Merge branch 'SengokuCola:debug' into debug

This commit is contained in:
Rikki
2025-03-10 20:16:28 +08:00
committed by GitHub
23 changed files with 898 additions and 835 deletions

View File

@@ -2,9 +2,8 @@ import asyncio
import time
from loguru import logger
from nonebot import get_driver, on_command, on_message, require
from nonebot import get_driver, on_message, require
from nonebot.adapters.onebot.v11 import Bot, GroupMessageEvent, Message, MessageSegment
from nonebot.rule import to_me
from nonebot.typing import T_State
from ...common.database import Database
@@ -16,6 +15,10 @@ from .config import global_config
from .emoji_manager import emoji_manager
from .relationship_manager import relationship_manager
from .willing_manager import willing_manager
from ..memory_system.memory import hippocampus, memory_graph
from .bot import ChatBot
from .message_sender import message_manager, message_sender
# 创建LLM统计实例
llm_stats = LLMStatistics("llm_statistics.txt")
@@ -35,19 +38,13 @@ Database.initialize(
password=config.MONGODB_PASSWORD,
auth_source=config.MONGODB_AUTH_SOURCE
)
print("\033[1;32m[初始化数据库完成]\033[0m")
logger.success("初始化数据库成功")
# 导入其他模块
from ..memory_system.memory import hippocampus, memory_graph
from .bot import ChatBot
# from .message_send_control import message_sender
from .message_sender import message_manager, message_sender
# 初始化表情管理器
emoji_manager.initialize()
print(f"\033[1;32m正在唤醒{global_config.BOT_NICKNAME}......\033[0m")
logger.debug(f"正在唤醒{global_config.BOT_NICKNAME}......")
# 创建机器人实例
chat_bot = ChatBot()
# 注册群消息处理器
@@ -61,12 +58,12 @@ async def start_background_tasks():
"""启动后台任务"""
# 启动LLM统计
llm_stats.start()
logger.success("[初始化]LLM统计功能启动")
logger.success("LLM统计功能启动成功")
# 初始化并启动情绪管理器
mood_manager = MoodManager.get_instance()
mood_manager.start_mood_update(update_interval=global_config.mood_update_interval)
logger.success("[初始化]情绪管理器启动")
logger.success("情绪管理器启动成功")
# 只启动表情包管理任务
asyncio.create_task(emoji_manager.start_periodic_check(interval_MINS=global_config.EMOJI_CHECK_INTERVAL))
@@ -77,7 +74,7 @@ async def start_background_tasks():
@driver.on_startup
async def init_relationships():
"""在 NoneBot2 启动时初始化关系管理器"""
print("\033[1;32m[初始化]\033[0m 正在加载用户关系数据...")
logger.debug("正在加载用户关系数据...")
await relationship_manager.load_all_relationships()
asyncio.create_task(relationship_manager._start_relationship_manager())
@@ -86,19 +83,19 @@ async def init_relationships():
async def _(bot: Bot):
"""Bot连接成功时的处理"""
global _message_manager_started
print(f"\033[1;38;5;208m-----------{global_config.BOT_NICKNAME}成功连接!-----------\033[0m")
logger.debug(f"-----------{global_config.BOT_NICKNAME}成功连接!-----------")
await willing_manager.ensure_started()
message_sender.set_bot(bot)
print("\033[1;38;5;208m-----------消息发送器已启动!-----------\033[0m")
logger.success("-----------消息发送器已启动!-----------")
if not _message_manager_started:
asyncio.create_task(message_manager.start_processor())
_message_manager_started = True
print("\033[1;38;5;208m-----------消息处理器已启动!-----------\033[0m")
logger.success("-----------消息处理器已启动!-----------")
asyncio.create_task(emoji_manager._periodic_scan(interval_MINS=global_config.EMOJI_REGISTER_INTERVAL))
print("\033[1;38;5;208m-----------开始偷表情包!-----------\033[0m")
logger.success("-----------开始偷表情包!-----------")
@group_msg.handle()
@@ -110,13 +107,15 @@ async def _(bot: Bot, event: GroupMessageEvent, state: T_State):
@scheduler.scheduled_job("interval", seconds=global_config.build_memory_interval, id="build_memory")
async def build_memory_task():
"""每build_memory_interval秒执行一次记忆构建"""
print(
"\033[1;32m[记忆构建]\033[0m -------------------------------------------开始构建记忆-------------------------------------------")
logger.debug(
"[记忆构建]"
"------------------------------------开始构建记忆--------------------------------------")
start_time = time.time()
await hippocampus.operation_build_memory(chat_size=20)
end_time = time.time()
print(
f"\033[1;32m[记忆构建]\033[0m -------------------------------------------记忆构建完成:耗时: {end_time - start_time:.2f} 秒-------------------------------------------")
logger.success(
f"[记忆构建]--------------------------记忆构建完成:耗时: {end_time - start_time:.2f} "
"秒-------------------------------------------")
@scheduler.scheduled_job("interval", seconds=global_config.forget_memory_interval, id="forget_memory")

