feat:对HFC进行巨大重构,采用新架构

This commit is contained in:
SengokuCola
2025-05-12 11:49:14 +08:00
parent e5a756f156
commit 05f0aaa6d7
33 changed files with 2221 additions and 1738 deletions

View File

@@ -23,9 +23,9 @@ install(extra_lines=3)
logger = get_logger("config")
# 考虑到实际上配置文件中的mai_version是不会自动更新的,所以采用硬编码
is_test = False
mai_version_main = "0.6.3"
mai_version_fix = "fix-3"
is_test = True
mai_version_main = "0.6.4"
mai_version_fix = "snapshot-1"
if mai_version_fix:
if is_test:

View File

@@ -7,7 +7,7 @@ import traceback
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.chat.utils import parse_text_timestamps
from src.plugins.chat.chat_stream import ChatStream
from src.heart_flow.observation import ChattingObservation
from src.heart_flow.chatting_observation import ChattingObservation
logger = get_logger("tool_use")

View File

@@ -0,0 +1,269 @@
from datetime import datetime
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import traceback
from src.plugins.utils.chat_message_builder import (
get_raw_msg_before_timestamp_with_chat,
build_readable_messages,
get_raw_msg_by_timestamp_with_chat,
num_new_messages_since,
get_person_id_list,
)
from src.plugins.utils.prompt_builder import global_prompt_manager
from typing import Optional
import difflib
from src.plugins.chat.message import MessageRecv # 添加 MessageRecv 导入
from src.heart_flow.observation import Observation
from src.common.logger_manager import get_logger
from src.heart_flow.utils_chat import get_chat_type_and_target_info
logger = get_logger(__name__)
# 聊天观察
class ChattingObservation(Observation):
def __init__(self, chat_id):
super().__init__(chat_id)
self.chat_id = chat_id
# --- Initialize attributes (defaults) ---
self.is_group_chat: bool = False
self.chat_target_info: Optional[dict] = None
# --- End Initialization ---
# --- Other attributes initialized in __init__ ---
self.talking_message = []
self.talking_message_str = ""
self.talking_message_str_truncate = ""
self.name = global_config.BOT_NICKNAME
self.nick_name = global_config.BOT_ALIAS_NAMES
self.max_now_obs_len = global_config.observation_context_size
self.overlap_len = global_config.compressed_length
self.mid_memorys = []
self.max_mid_memory_len = global_config.compress_length_limit
self.mid_memory_info = ""
self.person_list = []
self.llm_summary = LLMRequest(
model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
)
async def initialize(self):
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.chat_id)
logger.debug(f"初始化observation: self.is_group_chat: {self.is_group_chat}")
logger.debug(f"初始化observation: self.chat_target_info: {self.chat_target_info}")
initial_messages = get_raw_msg_before_timestamp_with_chat(self.chat_id, self.last_observe_time, 10)
self.talking_message = initial_messages
self.talking_message_str = await build_readable_messages(self.talking_message)
# 进行一次观察 返回观察结果observe_info
def get_observe_info(self, ids=None):
if ids:
mid_memory_str = ""
for id in ids:
print(f"id{id}")
try:
for mid_memory in self.mid_memorys:
if mid_memory["id"] == id:
mid_memory_by_id = mid_memory
msg_str = ""
for msg in mid_memory_by_id["messages"]:
msg_str += f"{msg['detailed_plain_text']}"
# time_diff = int((datetime.now().timestamp() - mid_memory_by_id["created_at"]) / 60)
# mid_memory_str += f"距离现在{time_diff}分钟前:\n{msg_str}\n"
mid_memory_str += f"{msg_str}\n"
except Exception as e:
logger.error(f"获取mid_memory_id失败: {e}")
traceback.print_exc()
return self.talking_message_str
return mid_memory_str + "现在群里正在聊:\n" + self.talking_message_str
else:
return self.talking_message_str
def serch_message_by_text(self, text: str) -> Optional[MessageRecv]:
"""
根据回复的纯文本
1. 在talking_message中查找最新的最匹配的消息
2. 如果找到,则返回消息
"""
msg_list = []
find_msg = None
reverse_talking_message = list(reversed(self.talking_message))
for message in reverse_talking_message:
if message["processed_plain_text"] == text:
find_msg = message
logger.debug(f"找到的锚定消息find_msg: {find_msg}")
break
else:
similarity = difflib.SequenceMatcher(None, text, message["processed_plain_text"]).ratio()
msg_list.append({"message": message, "similarity": similarity})
logger.debug(f"对锚定消息检查message: {message['processed_plain_text']},similarity: {similarity}")
if not find_msg:
if msg_list:
msg_list.sort(key=lambda x: x["similarity"], reverse=True)
if msg_list[0]["similarity"] >= 0.5: # 只返回相似度大于等于0.5的消息
find_msg = msg_list[0]["message"]
else:
logger.debug("没有找到锚定消息,相似度低")
return None
else:
logger.debug("没有找到锚定消息,没有消息捕获")
return None
# logger.debug(f"找到的锚定消息find_msg: {find_msg}")
group_info = find_msg.get("chat_info", {}).get("group_info")
user_info = find_msg.get("chat_info", {}).get("user_info")
content_format = ""
