.max_frames
logger.info(f"计算得出帧间隔: {frame_interval} (将提取约{estimated_frames}帧)")
# 根据配置选择处理方式
if self.use_multiprocessing:
return await self._extract_frames_multiprocess(video_path)
else:
return await self._extract_frames_fallback(video_path)
async def _extract_frames_multiprocess(self, video_path: str) -> List[Tuple[str, float]]:
"""线程池版本的帧提取"""
loop = asyncio.get_event_loop()
"""提取视频帧 - 使用 Rust 实现"""
# 优先尝试高级接口,失败时回退到基础接口
try:
logger.info("🔄 启动线程池帧提取...")
# 使用线程池,避免进程间的导入问题
with ThreadPoolExecutor(max_workers=1) as executor:
frames = await loop.run_in_executor(
executor,
_extract_frames_worker,
video_path,
self.max_frames,
self.frame_quality,
self.max_image_size,
self.frame_extraction_mode,
self.frame_interval_seconds
)
return await self._extract_frames_rust_advanced(video_path)
except Exception as e:
logger.warning(f"高级接口失败: {e},使用基础接口")
return await self._extract_frames_rust(video_path)
async def _extract_frames_rust_advanced(self, video_path: str) -> List[Tuple[str, float]]:
"""使用 Rust 高级接口的帧提取"""
try:
logger.info("🔄 使用 Rust 高级接口提取关键帧...")
# 检查是否有错误
if frames and frames[0][0] == "ERROR":
logger.error(f"线程池帧提取失败: {frames[0][1]}")
# 降级到单线程模式
logger.info("🔄 降级到单线程模式...")
return await self._extract_frames_fallback(video_path)
# 创建 Rust 视频处理器,使用配置参数
extractor = rust_video.VideoKeyframeExtractor(
ffmpeg_path=self.ffmpeg_path,
threads=self.rust_threads,
verbose=False # 使用固定值,不需要配置
)
logger.info(f"✅ 成功提取{len(frames)}帧 (线程池模式)")
# 1. 提取所有帧
frames_data, width, height = extractor.extract_frames(
video_path=video_path,
max_frames=self.max_frames * 3 # 提取更多帧用于关键帧检测
)
logger.info(f"提取到 {len(frames_data)} 帧,视频尺寸: {width}x{height}")
# 2. 检测关键帧,使用配置参数
keyframe_indices = extractor.extract_keyframes(
frames=frames_data,
threshold=self.rust_keyframe_threshold,
use_simd=self.rust_use_simd,
block_size=self.rust_block_size
)
logger.info(f"检测到 {len(keyframe_indices)} 个关键帧")
# 3. 转换选定的关键帧为 base64
frames = []
frame_count = 0
for idx in keyframe_indices[:self.max_frames]:
if idx < len(frames_data):
try:
frame = frames_data[idx]
frame_data = frame.get_data()
# 将灰度数据转换为PIL图像
frame_array = np.frombuffer(frame_data, dtype=np.uint8).reshape((frame.height, frame.width))
pil_image = Image.fromarray(
frame_array,
mode='L' # 灰度模式
)
# 转换为RGB模式以便保存为JPEG
pil_image = pil_image.convert('RGB')
# 调整图像大小
if max(pil_image.size) > self.max_image_size:
ratio = self.max_image_size / max(pil_image.size)
new_size = tuple(int(dim * ratio) for dim in pil_image.size)
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
# 转换为 base64
buffer = io.BytesIO()
pil_image.save(buffer, format='JPEG', quality=self.frame_quality)
frame_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
# 估算时间戳
estimated_timestamp = frame.frame_number * (1.0 / 30.0) # 假设30fps
frames.append((frame_base64, estimated_timestamp))
frame_count += 1
logger.debug(f"处理关键帧 {frame_count}: 帧号 {frame.frame_number}, 时间 {estimated_timestamp:.2f}s")
except Exception as e:
logger.error(f"处理关键帧 {idx} 失败: {e}")
continue
logger.info(f"✅ Rust 高级提取完成: {len(frames)} 关键帧")
return frames
except Exception as e:
logger.error(f"线程池帧提取失败: {e}")
# 降级到原始方法
logger.info("🔄 降级到单线程模式...")