View File

@@ -31,10 +31,10 @@ class ChatBot:
self._started = False
self.mood_manager = MoodManager.get_instance() # 获取情绪管理器单例
self.mood_manager.start_mood_update() # 启动情绪更新
self.emoji_chance = 0.2 # 发送表情包的基础概率
# self.message_streams = MessageStreamContainer()
async def _ensure_started(self):
"""确保所有任务已启动"""
if not self._started:
@@ -42,26 +42,26 @@ class ChatBot:
async def handle_message(self, event: GroupMessageEvent, bot: Bot) -> None:
"""处理收到的群消息"""
if event.group_id not in global_config.talk_allowed_groups:
return
self.bot = bot # 更新 bot 实例
if event.user_id in global_config.ban_user_id:
return
group_info = await bot.get_group_info(group_id=event.group_id)
sender_info = await bot.get_group_member_info(group_id=event.group_id, user_id=event.user_id, no_cache=True)
await relationship_manager.update_relationship(user_id = event.user_id, data = sender_info)
await relationship_manager.update_relationship_value(user_id = event.user_id, relationship_value = 0.5)
await relationship_manager.update_relationship(user_id=event.user_id, data=sender_info)
await relationship_manager.update_relationship_value(user_id=event.user_id, relationship_value=0.5)
message = Message(
group_id=event.group_id,
user_id=event.user_id,
message_id=event.message_id,
user_cardname=sender_info['card'],
raw_message=str(event.original_message),
raw_message=str(event.original_message),
plain_text=event.get_plaintext(),
reply_message=event.reply,
)
@@ -70,26 +70,26 @@ class ChatBot:
# 过滤词
for word in global_config.ban_words:
if word in message.detailed_plain_text:
logger.info(f"\033[1;32m[{message.group_name}]{message.user_nickname}:\033[0m {message.processed_plain_text}")
logger.info(f"\033[1;32m[过滤词识别]\033[0m 消息中含有{word}filtered")
logger.info(
f"[{message.group_name}]{message.user_nickname}:{message.processed_plain_text}")
logger.info(f"[过滤词识别]消息中含有{word}filtered")
return
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(message.time))
# topic=await topic_identifier.identify_topic_llm(message.processed_plain_text)
topic = ''
interested_rate = 0
interested_rate = await hippocampus.memory_activate_value(message.processed_plain_text)/100
print(f"\033[1;32m[记忆激活]\033[0m 对{message.processed_plain_text}的激活度:---------------------------------------{interested_rate}\n")
interested_rate = await hippocampus.memory_activate_value(message.processed_plain_text) / 100
logger.debug(f"{message.processed_plain_text}"
f"的激活度:{interested_rate}")
# logger.info(f"\033[1;32m[主题识别]\033[0m 使用{global_config.topic_extract}主题: {topic}")
await self.storage.store_message(message, topic[0] if topic else None)
is_mentioned = is_mentioned_bot_in_txt(message.processed_plain_text)
reply_probability = willing_manager.change_reply_willing_received(
event.group_id,
event.group_id,
topic[0] if topic else None,
is_mentioned,
global_config,
@@ -98,25 +98,24 @@ class ChatBot:
interested_rate
)
current_willing = willing_manager.get_willing(event.group_id)
print(f"\033[1;32m[{current_time}][{message.group_name}]{message.user_nickname}:\033[0m {message.processed_plain_text}\033[1;36m[回复意愿:{current_willing:.2f}][概率:{reply_probability * 100:.1f}%]\033[0m")
logger.info(
f"[{current_time}][{message.group_name}]{message.user_nickname}:"
f"{message.processed_plain_text}[回复意愿:{current_willing:.2f}][概率:{reply_probability * 100:.1f}%]")
response = ""
if random() < reply_probability:
tinking_time_point = round(time.time(), 2)
think_id = 'mt' + str(tinking_time_point)
thinking_message = Message_Thinking(message=message,message_id=think_id)
thinking_message = Message_Thinking(message=message, message_id=think_id)
message_manager.add_message(thinking_message)
willing_manager.change_reply_willing_sent(thinking_message.group_id)
response,raw_content = await self.gpt.generate_response(message)
response, raw_content = await self.gpt.generate_response(message)
if response:
container = message_manager.get_container(event.group_id)
thinking_message = None
@@ -127,27 +126,28 @@ class ChatBot:
container.messages.remove(msg)
# print(f"\033[1;32m[思考消息删除]\033[0m 已找到思考消息对象,开始删除")
break
# 如果找不到思考消息,直接返回
if not thinking_message:
print(f"\033[1;33m[警告]\033[0m 未找到对应的思考消息,可能已超时被移除")
logger.warning(f"未找到对应的思考消息,可能已超时被移除")
return
#记录开始思考的时间,避免从思考到回复的时间太久
# 记录开始思考的时间,避免从思考到回复的时间太久
thinking_start_time = thinking_message.thinking_start_time
message_set = MessageSet(event.group_id, global_config.BOT_QQ, think_id) # 发送消息的id和产生发送消息的message_thinking是一致的
#计算打字时间1是为了模拟打字2是避免多条回复乱序
message_set = MessageSet(event.group_id, global_config.BOT_QQ,
think_id) # 发送消息的id和产生发送消息的message_thinking是一致的
# 计算打字时间1是为了模拟打字2是避免多条回复乱序
accu_typing_time = 0
# print(f"\033[1;32m[开始回复]\033[0m 开始将回复1载入发送容器")
mark_head = False
for msg in response:
# print(f"\033[1;32m[回复内容]\033[0m {msg}")
#通过时间改变时间戳
# 通过时间改变时间戳
typing_time = calculate_typing_time(msg)
accu_typing_time += typing_time
timepoint = tinking_time_point + accu_typing_time
bot_message = Message_Sending(
group_id=event.group_id,
user_id=global_config.BOT_QQ,
@@ -157,8 +157,8 @@ class ChatBot:
processed_plain_text=msg,
user_nickname=global_config.BOT_NICKNAME,
group_name=message.group_name,
time=timepoint, #记录了回复生成的时间
thinking_start_time=thinking_start_time, #记录了思考开始的时间
time=timepoint, # 记录了回复生成的时间
thinking_start_time=thinking_start_time, # 记录了思考开始的时间
reply_message_id=message.message_id
)
await bot_message.initialize()
@@ -166,27 +166,27 @@ class ChatBot:
bot_message.is_head = True
mark_head = True
message_set.add_message(bot_message)
#message_set 可以直接加入 message_manager
# message_set 可以直接加入 message_manager
# print(f"\033[1;32m[回复]\033[0m 将回复载入发送容器")
message_manager.add_message(message_set)
bot_response_time = tinking_time_point
if random() < global_config.emoji_chance:
emoji_raw = await emoji_manager.get_emoji_for_text(response)
# 检查是否 <没有找到> emoji
if emoji_raw != None:
emoji_path,discription = emoji_raw
emoji_path, discription = emoji_raw
emoji_cq = CQCode.create_emoji_cq(emoji_path)
if random() < 0.5:
bot_response_time = tinking_time_point - 1
else:
bot_response_time = bot_response_time + 1
bot_message = Message_Sending(
group_id=event.group_id,
user_id=global_config.BOT_QQ,
@@ -206,8 +206,8 @@ class ChatBot:
await bot_message.initialize()
message_manager.add_message(bot_message)
emotion = await self.gpt._get_emotion_tags(raw_content)
print(f"'{response}' 获取到的情感标签为:{emotion}")
valuedict={
logger.debug(f"'{response}' 获取到的情感标签为:{emotion}")
valuedict = {
'happy': 0.5,
'angry': -1,
'sad': -0.5,
@@ -216,11 +216,13 @@ class ChatBot:
'fearful': -0.7,
'neutral': 0.1
}
await relationship_manager.update_relationship_value(message.user_id, relationship_value=valuedict[emotion[0]])
await relationship_manager.update_relationship_value(message.user_id,
relationship_value=valuedict[emotion[0]])
# 使用情绪管理器更新情绪
self.mood_manager.update_mood_from_emotion(emotion[0], global_config.mood_intensity_factor)
# willing_manager.change_reply_willing_after_sent(event.group_id)
# 创建全局ChatBot实例
chat_bot = ChatBot()
chat_bot = ChatBot()

View File

@@ -135,7 +135,7 @@ class BotConfig:
try:
config_version: str = toml["inner"]["version"]
except KeyError as e:
logger.error(f"配置文件中 inner 段 不存在 {e}, 这是错误的配置文件")
logger.error(f"配置文件中 inner 段 不存在, 这是错误的配置文件")
raise KeyError(f"配置文件中 inner 段 不存在 {e}, 这是错误的配置文件")
else:
toml["inner"] = {"version": "0.0.0"}
@@ -162,7 +162,7 @@ class BotConfig:
personality_config = parent['personality']
personality = personality_config.get('prompt_personality')
if len(personality) >= 2:
logger.info(f"载入自定义人格:{personality}")
logger.debug(f"载入自定义人格:{personality}")
config.PROMPT_PERSONALITY = personality_config.get('prompt_personality', config.PROMPT_PERSONALITY)
logger.info(f"载入自定义日程prompt:{personality_config.get('prompt_schedule', config.PROMPT_SCHEDULE_GEN)}")
config.PROMPT_SCHEDULE_GEN = personality_config.get('prompt_schedule', config.PROMPT_SCHEDULE_GEN)
@@ -246,11 +246,11 @@ class BotConfig:
try:
cfg_target[i] = cfg_item[i]
except KeyError as e:
logger.error(f"{item} 中的必要字段 {e} 不存在,请检查")
logger.error(f"{item} 中的必要字段不存在,请检查")
raise KeyError(f"{item} 中的必要字段 {e} 不存在,请检查")
provider = cfg_item.get("provider")
if provider == None:
if provider is None:
logger.error(f"provider 字段在模型配置 {item} 中不存在,请检查")
raise KeyError(f"provider 字段在模型配置 {item} 中不存在,请检查")

View File

@@ -4,6 +4,7 @@ import os
import time
from dataclasses import dataclass
from typing import Dict, Optional
from loguru import logger
import requests
@@ -151,11 +152,11 @@ class CQCode:
except (requests.exceptions.SSLError, requests.exceptions.HTTPError) as e:
if retry == max_retries - 1:
print(f"\033[1;31m[致命错误]\033[0m 最终请求失败: {str(e)}")
logger.error(f"最终请求失败: {str(e)}")
time.sleep(1.5 ** retry) # 指数退避
except Exception as e:
print(f"\033[1;33m[未知错误]\033[0m {str(e)}")
logger.exception(f"[未知错误]")
return None
return None
@@ -194,7 +195,7 @@ class CQCode:
description, _ = await self._llm.generate_response_for_image(prompt, image_base64)
return f"[表情包:{description}]"
except Exception as e:
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
logger.exception(f"AI接口调用失败: {str(e)}")
return "[表情包]"
async def get_image_description(self, image_base64: str) -> str:
@@ -205,7 +206,7 @@ class CQCode:
description, _ = await self._llm.generate_response_for_image(prompt, image_base64)
return f"[图片:{description}]"
except Exception as e:
print(f"\033[1;31m[错误]\033[0m AI接口调用失败: {str(e)}")
logger.exception(f"AI接口调用失败: {str(e)}")
return "[图片]"
async def translate_forward(self) -> str:
@@ -222,7 +223,7 @@ class CQCode:
try:
messages = ast.literal_eval(content)
except ValueError as e:
print(f"\033[1;31m[错误]\033[0m 解析转发消息内容失败: {str(e)}")
logger.error(f"解析转发消息内容失败: {str(e)}")
return '[转发消息]'
# 处理每条消息
@@ -277,11 +278,11 @@ class CQCode:
# 合并所有消息
combined_messages = '\n'.join(formatted_messages)
print(f"\033[1;34m[调试信息]\033[0m 合并后的转发消息: {combined_messages}")
logger.debug(f"合并后的转发消息: {combined_messages}")
return f"[转发消息:\n{combined_messages}]"
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 处理转发消息失败: {str(e)}")
logger.exception("处理转发消息失败")
return '[转发消息]'
async def translate_reply(self) -> str:
@@ -307,7 +308,7 @@ class CQCode:
return f"[回复 {self.reply_message.sender.nickname} 的消息: {message_obj.processed_plain_text}]"
else:
print("\033[1;31m[错误]\033[0m 回复消息的sender.user_id为空")
logger.error("回复消息的sender.user_id为空")
return '[回复某人消息]'
@staticmethod