accept_format = ""
template_items = {}
template_name = {}
template_default = True
format_info = {"content_format": content_format, "accept_format": accept_format}
template_info = {
"template_items": template_items,
}
message_info = {
"platform": find_msg.get("platform"),
"message_id": find_msg.get("message_id"),
"time": find_msg.get("time"),
"group_info": group_info,
"user_info": user_info,
"format_info": find_msg.get("format_info"),
"template_info": find_msg.get("template_info"),
"additional_config": find_msg.get("additional_config"),
"format_info": format_info,
"template_info": template_info,
}
message_dict = {
"message_info": message_info,
"raw_message": find_msg.get("processed_plain_text"),
"detailed_plain_text": find_msg.get("processed_plain_text"),
"processed_plain_text": find_msg.get("processed_plain_text"),
}
find_rec_msg = MessageRecv(message_dict)
logger.debug(f"锚定消息处理后find_rec_msg: {find_rec_msg}")
return find_rec_msg
async def observe(self):
# 自上一次观察的新消息
new_messages_list = get_raw_msg_by_timestamp_with_chat(
chat_id=self.chat_id,
timestamp_start=self.last_observe_time,
timestamp_end=datetime.now().timestamp(),
limit=self.max_now_obs_len,
limit_mode="latest",
)
last_obs_time_mark = self.last_observe_time
if new_messages_list:
self.last_observe_time = new_messages_list[-1]["time"]
self.talking_message.extend(new_messages_list)
if len(self.talking_message) > self.max_now_obs_len:
# 计算需要移除的消息数量,保留最新的 max_now_obs_len 条
messages_to_remove_count = len(self.talking_message) - self.max_now_obs_len
oldest_messages = self.talking_message[:messages_to_remove_count]
self.talking_message = self.talking_message[messages_to_remove_count:] # 保留后半部分,即最新的
oldest_messages_str = await build_readable_messages(
messages=oldest_messages, timestamp_mode="normal", read_mark=0
)
# --- Build prompt using template ---
prompt = None # Initialize prompt as None
try:
# 构建 Prompt - 根据 is_group_chat 选择模板
if self.is_group_chat:
prompt_template_name = "chat_summary_group_prompt"
prompt = await global_prompt_manager.format_prompt(
prompt_template_name, chat_logs=oldest_messages_str
)
else:
# For private chat, add chat_target to the prompt variables
prompt_template_name = "chat_summary_private_prompt"
# Determine the target name for the prompt
chat_target_name = "对方" # Default fallback
if self.chat_target_info:
# Prioritize person_name, then nickname
chat_target_name = (
self.chat_target_info.get("person_name")
or self.chat_target_info.get("user_nickname")
or chat_target_name
)
# Format the private chat prompt
prompt = await global_prompt_manager.format_prompt(
prompt_template_name,
# Assuming the private prompt template uses {chat_target}
chat_target=chat_target_name,
chat_logs=oldest_messages_str,
)
except Exception as e:
logger.error(f"构建总结 Prompt 失败 for chat {self.chat_id}: {e}")
# prompt remains None
summary = "没有主题的闲聊" # 默认值
if prompt: # Check if prompt was built successfully
try:
summary_result, _, _ = await self.llm_summary.generate_response(prompt)
if summary_result: # 确保结果不为空
summary = summary_result
except Exception as e:
logger.error(f"总结主题失败 for chat {self.chat_id}: {e}")
# 保留默认总结 "没有主题的闲聊"
else:
logger.warning(f"因 Prompt 构建失败,跳过 LLM 总结 for chat {self.chat_id}")
mid_memory = {
"id": str(int(datetime.now().timestamp())),
"theme": summary,
"messages": oldest_messages, # 存储原始消息对象
"readable_messages": oldest_messages_str,
# "timestamps": oldest_timestamps,
"chat_id": self.chat_id,
"created_at": datetime.now().timestamp(),
}
self.mid_memorys.append(mid_memory)
if len(self.mid_memorys) > self.max_mid_memory_len:
self.mid_memorys.pop(0) # 移除最旧的
mid_memory_str = "之前聊天的内容概述是:\n"
for mid_memory_item in self.mid_memorys: # 重命名循环变量以示区分
time_diff = int((datetime.now().timestamp() - mid_memory_item["created_at"]) / 60)
mid_memory_str += (
f"距离现在{time_diff}分钟前(聊天记录id:{mid_memory_item['id']}){mid_memory_item['theme']}\n"
)
self.mid_memory_info = mid_memory_str
self.talking_message_str = await build_readable_messages(
messages=self.talking_message,
timestamp_mode="lite",
read_mark=last_obs_time_mark,
)
self.talking_message_str_truncate = await build_readable_messages(
messages=self.talking_message,
timestamp_mode="normal",
read_mark=last_obs_time_mark,
truncate=True,
)
self.person_list = await get_person_id_list(self.talking_message)
# print(f"self.11111person_list: {self.person_list}")
logger.trace(
f"Chat {self.chat_id} - 压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.talking_message_str}"
)
async def has_new_messages_since(self, timestamp: float) -> bool:
"""检查指定时间戳之后是否有新消息"""
count = num_new_messages_since(chat_id=self.chat_id, timestamp_start=timestamp)
return count > 0