return await self._extract_frames_fallback(video_path)
logger.error(f"❌ Rust 高级帧提取失败: {e}")
# 回退到基础方法
logger.info("回退到基础 Rust 方法")
return await self._extract_frames_rust(video_path)
async def _extract_frames_fallback(self, video_path: str) -> List[Tuple[str, float]]:
"""帧提取的降级方法 - 原始异步版本"""
frames = []
extracted_count = 0
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = total_frames / fps if fps > 0 else 0
logger.info(f"视频信息: {total_frames}帧, {fps:.2f}FPS, {duration:.2f}")
if self.frame_extraction_mode == "time_interval":
# 新模式:按时间间隔抽帧
time_interval = self.frame_interval_seconds
next_frame_time = 0.0
async def _extract_frames_rust(self, video_path: str) -> List[Tuple[str, float]]:
"""使用 Rust 实现的帧提取"""
try:
logger.info("🔄 使用 Rust 模块提取关键帧...")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 创建临时输出目录
with tempfile.TemporaryDirectory() as temp_dir:
# 使用便捷函数进行关键帧提取,使用配置参数
result = rust_video.extract_keyframes_from_video(
video_path=video_path,
output_dir=temp_dir,
threshold=self.rust_keyframe_threshold,
max_frames=self.max_frames * 2, # 提取更多帧以便筛选
max_save=self.max_frames,
ffmpeg_path=self.ffmpeg_path,
use_simd=self.rust_use_simd,
threads=self.rust_threads,
verbose=False # 使用固定值,不需要配置
)
current_time = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.0
logger.info(f"Rust 处理完成: 总帧数 {result.total_frames}, 关键帧 {result.keyframes_extracted}, 处理速度 {result.processing_fps:.1f} FPS")
if current_time >= next_frame_time:
# 转换为PIL图像并压缩
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
# 调整图像大小
if max(pil_image.size) > self.max_image_size:
ratio = self.max_image_size / max(pil_image.size)
new_size = tuple(int(dim * ratio) for dim in pil_image.size)
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
# 转换为base64
buffer = io.BytesIO()
pil_image.save(buffer, format='JPEG', quality=self.frame_quality)
frame_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
frames.append((frame_base64, current_time))
extracted_count += 1
logger.debug(f"提取第{extracted_count}帧 (时间: {current_time:.2f}s)")
next_frame_time += time_interval
else:
# 使用numpy优化帧间隔计算
if duration > 0:
frame_interval = max(1, int(duration / self.max_frames * fps))
else:
frame_interval = 30 # 默认间隔
# 转换保存的关键帧为 base64 格式
frames = []
temp_dir_path = Path(temp_dir)
logger.info(f"计算得出帧间隔: {frame_interval} (将提取约{min(self.max_frames, total_frames // frame_interval + 1)}帧)")
# 使用numpy计算目标帧位置
target_frames = np.arange(0, min(self.max_frames, total_frames // frame_interval + 1)) * frame_interval
target_frames = target_frames[target_frames < total_frames].astype(int)
extracted_count = 0
for target_frame in target_frames:
# 跳转到目标帧
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame)
ret, frame = cap.read()
if not ret:
continue
# 使用numpy优化图像处理
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 获取所有保存的关键帧文件
keyframe_files = sorted(temp_dir_path.glob("keyframe_*.jpg"))
# 转换为PIL图像并使用numpy进行尺寸计算
height, width = frame_rgb.shape[:2]
max_dim = max(height, width)
for i, keyframe_file in enumerate(keyframe_files):
if len(frames) >= self.max_frames:
break
try:
# 读取关键帧文件
with open(keyframe_file, 'rb') as f:
image_data = f.read()
# 转换为 PIL 图像并压缩
pil_image = Image.open(io.BytesIO(image_data))
# 调整图像大小
if max(pil_image.size) > self.max_image_size:
ratio = self.max_image_size / max(pil_image.size)
new_size = tuple(int(dim * ratio) for dim in pil_image.size)
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
# 转换为 base64
buffer = io.BytesIO()
pil_image.save(buffer, format='JPEG', quality=self.frame_quality)
frame_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
# 估算时间戳(基于帧索引和总时长)
if result.total_frames > 0:
# 假设关键帧在时间上均匀分布
estimated_timestamp = (i * result.total_time_ms / 1000.0) / result.keyframes_extracted
else:
estimated_timestamp = i * 1.0 # 默认每秒一帧
frames.append((frame_base64, estimated_timestamp))
logger.debug(f"处理关键帧 {i+1}: 估算时间 {estimated_timestamp:.2f}s")
except Exception as e:
logger.error(f"处理关键帧 {keyframe_file.name} 失败: {e}")
continue
if max_dim > self.max_image_size:
# 使用numpy计算缩放比例
ratio = self.max_image_size / max_dim
new_width = int(width * ratio)
new_height = int(height * ratio)
# 使用opencv进行高效缩放
frame_resized = cv2.resize(frame_rgb, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4)
pil_image = Image.fromarray(frame_resized)
else:
pil_image = Image.fromarray(frame_rgb)
logger.info(f"✅ Rust 提取完成: {len(frames)} 关键帧")
return frames
# 转换为base64
buffer = io.BytesIO()
pil_image.save(buffer, format='JPEG', quality=self.frame_quality)
frame_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
# 计算时间戳
timestamp = target_frame / fps if fps > 0 else 0
frames.append((frame_base64, timestamp))
extracted_count += 1
logger.debug(f"提取第{extracted_count}帧 (时间: {timestamp:.2f}s, 帧号: {target_frame})")
# 每提取一帧让步一次
await asyncio.sleep(0.001)
cap.release()
logger.info(f"✅ 成功提取{len(frames)}")
return frames
except Exception as e:
logger.error(f"❌ Rust 帧提取失败: {e}")
raise e
async def analyze_frames_batch(self, frames: List[Tuple[str, float]], user_question: str = None) -> str:
"""批量分析所有帧"""
@@ -493,29 +431,14 @@ class VideoAnalyzer:
prompt += "\n\n请基于所有提供的帧图像进行综合分析,关注并描述视频的完整内容和故事发展。"
try:
# 尝试使用多图片分析
# 使用多图片分析
response = await self._analyze_multiple_frames(frames, prompt)
logger.info("✅ 视频识别完成")
return response
except Exception as e:
logger.error(f"❌ 视频识别失败: {e}")
# 降级到单帧分析
logger.warning("降级到单帧分析模式")
try:
frame_base64, timestamp = frames[0]
fallback_prompt = prompt + f"\n\n注意由于技术限制当前仅显示第1帧 (时间: {timestamp:.2f}s),视频共有{len(frames)}帧。请基于这一帧进行分析。"
response, _ = await self.video_llm.generate_response_for_image(
prompt=fallback_prompt,
image_base64=frame_base64,
image_format="jpeg"
)
logger.info("✅ 降级的单帧分析完成")
return response
except Exception as fallback_e:
logger.error(f"❌ 降级分析也失败: {fallback_e}")
raise
raise e
async def _analyze_multiple_frames(self, frames: List[Tuple[str, float]], prompt: str) -> str:
"""使用多图片分析方法"""
@@ -616,15 +539,20 @@ class VideoAnalyzer:
# 如果汇总失败,返回各帧分析结果
return f"视频逐帧分析结果:\n\n{chr(10).join(frame_analyses)}"
async def analyze_video(self, video_path: str, user_question: str = None) -> str:
"""分析视频的主要方法"""
async def analyze_video(self, video_path: str, user_question: str = None) -> Tuple[bool, str]:
"""分析视频的主要方法
Returns:
Tuple[bool, str]: (是否成功, 分析结果或错误信息)
"""
try:
logger.info(f"开始分析视频: {os.path.basename(video_path)}")
# 提取帧
frames = await self.extract_frames(video_path)
if not frames:
return "❌ 无法从视频中提取有效帧"
error_msg = "❌ 无法从视频中提取有效帧"
return (False, error_msg)
# 根据模式选择分析方法
if self.analysis_mode == "auto":
@@ -641,12 +569,12 @@ class VideoAnalyzer:
result = await self.analyze_frames_sequential(frames, user_question)
logger.info("✅ 视频分析完成")
return result
return (True, result)
except Exception as e:
error_msg = f"❌ 视频分析失败: {str(e)}"
logger.error(error_msg)
return error_msg
return (False, error_msg)
async def analyze_video_from_bytes(self, video_bytes: bytes, filename: str = None, user_question: str = None, prompt: str = None) -> Dict[str, str]:
"""从字节数据分析视频
@@ -714,70 +642,60 @@ class VideoAnalyzer:
logger.info(f"✅ 获得锁后发现已有结果,直接返回 (id: {existing_video.id})")
video_event.set() # 通知其他等待者
return {"summary": existing_video.description}
# 未找到已存在记录,开始新的分析
logger.info("未找到已存在的视频记录,开始新的分析")
# 创建临时文件进行分析
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