View File

@@ -21,24 +21,26 @@ config = driver.config
class EmojiManager:
_instance = None
EMOJI_DIR = "data/emoji" # 表情包存储目录
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.db = None
cls._instance._initialized = False
return cls._instance
def __init__(self):
self.db = Database.get_instance()
self._scan_task = None
self.vlm = LLM_request(model=global_config.vlm, temperature=0.3, max_tokens=1000)
self.llm_emotion_judge = LLM_request(model=global_config.llm_emotion_judge, max_tokens=60,temperature=0.8) #更高的温度更少的token后续可以根据情绪来调整温度
self.llm_emotion_judge = LLM_request(model=global_config.llm_normal_minor, max_tokens=60,
temperature=0.8) # 更高的温度更少的token后续可以根据情绪来调整温度
def _ensure_emoji_dir(self):
"""确保表情存储目录存在"""
os.makedirs(self.EMOJI_DIR, exist_ok=True)
def initialize(self):
"""初始化数据库连接和表情目录"""
if not self._initialized:
@@ -50,15 +52,15 @@ class EmojiManager:
# 启动时执行一次完整性检查
self.check_emoji_file_integrity()
except Exception as e:
logger.error(f"初始化表情管理器失败: {str(e)}")
logger.exception(f"初始化表情管理器失败")
def _ensure_db(self):
"""确保数据库已初始化"""
if not self._initialized:
self.initialize()
if not self._initialized:
raise RuntimeError("EmojiManager not initialized")
def _ensure_emoji_collection(self):
"""确保emoji集合存在并创建索引
@@ -76,7 +78,7 @@ class EmojiManager:
self.db.db.emoji.create_index([('embedding', '2dsphere')])
self.db.db.emoji.create_index([('tags', 1)])
self.db.db.emoji.create_index([('filename', 1)], unique=True)
def record_usage(self, emoji_id: str):
"""记录表情使用次数"""
try:
@@ -86,8 +88,8 @@ class EmojiManager:
{'$inc': {'usage_count': 1}}
)
except Exception as e:
logger.error(f"记录表情使用失败: {str(e)}")
logger.exception(f"记录表情使用失败")
async def get_emoji_for_text(self, text: str) -> Optional[str]:
"""根据文本内容获取相关表情包
Args:
@@ -102,9 +104,9 @@ class EmojiManager:
"""
try:
self._ensure_db()
# 获取文本的embedding
text_for_search= await self._get_kimoji_for_text(text)
text_for_search = await self._get_kimoji_for_text(text)
if not text_for_search:
logger.error("无法获取文本的情绪")
return None
@@ -112,15 +114,15 @@ class EmojiManager:
if not text_embedding:
logger.error("无法获取文本的embedding")
return None
try:
# 获取所有表情包
all_emojis = list(self.db.db.emoji.find({}, {'_id': 1, 'path': 1, 'embedding': 1, 'discription': 1}))
if not all_emojis:
logger.warning("数据库中没有任何表情包")
return None
# 计算余弦相似度并排序
def cosine_similarity(v1, v2):
if not v1 or not v2:
@@ -131,42 +133,43 @@ class EmojiManager:
if norm_v1 == 0 or norm_v2 == 0:
return 0
return dot_product / (norm_v1 * norm_v2)
# 计算所有表情包与输入文本的相似度
emoji_similarities = [
(emoji, cosine_similarity(text_embedding, emoji.get('embedding', [])))
for emoji in all_emojis
]
# 按相似度降序排序
emoji_similarities.sort(key=lambda x: x[1], reverse=True)
# 获取前3个最相似的表情包
top_3_emojis = emoji_similarities[:3]
if not top_3_emojis:
logger.warning("未找到匹配的表情包")
return None
# 从前3个中随机选择一个
selected_emoji, similarity = random.choice(top_3_emojis)
if selected_emoji and 'path' in selected_emoji:
# 更新使用次数
self.db.db.emoji.update_one(
{'_id': selected_emoji['_id']},
{'$inc': {'usage_count': 1}}
)
logger.success(f"找到匹配的表情包: {selected_emoji.get('discription', '无描述')} (相似度: {similarity:.4f})")
logger.success(
f"找到匹配的表情包: {selected_emoji.get('discription', '无描述')} (相似度: {similarity:.4f})")
# 稍微改一下文本描述,不然容易产生幻觉,描述已经包含 表情包 了
return selected_emoji['path'],"[ %s ]" % selected_emoji.get('discription', '无描述')
return selected_emoji['path'], "[ %s ]" % selected_emoji.get('discription', '无描述')
except Exception as search_error:
logger.error(f"搜索表情包失败: {str(search_error)}")
return None
return None
except Exception as e:
logger.error(f"获取表情包失败: {str(e)}")
return None
@@ -175,39 +178,39 @@ class EmojiManager:
"""获取表情包的标签"""
try:
prompt = '这是一个表情包,使用中文简洁的描述一下表情包的内容和表情包所表达的情感'
content, _ = await self.vlm.generate_response_for_image(prompt, image_base64)
logger.debug(f"输出描述: {content}")
return content
except Exception as e:
logger.error(f"获取标签失败: {str(e)}")
return None
async def _check_emoji(self, image_base64: str) -> str:
try:
prompt = f'这是一个表情包,请回答这个表情包是否满足\"{global_config.EMOJI_CHECK_PROMPT}\"的要求,是则回答是,否则回答否,不要出现任何其他内容'
content, _ = await self.vlm.generate_response_for_image(prompt, image_base64)
logger.debug(f"输出描述: {content}")
return content
except Exception as e:
logger.error(f"获取标签失败: {str(e)}")
return None
async def _get_kimoji_for_text(self, text:str):
async def _get_kimoji_for_text(self, text: str):
try:
prompt = f'这是{global_config.BOT_NICKNAME}将要发送的消息内容:\n{text}\n若要为其配上表情包,请你输出这个表情包应该表达怎样的情感,应该给人什么样的感觉,不要太简洁也不要太长,注意不要输出任何对消息内容的分析内容,只输出\"一种什么样的感觉\"中间的形容词部分。'
content, _ = await self.llm_emotion_judge.generate_response_async(prompt)
logger.info(f"输出描述: {content}")
return content
except Exception as e:
logger.error(f"获取标签失败: {str(e)}")
return None
async def scan_new_emojis(self):
"""扫描新的表情包"""
try:
@@ -215,22 +218,23 @@ class EmojiManager:
os.makedirs(emoji_dir, exist_ok=True)
# 获取所有支持的图片文件
files_to_process = [f for f in os.listdir(emoji_dir) if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))]
files_to_process = [f for f in os.listdir(emoji_dir) if
f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))]
for filename in files_to_process:
image_path = os.path.join(emoji_dir, filename)
# 检查是否已经注册过
existing_emoji = self.db.db['emoji'].find_one({'filename': filename})
if existing_emoji:
continue
# 压缩图片并获取base64编码
image_base64 = image_path_to_base64(image_path)
if image_base64 is None:
os.remove(image_path)
continue
# 获取表情包的描述
discription = await self._get_emoji_discription(image_base64)
if global_config.EMOJI_CHECK:
@@ -248,30 +252,28 @@ class EmojiManager:
emoji_record = {
'filename': filename,
'path': image_path,
'embedding':embedding,
'embedding': embedding,
'discription': discription,
'timestamp': int(time.time())
}
# 保存到数据库
self.db.db['emoji'].insert_one(emoji_record)
logger.success(f"注册新表情包: {filename}")
logger.info(f"描述: {discription}")
else:
logger.warning(f"跳过表情包: {filename}")
except Exception as e:
logger.error(f"扫描表情包失败: {str(e)}")
logger.error(traceback.format_exc())
logger.exception(f"扫描表情包失败")
async def _periodic_scan(self, interval_MINS: int = 10):
"""定期扫描新表情包"""
while True:
print("\033[1;36m[表情包]\033[0m 开始扫描新表情包...")
logger.info("开始扫描新表情包...")
await self.scan_new_emojis()
await asyncio.sleep(interval_MINS * 60) # 每600秒扫描一次
def check_emoji_file_integrity(self):
"""检查表情包文件完整性
如果文件已被删除,则从数据库中移除对应记录
@@ -282,7 +284,7 @@ class EmojiManager:
all_emojis = list(self.db.db.emoji.find())
removed_count = 0
total_count = len(all_emojis)
for emoji in all_emojis:
try:
if 'path' not in emoji:
@@ -290,27 +292,27 @@ class EmojiManager:
self.db.db.emoji.delete_one({'_id': emoji['_id']})
removed_count += 1
continue
if 'embedding' not in emoji:
logger.warning(f"发现过时记录缺少embedding字段ID: {emoji.get('_id', 'unknown')}")
self.db.db.emoji.delete_one({'_id': emoji['_id']})
removed_count += 1
continue
# 检查文件是否存在
if not os.path.exists(emoji['path']):
logger.warning(f"表情包文件已被删除: {emoji['path']}")
# 从数据库中删除记录
result = self.db.db.emoji.delete_one({'_id': emoji['_id']})
if result.deleted_count > 0:
logger.success(f"成功删除数据库记录: {emoji['_id']}")
logger.debug(f"成功删除数据库记录: {emoji['_id']}")
removed_count += 1
else:
logger.error(f"删除数据库记录失败: {emoji['_id']}")
except Exception as item_error:
logger.error(f"处理表情包记录时出错: {str(item_error)}")
continue
# 验证清理结果
remaining_count = self.db.db.emoji.count_documents({})
if removed_count > 0:
@@ -318,7 +320,7 @@ class EmojiManager:
logger.info(f"清理前总数: {total_count} | 清理后总数: {remaining_count}")
else:
logger.info(f"已检查 {total_count} 个表情包记录")
except Exception as e:
logger.error(f"检查表情包完整性失败: {str(e)}")
logger.error(traceback.format_exc())
@@ -329,6 +331,6 @@ class EmojiManager:
await asyncio.sleep(interval_MINS * 60)
# 创建全局单例
emoji_manager = EmojiManager()
emoji_manager = EmojiManager()