View File

@@ -0,0 +1,74 @@
# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger_manager import get_logger
from src.plugins.heartFC_chat.heartFC_Cycleinfo import CycleDetail
from typing import List
# Import the new utility function
logger = get_logger("observation")
# 所有观察的基类
class HFCloopObservation:
def __init__(self, observe_id):
self.observe_info = ""
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
self.history_loop: List[CycleDetail] = []
def get_observe_info(self):
return self.observe_info
def add_loop_info(self, loop_info: CycleDetail):
logger.debug(f"添加循环信息111111111111111111111111111111111111: {loop_info}")
print(f"添加循环信息111111111111111111111111111111111111: {loop_info}")
print(f"action_taken: {loop_info.action_taken}")
print(f"action_type: {loop_info.action_type}")
print(f"response_info: {loop_info.response_info}")
self.history_loop.append(loop_info)
async def observe(self):
recent_active_cycles: List[CycleDetail] = []
for cycle in reversed(self.history_loop):
# 只关心实际执行了动作的循环
if cycle.action_taken:
recent_active_cycles.append(cycle)
# 最多找最近的3个活动循环
if len(recent_active_cycles) == 3:
break
cycle_info_block = ""
consecutive_text_replies = 0
responses_for_prompt = []
# 检查这最近的活动循环中有多少是连续的文本回复 (从最近的开始看)
for cycle in recent_active_cycles:
if cycle.action_type == "reply":
consecutive_text_replies += 1
# 获取回复内容,如果不存在则返回'[空回复]'
response_text = cycle.response_info.get("response_text", [])
# 使用简单的 join 来格式化回复内容列表
formatted_response = "[空回复]" if not response_text else " ".join(response_text)
responses_for_prompt.append(formatted_response)
else:
# 一旦遇到非文本回复,连续性中断
break
# 根据连续文本回复的数量构建提示信息
# 注意: responses_for_prompt 列表是从最近到最远排序的
if consecutive_text_replies >= 3: # 如果最近的三个活动都是文本回复
cycle_info_block = f'你已经连续回复了三条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}",第三近: "{responses_for_prompt[2]}")。你回复的有点多了,请注意'
elif consecutive_text_replies == 2: # 如果最近的两个活动是文本回复
cycle_info_block = f'你已经连续回复了两条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}"),请注意'
elif consecutive_text_replies == 1: # 如果最近的一个活动是文本回复
cycle_info_block = f'你刚刚已经回复一条消息(内容: "{responses_for_prompt[0]}"'
# 包装提示块,增加可读性,即使没有连续回复也给个标记
if cycle_info_block:
cycle_info_block = f"\n【近期回复历史】\n{cycle_info_block}\n"
else:
# 如果最近的活动循环不是文本回复,或者没有活动循环
cycle_info_block = "\n【近期回复历史】\n(最近没有连续文本回复)\n"
self.observe_info = cycle_info_block