temp_file.write(video_bytes)
temp_path = temp_file.name
try:
# 检查临时文件是否创建成功
if not os.path.exists(temp_path):
video_event.set() # 通知等待者
return {"summary": "❌ 临时文件创建失败"}
# 使用临时文件进行分析
result = await self.analyze_video(temp_path, question)
# 未找到已存在记录,开始新的分析
logger.info("未找到已存在的视频记录,开始新的分析")
finally:
# 清理临时文件
if os.path.exists(temp_path):
os.unlink(temp_path)
# 保存分析结果到数据库
metadata = {
"filename": filename,
"file_size": len(video_bytes),
"analysis_timestamp": time.time()
}
self._store_video_result(
video_hash=video_hash,
description=result,
metadata=metadata
)
# 处理完成,通知等待者并清理资源
video_event.set()
async with video_lock_manager:
# 清理资源
video_locks.pop(video_hash, None)
video_events.pop(video_hash, None)
return {"summary": result}
# 创建临时文件进行分析
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
temp_file.write(video_bytes)
temp_path = temp_file.name
try:
# 检查临时文件是否创建成功
if not os.path.exists(temp_path):
video_event.set() # 通知等待者
return {"summary": "❌ 临时文件创建失败"}
# 使用临时文件进行分析
success, result = await self.analyze_video(temp_path, question)
finally:
# 清理临时文件
if os.path.exists(temp_path):
os.unlink(temp_path)
# 保存分析结果到数据库(仅保存成功的结果)
if success:
metadata = {
"filename": filename,
"file_size": len(video_bytes),
"analysis_timestamp": time.time()
}
self._store_video_result(
video_hash=video_hash,
description=result,
metadata=metadata
)
logger.info("✅ 分析结果已保存到数据库")
else:
logger.warning("⚠️ 分析失败,不保存到数据库以便后续重试")
# 处理完成,通知等待者并清理资源
video_event.set()
async with video_lock_manager:
# 清理资源
video_locks.pop(video_hash, None)
video_events.pop(video_hash, None)
return {"summary": result}
except Exception as e:
error_msg = f"❌ 从字节数据分析视频失败: {str(e)}"
logger.error(error_msg)
# 即使失败也保存错误信息到数据库,避免重复处理
try:
metadata = {
"filename": filename,
"file_size": len(video_bytes),
"analysis_timestamp": time.time(),
"error": str(e)
}
self._store_video_result(
video_hash=video_hash,
description=error_msg,
metadata=metadata
)
logger.info("✅ 错误信息已保存到数据库")
except Exception as store_e:
logger.error(f"❌ 保存错误信息失败: {store_e}")
# 保存错误信息到数据库,允许后续重试
logger.info("💡 错误信息不保存到数据库,允许后续重试")
# 处理失败,通知等待者并清理资源
try:
@@ -797,6 +715,54 @@ class VideoAnalyzer:
supported_formats = {'.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.m4v', '.3gp', '.webm'}
return Path(file_path).suffix.lower() in supported_formats
def get_processing_capabilities(self) -> Dict[str, any]:
"""获取处理能力信息"""
try:
system_info = rust_video.get_system_info()
# 创建一个临时的extractor来获取CPU特性
extractor = rust_video.VideoKeyframeExtractor(threads=0, verbose=False)
cpu_features = extractor.get_cpu_features()
capabilities = {
"system": {
"threads": system_info.get('threads', 0),
"rust_version": system_info.get('version', 'unknown'),
},
"cpu_features": cpu_features,
"recommended_settings": self._get_recommended_settings(cpu_features),
"analysis_modes": ["auto", "batch", "sequential"],
"supported_formats": ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.m4v', '.3gp', '.webm']
}
return capabilities
except Exception as e:
logger.error(f"获取处理能力信息失败: {e}")
return {"error": str(e)}
def _get_recommended_settings(self, cpu_features: Dict[str, bool]) -> Dict[str, any]:
"""根据CPU特性推荐最佳设置"""
settings = {
"use_simd": any(cpu_features.values()),
"block_size": 8192,
"threads": 0 # 自动检测
}
# 根据CPU特性调整设置
if cpu_features.get('avx2', False):
settings["block_size"] = 16384 # AVX2支持更大的块
settings["optimization_level"] = "avx2"
elif cpu_features.get('sse2', False):
settings["block_size"] = 8192
settings["optimization_level"] = "sse2"
else:
settings["use_simd"] = False
settings["block_size"] = 4096
settings["optimization_level"] = "scalar"
return settings
# 全局实例
_video_analyzer = None