View File

@@ -3,6 +3,7 @@ import time
from typing import List, Optional, Tuple, Union
from nonebot import get_driver
from loguru import logger
from ...common.database import Database
from ..models.utils_model import LLM_request
@@ -39,13 +40,13 @@ class ResponseGenerator:
self.current_model_type = 'r1_distill'
current_model = self.model_r1_distill
print(f"+++++++++++++++++{global_config.BOT_NICKNAME}{self.current_model_type}思考中+++++++++++++++++")
logger.info(f"{global_config.BOT_NICKNAME}{self.current_model_type}思考中")
model_response = await self._generate_response_with_model(message, current_model)
raw_content=model_response
if model_response:
print(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
logger.info(f'{global_config.BOT_NICKNAME}的回复是:{model_response}')
model_response = await self._process_response(model_response)
if model_response:
@@ -92,8 +93,8 @@ class ResponseGenerator:
# 生成回复
try:
content, reasoning_content = await model.generate_response(prompt)
except Exception as e:
print(f"生成回复时出错: {e}")
except Exception:
logger.exception(f"生成回复时出错")
return None
# 保存到数据库
@@ -144,8 +145,8 @@ class ResponseGenerator:
else:
return ["neutral"]
except Exception as e:
print(f"获取情感标签时出错: {e}")
except Exception:
logger.exception(f"获取情感标签时出错")
return ["neutral"]
async def _process_response(self, content: str) -> Tuple[List[str], List[str]]:
@@ -172,7 +173,7 @@ class InitiativeMessageGenerate:
prompt_builder._build_initiative_prompt_select(message.group_id)
)
content_select, reasoning = self.model_v3.generate_response(topic_select_prompt)
print(f"[DEBUG] {content_select} {reasoning}")
logger.debug(f"{content_select} {reasoning}")
topics_list = [dot[0] for dot in dots_for_select]
if content_select:
if content_select in topics_list:
@@ -185,12 +186,12 @@ class InitiativeMessageGenerate:
select_dot[1], prompt_template
)
content_check, reasoning_check = self.model_v3.generate_response(prompt_check)
print(f"[DEBUG] {content_check} {reasoning_check}")
logger.info(f"{content_check} {reasoning_check}")
if "yes" not in content_check.lower():
return None
prompt = prompt_builder._build_initiative_prompt(
select_dot, prompt_template, memory
)
content, reasoning = self.model_r1.generate_response_async(prompt)
print(f"[DEBUG] {content} {reasoning}")
logger.debug(f"[DEBUG] {content} {reasoning}")
return content

View File

@@ -2,6 +2,7 @@ import asyncio
import time
from typing import Dict, List, Optional, Union
from loguru import logger
from nonebot.adapters.onebot.v11 import Bot
from .cq_code import cq_code_tool
@@ -13,45 +14,45 @@ from .config import global_config
class Message_Sender:
"""发送器"""
def __init__(self):
self.message_interval = (0.5, 1) # 消息间隔时间范围(秒)
self.last_send_time = 0
self._current_bot = None
def set_bot(self, bot: Bot):
"""设置当前bot实例"""
self._current_bot = bot
async def send_group_message(
self,
group_id: int,
send_text: str,
auto_escape: bool = False,
reply_message_id: int = None,
at_user_id: int = None
self,
group_id: int,
send_text: str,
auto_escape: bool = False,
reply_message_id: int = None,
at_user_id: int = None
) -> None:
if not self._current_bot:
raise RuntimeError("Bot未设置请先调用set_bot方法设置bot实例")
message = send_text
# 如果需要回复
if reply_message_id:
reply_cq = cq_code_tool.create_reply_cq(reply_message_id)
message = reply_cq + message
# 如果需要at
# if at_user_id:
# at_cq = cq_code_tool.create_at_cq(at_user_id)
# message = at_cq + " " + message
typing_time = calculate_typing_time(message)
if typing_time > 10:
typing_time = 10
await asyncio.sleep(typing_time)
# 发送消息
try:
await self._current_bot.send_group_msg(
@@ -59,49 +60,49 @@ class Message_Sender:
message=message,
auto_escape=auto_escape
)
print(f"\033[1;34m[调试]\033[0m 发送消息{message}成功")
logger.debug(f"发送消息{message}成功")
except Exception as e:
print(f"生错误 {e}")
print(f"\033[1;34m[调试]\033[0m 发送消息{message}失败")
logger.exception(f"送消息{message}失败")
class MessageContainer:
"""单个群的发送/思考消息容器"""
def __init__(self, group_id: int, max_size: int = 100):
self.group_id = group_id
self.max_size = max_size
self.messages = []
self.last_send_time = 0
self.thinking_timeout = 20 # 思考超时时间(秒)
def get_timeout_messages(self) -> List[Message_Sending]:
"""获取所有超时的Message_Sending对象思考时间超过30秒按thinking_start_time排序"""
current_time = time.time()
timeout_messages = []
for msg in self.messages:
if isinstance(msg, Message_Sending):
if current_time - msg.thinking_start_time > self.thinking_timeout:
timeout_messages.append(msg)
# 按thinking_start_time排序时间早的在前面
timeout_messages.sort(key=lambda x: x.thinking_start_time)
return timeout_messages
def get_earliest_message(self) -> Optional[Union[Message_Thinking, Message_Sending]]:
"""获取thinking_start_time最早的消息对象"""
if not self.messages:
return None
earliest_time = float('inf')
earliest_message = None
for msg in self.messages:
for msg in self.messages:
msg_time = msg.thinking_start_time
if msg_time < earliest_time:
earliest_time = msg_time
earliest_message = msg
earliest_message = msg
return earliest_message
def add_message(self, message: Union[Message_Thinking, Message_Sending]) -> None:
"""添加消息到队列"""
# print(f"\033[1;32m[添加消息]\033[0m 添加消息到对应群")
@@ -110,7 +111,7 @@ class MessageContainer:
self.messages.append(single_message)
else:
self.messages.append(message)
def remove_message(self, message: Union[Message_Thinking, Message_Sending]) -> bool:
"""移除消息如果消息存在则返回True否则返回False"""
try:
@@ -118,98 +119,104 @@ class MessageContainer:
self.messages.remove(message)
return True
return False
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 移除消息时发生错误: {e}")
except Exception:
logger.exception(f"移除消息时发生错误")
return False
def has_messages(self) -> bool:
"""检查是否有待发送的消息"""
return bool(self.messages)
def get_all_messages(self) -> List[Union[Message, Message_Thinking]]:
"""获取所有消息"""
return list(self.messages)
class MessageManager:
"""管理所有群的消息容器"""
def __init__(self):
self.containers: Dict[int, MessageContainer] = {}
self.storage = MessageStorage()
self._running = True
def get_container(self, group_id: int) -> MessageContainer:
"""获取或创建群的消息容器"""
if group_id not in self.containers:
self.containers[group_id] = MessageContainer(group_id)
return self.containers[group_id]
def add_message(self, message: Union[Message_Thinking, Message_Sending, MessageSet]) -> None:
container = self.get_container(message.group_id)
container.add_message(message)
async def process_group_messages(self, group_id: int):
"""处理群消息"""
# if int(time.time() / 3) == time.time() / 3:
# print(f"\033[1;34m[调试]\033[0m 开始处理群{group_id}的消息")
# print(f"\033[1;34m[调试]\033[0m 开始处理群{group_id}的消息")
container = self.get_container(group_id)
if container.has_messages():
#最早的对象,可能是思考消息,也可能是发送消息
message_earliest = container.get_earliest_message() #一个message_thinking or message_sending
#如果是思考消息
# 最早的对象,可能是思考消息,也可能是发送消息
message_earliest = container.get_earliest_message() # 一个message_thinking or message_sending
# 如果是思考消息
if isinstance(message_earliest, Message_Thinking):
#优先等待这条消息
# 优先等待这条消息
message_earliest.update_thinking_time()
thinking_time = message_earliest.thinking_time
print(f"\033[1;34m[调试]\033[0m 消息正在思考中,已思考{int(thinking_time)}\033[K\r", end='', flush=True)
print(f"消息正在思考中,已思考{int(thinking_time)}\r", end='', flush=True)
# 检查是否超时
if thinking_time > global_config.thinking_timeout:
print(f"\033[1;33m[警告]\033[0m 消息思考超时({thinking_time}秒),移除该消息")
logger.warning(f"消息思考超时({thinking_time}秒),移除该消息")
container.remove_message(message_earliest)
else:# 如果不是message_thinking就只能是message_sending
print(f"\033[1;34m[调试]\033[0m 消息'{message_earliest.processed_plain_text}'正在发送中")
#直接发,等什么呢
if message_earliest.is_head and message_earliest.update_thinking_time() >30:
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False, reply_message_id=message_earliest.reply_message_id)
else: # 如果不是message_thinking就只能是message_sending
logger.debug(f"消息'{message_earliest.processed_plain_text}'正在发送中")
# 直接发,等什么呢
if message_earliest.is_head and message_earliest.update_thinking_time() > 30:
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text,
auto_escape=False,
reply_message_id=message_earliest.reply_message_id)
else:
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text, auto_escape=False)
#移除消息
await message_sender.send_group_message(group_id, message_earliest.processed_plain_text,
auto_escape=False)
# 移除消息
if message_earliest.is_emoji:
message_earliest.processed_plain_text = "[表情包]"
await self.storage.store_message(message_earliest, None)
container.remove_message(message_earliest)
#获取并处理超时消息
message_timeout = container.get_timeout_messages() #也许是一堆message_sending
# 获取并处理超时消息
message_timeout = container.get_timeout_messages() # 也许是一堆message_sending
if message_timeout:
print(f"\033[1;34m[调试]\033[0m 发现{len(message_timeout)}条超时消息")
logger.warning(f"发现{len(message_timeout)}条超时消息")
for msg in message_timeout:
if msg == message_earliest:
continue # 跳过已经处理过的消息
try:
#发送
if msg.is_head and msg.update_thinking_time() >30:
await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False, reply_message_id=msg.reply_message_id)
# 发送
if msg.is_head and msg.update_thinking_time() > 30:
await message_sender.send_group_message(group_id, msg.processed_plain_text,
auto_escape=False,
reply_message_id=msg.reply_message_id)
else:
await message_sender.send_group_message(group_id, msg.processed_plain_text, auto_escape=False)
#如果是表情包,则替换为"[表情包]"
await message_sender.send_group_message(group_id, msg.processed_plain_text,
auto_escape=False)
# 如果是表情包,则替换为"[表情包]"
if msg.is_emoji:
msg.processed_plain_text = "[表情包]"
await self.storage.store_message(msg, None)
# 安全地移除消息
if not container.remove_message(msg):
print("\033[1;33m[警告]\033[0m 尝试删除不存在的消息")
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 处理超时消息时发生错误: {e}")
logger.warning("尝试删除不存在的消息")
except Exception:
logger.exception(f"处理超时消息时发生错误")
continue
async def start_processor(self):
"""启动消息处理器"""
while self._running:
@@ -217,9 +224,10 @@ class MessageManager:
tasks = []
for group_id in self.containers.keys():
tasks.append(self.process_group_messages(group_id))
await asyncio.gather(*tasks)
# 创建全局消息管理器实例
message_manager = MessageManager()
# 创建全局发送器实例