View File

@@ -0,0 +1,97 @@
from typing import Dict, Optional
from dataclasses import dataclass
from .info_base import InfoBase
@dataclass
class ChatInfo(InfoBase):
"""聊天信息类
用于记录和管理聊天相关的信息包括聊天ID、名称和类型等。
继承自 InfoBase 类,使用字典存储具体数据。
Attributes:
type (str): 信息类型标识符,固定为 "chat"
Data Fields:
chat_id (str): 聊天的唯一标识符
chat_name (str): 聊天的名称
chat_type (str): 聊天的类型
"""
type: str = "chat"
def set_chat_id(self, chat_id: str) -> None:
"""设置聊天ID
Args:
chat_id (str): 聊天的唯一标识符
"""
self.data["chat_id"] = chat_id
def set_chat_name(self, chat_name: str) -> None:
"""设置聊天名称
Args:
chat_name (str): 聊天的名称
"""
self.data["chat_name"] = chat_name
def set_chat_type(self, chat_type: str) -> None:
"""设置聊天类型
Args:
chat_type (str): 聊天的类型
"""
self.data["chat_type"] = chat_type
def get_chat_id(self) -> Optional[str]:
"""获取聊天ID
Returns:
Optional[str]: 聊天的唯一标识符,如果未设置则返回 None
"""
return self.get_info("chat_id")
def get_chat_name(self) -> Optional[str]:
"""获取聊天名称
Returns:
Optional[str]: 聊天的名称,如果未设置则返回 None
"""
return self.get_info("chat_name")
def get_chat_type(self) -> Optional[str]:
"""获取聊天类型
Returns:
Optional[str]: 聊天的类型,如果未设置则返回 None
"""
return self.get_info("chat_type")
def get_type(self) -> str:
"""获取信息类型
Returns:
str: 当前信息对象的类型标识符
"""
return self.type
def get_data(self) -> Dict[str, str]:
"""获取所有信息数据
Returns:
Dict[str, str]: 包含所有信息数据的字典
"""
return self.data
def get_info(self, key: str) -> Optional[str]:
"""获取特定属性的信息
Args:
key: 要获取的属性键名
Returns:
Optional[str]: 属性值,如果键不存在则返回 None
"""
return self.data.get(key)