View File

@@ -1,6 +1,7 @@
import random
import time
from typing import Optional
from loguru import logger
from ...common.database import Database
from ..memory_system.memory import hippocampus, memory_graph
@@ -16,13 +17,11 @@ class PromptBuilder:
self.activate_messages = ''
self.db = Database.get_instance()
async def _build_prompt(self,
message_txt: str,
sender_name: str = "某人",
relationship_value: float = 0.0,
group_id: Optional[int] = None) -> tuple[str, str]:
async def _build_prompt(self,
message_txt: str,
sender_name: str = "某人",
relationship_value: float = 0.0,
group_id: Optional[int] = None) -> tuple[str, str]:
"""构建prompt
Args:
@@ -33,57 +32,56 @@ class PromptBuilder:
Returns:
str: 构建好的prompt
"""
#先禁用关系
"""
# 先禁用关系
if 0 > 30:
relation_prompt = "关系特别特别好,你很喜欢喜欢他"
relation_prompt_2 = "热情发言或者回复"
elif 0 <-20:
elif 0 < -20:
relation_prompt = "关系很差,你很讨厌他"
relation_prompt_2 = "骂他"
else:
relation_prompt = "关系一般"
relation_prompt_2 = "发言或者回复"
#开始构建prompt
#心情
# 开始构建prompt
# 心情
mood_manager = MoodManager.get_instance()
mood_prompt = mood_manager.get_prompt()
#日程构建
# 日程构建
current_date = time.strftime("%Y-%m-%d", time.localtime())
current_time = time.strftime("%H:%M:%S", time.localtime())
bot_schedule_now_time,bot_schedule_now_activity = bot_schedule.get_current_task()
bot_schedule_now_time, bot_schedule_now_activity = bot_schedule.get_current_task()
prompt_date = f'''今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n'''
#知识构建
# 知识构建
start_time = time.time()
prompt_info = ''
promt_info_prompt = ''
prompt_info = await self.get_prompt_info(message_txt,threshold=0.5)
prompt_info = await self.get_prompt_info(message_txt, threshold=0.5)
if prompt_info:
prompt_info = f'''\n----------------------------------------------------\n你有以下这些[知识]\n{prompt_info}\n请你记住上面的[知识],之后可能会用到\n----------------------------------------------------\n'''
prompt_info = f'''你有以下这些[知识]{prompt_info}请你记住上面的[
知识],之后可能会用到-'''
end_time = time.time()
print(f"\033[1;32m[知识检索]\033[0m 耗时: {(end_time - start_time):.3f}")
logger.debug(f"知识检索耗时: {(end_time - start_time):.3f}")
# 获取聊天上下文
chat_talking_prompt = ''
if group_id:
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True)
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id,
limit=global_config.MAX_CONTEXT_SIZE,
combine=True)
chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}"
# 使用新的记忆获取方法
memory_prompt = ''
start_time = time.time()
# 调用 hippocampus 的 get_relevant_memories 方法
relevant_memories = await hippocampus.get_relevant_memories(
text=message_txt,
@@ -91,30 +89,28 @@ class PromptBuilder:
similarity_threshold=0.4,
max_memory_num=5
)
if relevant_memories:
# 格式化记忆内容
memory_items = []
for memory in relevant_memories:
memory_items.append(f"关于「{memory['topic']}」的记忆:{memory['content']}")
memory_prompt = "看到这些聊天,你想起来:\n" + "\n".join(memory_items) + "\n"
# 打印调试信息
print("\n\033[1;32m[记忆检索]\033[0m 找到以下相关记忆:")
logger.debug("[记忆检索]找到以下相关记忆:")
for memory in relevant_memories:
print(f"- 主题「{memory['topic']}」[相似度: {memory['similarity']:.2f}]: {memory['content']}")
logger.debug(f"- 主题「{memory['topic']}」[相似度: {memory['similarity']:.2f}]: {memory['content']}")
end_time = time.time()
print(f"\033[1;32m[回忆耗时]\033[0m 耗时: {(end_time - start_time):.3f}")
#激活prompt构建
logger.info(f"回忆耗时: {(end_time - start_time):.3f}")
# 激活prompt构建
activate_prompt = ''
activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},{mood_prompt},你想要{relation_prompt_2}"
#检测机器人相关词汇,改为关键词检测与反应功能了,提取到全局配置中
activate_prompt = f"以上是群里正在进行的聊天,{memory_prompt} 现在昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},{mood_prompt},你想要{relation_prompt_2}"
# 检测机器人相关词汇,改为关键词检测与反应功能了,提取到全局配置中
# bot_keywords = ['人机', 'bot', '机器', '入机', 'robot', '机器人']
# is_bot = any(keyword in message_txt.lower() for keyword in bot_keywords)
# if is_bot:
@@ -127,12 +123,11 @@ class PromptBuilder:
for rule in global_config.keywords_reaction_rules:
if rule.get("enable", False):
if any(keyword in message_txt.lower() for keyword in rule.get("keywords", [])):
print(f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}")
logger.info(f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}")
keywords_reaction_prompt += rule.get("reaction", "") + ''
#人格选择
personality=global_config.PROMPT_PERSONALITY
# 人格选择
personality = global_config.PROMPT_PERSONALITY
probability_1 = global_config.PERSONALITY_1
probability_2 = global_config.PERSONALITY_2
probability_3 = global_config.PERSONALITY_3
@@ -150,8 +145,8 @@ class PromptBuilder:
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME}{personality[2]}, 你正在浏览qq群{promt_info_prompt},
现在请你给出日常且口语化的回复,请表现你自己的见解,不要一昧迎合,尽量简短一些。{keywords_reaction_prompt}
请你表达自己的见解和观点。可以有个性。'''
#中文高手(新加的好玩功能)
# 中文高手(新加的好玩功能)
prompt_ger = ''
if random.random() < 0.04:
prompt_ger += '你喜欢用倒装句'
@@ -159,23 +154,23 @@ class PromptBuilder:
prompt_ger += '你喜欢用反问句'
if random.random() < 0.01:
prompt_ger += '你喜欢用文言文'
#额外信息要求
extra_info = '''但是记得回复平淡一些,简短一些,尤其注意在没明确提到时不要过多提及自身的背景, 不要直接回复别人发的表情包,记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容'''
#合并prompt
# 额外信息要求
extra_info = '''但是记得回复平淡一些,简短一些,尤其注意在没明确提到时不要过多提及自身的背景, 不要直接回复别人发的表情包,记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只需要输出回复内容就好,不要输出其他任何内容'''
# 合并prompt
prompt = ""
prompt += f"{prompt_info}\n"
prompt += f"{prompt_date}\n"
prompt += f"{chat_talking_prompt}\n"
prompt += f"{chat_talking_prompt}\n"
prompt += f"{prompt_personality}\n"
prompt += f"{prompt_ger}\n"
prompt += f"{extra_info}\n"
'''读空气prompt处理'''
activate_prompt_check=f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2},但是这不一定是合适的时机,请你决定是否要回应这条消息。"
prompt += f"{extra_info}\n"
'''读空气prompt处理'''
activate_prompt_check = f"以上是群里正在进行的聊天,昵称为 '{sender_name}' 的用户说的:{message_txt}。引起了你的注意,你和他{relation_prompt},你想要{relation_prompt_2},但是这不一定是合适的时机,请你决定是否要回应这条消息。"
prompt_personality_check = ''
extra_check_info=f"请注意把握群里的聊天内容的基础上,综合群内的氛围,例如,和{global_config.BOT_NICKNAME}相关的话题要积极回复,如果是at自己的消息一定要回复如果自己正在和别人聊天一定要回复其他话题如果合适搭话也可以回复如果认为应该回复请输出yes否则输出no请注意是决定是否需要回复而不是编写回复内容除了yes和no不要输出任何回复内容。"
extra_check_info = f"请注意把握群里的聊天内容的基础上,综合群内的氛围,例如,和{global_config.BOT_NICKNAME}相关的话题要积极回复,如果是at自己的消息一定要回复如果自己正在和别人聊天一定要回复其他话题如果合适搭话也可以回复如果认为应该回复请输出yes否则输出no请注意是决定是否需要回复而不是编写回复内容除了yes和no不要输出任何回复内容。"
if personality_choice < probability_1: # 第一种人格
prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME}{personality[0]}, 你正在浏览qq群{promt_info_prompt} {activate_prompt_check} {extra_check_info}'''
elif personality_choice < probability_1 + probability_2: # 第二种人格
@@ -183,34 +178,36 @@ class PromptBuilder:
else: # 第三种人格
prompt_personality_check = f'''你的网名叫{global_config.BOT_NICKNAME}{personality[2]}, 你正在浏览qq群{promt_info_prompt} {activate_prompt_check} {extra_check_info}'''
prompt_check_if_response=f"{prompt_info}\n{prompt_date}\n{chat_talking_prompt}\n{prompt_personality_check}"
return prompt,prompt_check_if_response
def _build_initiative_prompt_select(self,group_id):
prompt_check_if_response = f"{prompt_info}\n{prompt_date}\n{chat_talking_prompt}\n{prompt_personality_check}"
return prompt, prompt_check_if_response
def _build_initiative_prompt_select(self, group_id, probability_1=0.8, probability_2=0.1):
current_date = time.strftime("%Y-%m-%d", time.localtime())
current_time = time.strftime("%H:%M:%S", time.localtime())
bot_schedule_now_time,bot_schedule_now_activity = bot_schedule.get_current_task()
bot_schedule_now_time, bot_schedule_now_activity = bot_schedule.get_current_task()
prompt_date = f'''今天是{current_date},现在是{current_time},你今天的日程是:\n{bot_schedule.today_schedule}\n你现在正在{bot_schedule_now_activity}\n'''
chat_talking_prompt = ''
if group_id:
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id, limit=global_config.MAX_CONTEXT_SIZE,combine = True)
chat_talking_prompt = get_recent_group_detailed_plain_text(self.db, group_id,
limit=global_config.MAX_CONTEXT_SIZE,
combine=True)
chat_talking_prompt = f"以下是群里正在聊天的内容:\n{chat_talking_prompt}"
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
# 获取主动发言的话题
all_nodes=memory_graph.dots
all_nodes=filter(lambda dot:len(dot[1]['memory_items'])>3,all_nodes)
nodes_for_select=random.sample(all_nodes,5)
topics=[info[0] for info in nodes_for_select]
infos=[info[1] for info in nodes_for_select]
all_nodes = memory_graph.dots
all_nodes = filter(lambda dot: len(dot[1]['memory_items']) > 3, all_nodes)
nodes_for_select = random.sample(all_nodes, 5)
topics = [info[0] for info in nodes_for_select]
infos = [info[1] for info in nodes_for_select]
#激活prompt构建
# 激活prompt构建
activate_prompt = ''
activate_prompt = "以上是群里正在进行的聊天。"
personality=global_config.PROMPT_PERSONALITY
personality = global_config.PROMPT_PERSONALITY
prompt_personality = ''
personality_choice = random.random()
if personality_choice < probability_1: # 第一种人格
@@ -219,32 +216,31 @@ class PromptBuilder:
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME}{personality[1]}'''
else: # 第三种人格
prompt_personality = f'''{activate_prompt}你的网名叫{global_config.BOT_NICKNAME}{personality[2]}'''
topics_str=','.join(f"\"{topics}\"")
prompt_for_select=f"你现在想在群里发言,回忆了一下,想到几个话题,分别是{topics_str},综合当前状态以及群内气氛,请你在其中选择一个合适的话题,注意只需要输出话题,除了话题什么也不要输出(双引号也不要输出)"
prompt_initiative_select=f"{prompt_date}\n{prompt_personality}\n{prompt_for_select}"
prompt_regular=f"{prompt_date}\n{prompt_personality}"
return prompt_initiative_select,nodes_for_select,prompt_regular
def _build_initiative_prompt_check(self,selected_node,prompt_regular):
memory=random.sample(selected_node['memory_items'],3)
memory='\n'.join(memory)
prompt_for_check=f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n以这个作为主题发言合适吗请在把握群里的聊天内容的基础上综合群内的氛围如果认为应该发言请输出yes否则输出no请注意是决定是否需要发言而不是编写回复内容除了yes和no不要输出任何回复内容。"
return prompt_for_check,memory
def _build_initiative_prompt(self,selected_node,prompt_regular,memory):
prompt_for_initiative=f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,请在把握群里的聊天内容的基础上,综合群内的氛围,以日常且口语化的口吻,简短且随意一点进行发言,不要说的太有条理,可以有个性。记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等)"
topics_str = ','.join(f"\"{topics}\"")
prompt_for_select = f"你现在想在群里发言,回忆了一下,想到几个话题,分别是{topics_str},综合当前状态以及群内气氛,请你在其中选择一个合适的话题,注意只需要输出话题,除了话题什么也不要输出(双引号也不要输出)"
prompt_initiative_select = f"{prompt_date}\n{prompt_personality}\n{prompt_for_select}"
prompt_regular = f"{prompt_date}\n{prompt_personality}"
return prompt_initiative_select, nodes_for_select, prompt_regular
def _build_initiative_prompt_check(self, selected_node, prompt_regular):
memory = random.sample(selected_node['memory_items'], 3)
memory = '\n'.join(memory)
prompt_for_check = f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n以这个作为主题发言合适吗请在把握群里的聊天内容的基础上综合群内的氛围如果认为应该发言请输出yes否则输出no请注意是决定是否需要发言而不是编写回复内容除了yes和no不要输出任何回复内容。"
return prompt_for_check, memory
def _build_initiative_prompt(self, selected_node, prompt_regular, memory):
prompt_for_initiative = f"{prompt_regular}你现在想在群里发言,回忆了一下,想到一个话题,是{selected_node['concept']},关于这个话题的记忆有\n{memory}\n,请在把握群里的聊天内容的基础上,综合群内的氛围,以日常且口语化的口吻,简短且随意一点进行发言,不要说的太有条理,可以有个性。记住不要输出多余内容(包括前后缀,冒号和引号,括号,表情等)"
return prompt_for_initiative
async def get_prompt_info(self,message:str,threshold:float):
async def get_prompt_info(self, message: str, threshold: float):
related_info = ''
print(f"\033[1;34m[调试]\033[0m 获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
embedding = await get_embedding(message)
related_info += self.get_info_from_db(embedding,threshold=threshold)
related_info += self.get_info_from_db(embedding, threshold=threshold)
return related_info
def get_info_from_db(self, query_embedding: list, limit: int = 1, threshold: float = 0.5) -> str:
@@ -305,14 +301,15 @@ class PromptBuilder:
{"$limit": limit},
{"$project": {"content": 1, "similarity": 1}}
]
results = list(self.db.db.knowledges.aggregate(pipeline))
# print(f"\033[1;34m[调试]\033[0m获取知识库内容结果: {results}")
if not results:
return ''
# 返回所有找到的内容,用换行分隔
return '\n'.join(str(result['content']) for result in results)
prompt_builder = PromptBuilder()
prompt_builder = PromptBuilder()

View File

@@ -1,4 +1,5 @@
import asyncio
from loguru import logger
from typing import Optional
from ...common.database import Database
@@ -8,9 +9,10 @@ class Impression:
traits: str = None
called: str = None
know_time: float = None
relationship_value: float = None
class Relationship:
user_id: int = None
# impression: Impression = None
@@ -21,7 +23,7 @@ class Relationship:
nickname: str = None
relationship_value: float = None
saved = False
def __init__(self, user_id: int, data=None, **kwargs):
if isinstance(data, dict):
# 如果输入是字典,使用字典解析
@@ -39,14 +41,12 @@ class Relationship:
self.nickname = kwargs.get('nickname')
self.relationship_value = kwargs.get('relationship_value', 0.0)
self.saved = kwargs.get('saved', False)
class RelationshipManager:
def __init__(self):
self.relationships: dict[int, Relationship] = {}
self.relationships: dict[int, Relationship] = {}
async def update_relationship(self, user_id: int, data=None, **kwargs):
# 检查是否在内存中已存在
relationship = self.relationships.get(user_id)
@@ -62,7 +62,8 @@ class RelationshipManager:
setattr(relationship, key, value)
else:
# 如果不存在,创建新对象
relationship = Relationship(user_id, data=data) if isinstance(data, dict) else Relationship(user_id, **kwargs)
relationship = Relationship(user_id, data=data) if isinstance(data, dict) else Relationship(user_id,
**kwargs)
self.relationships[user_id] = relationship
# 更新 id_name_nickname_table
@@ -71,9 +72,9 @@ class RelationshipManager:
# 保存到数据库
await self.storage_relationship(relationship)
relationship.saved = True
return relationship
async def update_relationship_value(self, user_id: int, **kwargs):
# 检查是否在内存中已存在
relationship = self.relationships.get(user_id)
@@ -85,31 +86,30 @@ class RelationshipManager:
relationship.saved = True
return relationship
else:
print(f"\033[1;31m[关系管理]\033[0m 用户 {user_id} 不存在,无法更新")
logger.warning(f"用户 {user_id} 不存在,无法更新")
return None
def get_relationship(self, user_id: int) -> Optional[Relationship]:
"""获取用户关系对象"""
if user_id in self.relationships:
return self.relationships[user_id]
else:
return 0
async def load_relationship(self, data: dict) -> Relationship:
"""从数据库加载或创建新的关系对象"""
"""从数据库加载或创建新的关系对象"""
rela = Relationship(user_id=data['user_id'], data=data)
rela.saved = True
self.relationships[rela.user_id] = rela
return rela
async def load_all_relationships(self):
"""加载所有关系对象"""
db = Database.get_instance()
all_relationships = db.db.relationships.find({})
for data in all_relationships:
await self.load_relationship(data)
async def _start_relationship_manager(self):
"""每5分钟自动保存一次关系数据"""
db = Database.get_instance()
@@ -119,23 +119,23 @@ class RelationshipManager:
for data in all_relationships:
user_id = data['user_id']
relationship = await self.load_relationship(data)
self.relationships[user_id] = relationship
print(f"\033[1;32m[关系管理]\033[0m 已加载 {len(self.relationships)} 条关系记录")
self.relationships[user_id] = relationship
logger.debug(f"已加载 {len(self.relationships)} 条关系记录")
while True:
print("\033[1;32m[关系管理]\033[0m 正在自动保存关系")
logger.debug("正在自动保存关系")
await asyncio.sleep(300) # 等待300秒(5分钟)
await self._save_all_relationships()
async def _save_all_relationships(self):
"""将所有关系数据保存到数据库"""
"""将所有关系数据保存到数据库"""
# 保存所有关系数据
for userid, relationship in self.relationships.items():
if not relationship.saved:
relationship.saved = True
await self.storage_relationship(relationship)
async def storage_relationship(self,relationship: Relationship):
async def storage_relationship(self, relationship: Relationship):
"""
将关系记录存储到数据库中
"""
@@ -145,7 +145,7 @@ class RelationshipManager:
gender = relationship.gender
age = relationship.age
saved = relationship.saved
db = Database.get_instance()
db.db.relationships.update_one(
{'user_id': user_id},
@@ -158,7 +158,7 @@ class RelationshipManager:
}},
upsert=True
)
def get_name(self, user_id: int) -> str:
# 确保user_id是整数类型
user_id = int(user_id)
@@ -169,4 +169,4 @@ class RelationshipManager:
return "某人"
relationship_manager = RelationshipManager()
relationship_manager = RelationshipManager()

View File

@@ -2,12 +2,13 @@ from typing import Optional
from ...common.database import Database
from .message import Message
from loguru import logger
class MessageStorage:
def __init__(self):
self.db = Database.get_instance()
async def store_message(self, message: Message, topic: Optional[str] = None) -> None:
"""存储消息到数据库"""
try:
@@ -41,9 +42,9 @@ class MessageStorage:
"topic": topic,
"detailed_plain_text": message.detailed_plain_text,
}
self.db.db.messages.insert_one(message_data)
except Exception as e:
print(f"\033[1;31m[错误]\033[0m 存储消息失败: {e}")
# 如果需要其他存储相关的函数,可以在这里添加
self.db.db.messages.insert_one(message_data)
except Exception:
logger.exception(f"存储消息失败")
# 如果需要其他存储相关的函数,可以在这里添加

View File

@@ -4,9 +4,11 @@ from nonebot import get_driver
from ..models.utils_model import LLM_request
from .config import global_config
from loguru import logger
driver = get_driver()
config = driver.config
config = driver.config
class TopicIdentifier:
def __init__(self):
@@ -23,19 +25,20 @@ class TopicIdentifier:
# 使用 LLM_request 类进行请求
topic, _ = await self.llm_topic_judge.generate_response(prompt)
if not topic:
print("\033[1;31m[错误]\033[0m LLM API 返回为空")
logger.error("LLM API 返回为空")
return None
# 直接在这里处理主题解析
if not topic or topic == "无主题":
return None
# 解析主题字符串为列表
topic_list = [t.strip() for t in topic.split(",") if t.strip()]
print(f"\033[1;32m[主题识别]\033[0m 主题: {topic_list}")
logger.info(f"主题: {topic_list}")
return topic_list if topic_list else None
topic_identifier = TopicIdentifier()
topic_identifier = TopicIdentifier()

View File

@@ -7,6 +7,7 @@ from typing import Dict, List
import jieba
import numpy as np
from nonebot import get_driver
from loguru import logger
from ..models.utils_model import LLM_request
from ..utils.typo_generator import ChineseTypoGenerator
@@ -39,16 +40,16 @@ def combine_messages(messages: List[Message]) -> str:
def db_message_to_str(message_dict: Dict) -> str:
print(f"message_dict: {message_dict}")
logger.debug(f"message_dict: {message_dict}")
time_str = time.strftime("%m-%d %H:%M:%S", time.localtime(message_dict["time"]))
try:
name = "[(%s)%s]%s" % (
message_dict['user_id'], message_dict.get("user_nickname", ""), message_dict.get("user_cardname", ""))
message_dict['user_id'], message_dict.get("user_nickname", ""), message_dict.get("user_cardname", ""))
except:
name = message_dict.get("user_nickname", "") or f"用户{message_dict['user_id']}"
content = message_dict.get("processed_plain_text", "")
result = f"[{time_str}] {name}: {content}\n"
print(f"result: {result}")
logger.debug(f"result: {result}")
return result
@@ -182,7 +183,7 @@ async def get_recent_group_messages(db, group_id: int, limit: int = 12) -> list:
await msg.initialize()
message_objects.append(msg)
except KeyError:
print("[WARNING] 数据库中存在无效的消息")
logger.warning("数据库中存在无效的消息")
continue
# 按时间正序排列
@@ -298,11 +299,10 @@ def split_into_sentences_w_remove_punctuation(text: str) -> List[str]:
sentence = sentence.replace('', ' ').replace(',', ' ')
sentences_done.append(sentence)
print(f"处理后的句子: {sentences_done}")
logger.info(f"处理后的句子: {sentences_done}")
return sentences_done
def random_remove_punctuation(text: str) -> str:
"""随机处理标点符号,模拟人类打字习惯
@@ -330,11 +330,10 @@ def random_remove_punctuation(text: str) -> str:
return result
def process_llm_response(text: str) -> List[str]:
# processed_response = process_text_with_typos(content)
if len(text) > 200:
print(f"回复过长 ({len(text)} 字符),返回默认回复")
logger.warning(f"回复过长 ({len(text)} 字符),返回默认回复")
return ['懒得说']
# 处理长消息
typo_generator = ChineseTypoGenerator(
@@ -354,9 +353,9 @@ def process_llm_response(text: str) -> List[str]:
else:
sentences.append(sentence)
# 检查分割后的消息数量是否过多超过3条
if len(sentences) > 5:
print(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
logger.warning(f"分割后消息数量过多 ({len(sentences)} 条),返回默认回复")
return [f'{global_config.BOT_NICKNAME}不知道哦']
return sentences
@@ -378,15 +377,15 @@ def calculate_typing_time(input_string: str, chinese_time: float = 0.4, english_
mood_arousal = mood_manager.current_mood.arousal
# 映射到0.5到2倍的速度系数
typing_speed_multiplier = 1.5 ** mood_arousal # 唤醒度为1时速度翻倍,为-1时速度减半
chinese_time *= 1/typing_speed_multiplier
english_time *= 1/typing_speed_multiplier
chinese_time *= 1 / typing_speed_multiplier
english_time *= 1 / typing_speed_multiplier
# 计算中文字符数
chinese_chars = sum(1 for char in input_string if '\u4e00' <= char <= '\u9fff')
# 如果只有一个中文字符使用3倍时间
if chinese_chars == 1 and len(input_string.strip()) == 1:
return chinese_time * 3 + 0.3 # 加上回车时间
# 正常计算所有字符的输入时间
total_time = 0.0
for char in input_string:

View File

@@ -1,4 +1,5 @@
import asyncio
from loguru import logger
from .config import global_config
@@ -7,74 +8,100 @@ class WillingManager:
self.group_reply_willing = {} # 存储每个群的回复意愿
self._decay_task = None
self._started = False
self.min_reply_willing = 0.01
self.attenuation_coefficient = 0.75
async def _decay_reply_willing(self):
"""定期衰减回复意愿"""
while True:
await asyncio.sleep(5)
for group_id in self.group_reply_willing:
self.group_reply_willing[group_id] = max(0, self.group_reply_willing[group_id] * 0.6)
self.group_reply_willing[group_id] = max(
self.min_reply_willing,
self.group_reply_willing[group_id] * self.attenuation_coefficient
)
def get_willing(self, group_id: int) -> float:
"""获取指定群组的回复意愿"""
return self.group_reply_willing.get(group_id, 0)
def set_willing(self, group_id: int, willing: float):
"""设置指定群组的回复意愿"""
self.group_reply_willing[group_id] = willing
def change_reply_willing_received(self, group_id: int, topic: str, is_mentioned_bot: bool, config, user_id: int = None, is_emoji: bool = False, interested_rate: float = 0) -> float:
"""改变指定群组的回复意愿并返回回复概率"""
def change_reply_willing_received(self, group_id: int, topic: str, is_mentioned_bot: bool, config,
user_id: int = None, is_emoji: bool = False, interested_rate: float = 0) -> float:
# 若非目标回复群组则直接return
if group_id not in config.talk_allowed_groups:
reply_probability = 0
return reply_probability
current_willing = self.group_reply_willing.get(group_id, 0)
# print(f"初始意愿: {current_willing}")
if is_mentioned_bot and current_willing < 1.0:
current_willing += 0.9
print(f"被提及, 当前意愿: {current_willing}")
elif is_mentioned_bot:
current_willing += 0.05
print(f"被重复提及, 当前意愿: {current_willing}")
logger.debug(f"[{group_id}]的初始回复意愿: {current_willing}")
# 根据消息类型被cue/表情包)调控
if is_mentioned_bot:
current_willing = min(
3.0,
current_willing + 0.9
)
logger.debug(f"被提及, 当前意愿: {current_willing}")
if is_emoji:
current_willing *= 0.1
print(f"表情包, 当前意愿: {current_willing}")
print(f"放大系数_interested_rate: {global_config.response_interested_rate_amplifier}")
interested_rate *= global_config.response_interested_rate_amplifier #放大回复兴趣度
if interested_rate > 0.4:
# print(f"兴趣度: {interested_rate}, 当前意愿: {current_willing}")
current_willing += interested_rate-0.4
current_willing *= global_config.response_willing_amplifier #放大回复意愿
# print(f"放大系数_willing: {global_config.response_willing_amplifier}, 当前意愿: {current_willing}")
reply_probability = max((current_willing - 0.45) * 2, 0)
if group_id not in config.talk_allowed_groups:
current_willing = 0
reply_probability = 0
logger.debug(f"表情包, 当前意愿: {current_willing}")
# 兴趣放大系数,若兴趣 > 0.4则增加回复概率
interested_rate_amplifier = global_config.response_interested_rate_amplifier
logger.debug(f"放大系数_interested_rate: {interested_rate_amplifier}")
interested_rate *= interested_rate_amplifier
current_willing += max(
0.0,
interested_rate - 0.4
)
# 回复意愿系数调控,独立乘区
willing_amplifier = max(
global_config.response_willing_amplifier,
self.min_reply_willing
)
current_willing *= willing_amplifier
logger.debug(f"放大系数_willing: {global_config.response_willing_amplifier}, 当前意愿: {current_willing}")
# 回复概率迭代保底0.01回复概率
reply_probability = max(
(current_willing - 0.45) * 2,
self.min_reply_willing
)
# 降低目标低频群组回复概率
down_frequency_rate = max(
1.0,
global_config.down_frequency_rate
)
if group_id in config.talk_frequency_down_groups:
reply_probability = reply_probability / global_config.down_frequency_rate
reply_probability = reply_probability / down_frequency_rate
reply_probability = min(reply_probability, 1)
if reply_probability < 0:
reply_probability = 0
self.group_reply_willing[group_id] = min(current_willing, 3.0)
logger.debug(f"当前群组{group_id}回复概率:{reply_probability}")
return reply_probability
def change_reply_willing_sent(self, group_id: int):
"""开始思考后降低群组的回复意愿"""
current_willing = self.group_reply_willing.get(group_id, 0)
self.group_reply_willing[group_id] = max(0, current_willing - 2)
def change_reply_willing_after_sent(self, group_id: int):
"""发送消息后提高群组的回复意愿"""
current_willing = self.group_reply_willing.get(group_id, 0)
if current_willing < 1:
self.group_reply_willing[group_id] = min(1, current_willing + 0.2)
async def ensure_started(self):
"""确保衰减任务已启动"""
if not self._started:
@@ -82,5 +109,6 @@ class WillingManager:
self._decay_task = asyncio.create_task(self._decay_reply_willing())
self._started = True
# 创建全局实例
willing_manager = WillingManager()
willing_manager = WillingManager()