View File

@@ -0,0 +1,157 @@
from typing import Dict, Optional, Any
from dataclasses import dataclass
from .info_base import InfoBase
@dataclass
class CycleInfo(InfoBase):
"""循环信息类
用于记录和管理心跳循环的相关信息包括循环ID、时间信息、动作信息等。
继承自 InfoBase 类,使用字典存储具体数据。
Attributes:
type (str): 信息类型标识符,固定为 "cycle"
Data Fields:
cycle_id (str): 当前循环的唯一标识符
start_time (str): 循环开始的时间
end_time (str): 循环结束的时间
action (str): 在循环中采取的动作
action_data (Dict[str, Any]): 动作相关的详细数据
reason (str): 触发循环的原因
observe_info (str): 当前的回复信息
"""
type: str = "cycle"
def get_type(self) -> str:
"""获取信息类型"""
return self.type
def get_data(self) -> Dict[str, str]:
"""获取信息数据"""
return self.data
def get_info(self, key: str) -> Optional[str]:
"""获取特定属性的信息
Args:
key: 要获取的属性键名
Returns:
属性值,如果键不存在则返回 None
"""
return self.data.get(key)
def set_cycle_id(self, cycle_id: str) -> None:
"""设置循环ID
Args:
cycle_id (str): 循环的唯一标识符
"""
self.data["cycle_id"] = cycle_id
def set_start_time(self, start_time: str) -> None:
"""设置开始时间
Args:
start_time (str): 循环开始的时间,建议使用标准时间格式
"""
self.data["start_time"] = start_time
def set_end_time(self, end_time: str) -> None:
"""设置结束时间
Args:
end_time (str): 循环结束的时间,建议使用标准时间格式
"""
self.data["end_time"] = end_time
def set_action(self, action: str) -> None:
"""设置采取的动作
Args:
action (str): 在循环中执行的动作名称
"""
self.data["action"] = action
def set_action_data(self, action_data: Dict[str, Any]) -> None:
"""设置动作数据
Args:
action_data (Dict[str, Any]): 动作相关的详细数据,将被转换为字符串存储
"""
self.data["action_data"] = str(action_data)
def set_reason(self, reason: str) -> None:
"""设置原因
Args:
reason (str): 触发循环的原因说明
"""
self.data["reason"] = reason
def set_observe_info(self, observe_info: str) -> None:
"""设置回复信息
Args:
observe_info (str): 当前的回复信息
"""
self.data["observe_info"] = observe_info
def get_cycle_id(self) -> Optional[str]:
"""获取循环ID
Returns:
Optional[str]: 循环的唯一标识符,如果未设置则返回 None
"""
return self.get_info("cycle_id")
def get_start_time(self) -> Optional[str]:
"""获取开始时间
Returns:
Optional[str]: 循环开始的时间,如果未设置则返回 None
"""
return self.get_info("start_time")
def get_end_time(self) -> Optional[str]:
"""获取结束时间
Returns:
Optional[str]: 循环结束的时间,如果未设置则返回 None
"""
return self.get_info("end_time")
def get_action(self) -> Optional[str]:
"""获取采取的动作
Returns:
Optional[str]: 在循环中执行的动作名称,如果未设置则返回 None
"""
return self.get_info("action")
def get_action_data(self) -> Optional[str]:
"""获取动作数据
Returns:
Optional[str]: 动作相关的详细数据(字符串形式),如果未设置则返回 None
"""
return self.get_info("action_data")
def get_reason(self) -> Optional[str]:
"""获取原因
Returns:
Optional[str]: 触发循环的原因说明,如果未设置则返回 None
"""
return self.get_info("reason")
def get_observe_info(self) -> Optional[str]:
"""获取回复信息
Returns:
Optional[str]: 当前的回复信息,如果未设置则返回 None
"""
return self.get_info("observe_info")

View File

@@ -0,0 +1,60 @@
from typing import Dict, Optional, Any, List
from dataclasses import dataclass, field
@dataclass
class InfoBase:
"""信息基类
这是一个基础信息类,用于存储和管理各种类型的信息数据。
所有具体的信息类都应该继承自这个基类。
Attributes:
type (str): 信息类型标识符,默认为 "base"
data (Dict[str, Union[str, Dict, list]]): 存储具体信息数据的字典,
支持存储字符串、字典、列表等嵌套数据结构
"""
type: str = "base"
data: Dict[str, Any] = field(default_factory=dict)
def get_type(self) -> str:
"""获取信息类型
Returns:
str: 当前信息对象的类型标识符
"""
return self.type
def get_data(self) -> Dict[str, Any]:
"""获取所有信息数据
Returns:
Dict[str, Any]: 包含所有信息数据的字典
"""
return self.data
def get_info(self, key: str) -> Optional[Any]:
"""获取特定属性的信息
Args:
key: 要获取的属性键名
Returns:
Optional[Any]: 属性值,如果键不存在则返回 None
"""
return self.data.get(key)
def get_info_list(self, key: str) -> List[Any]:
"""获取特定属性的信息列表
Args:
key: 要获取的属性键名
Returns:
List[Any]: 属性值列表,如果键不存在则返回空列表
"""
value = self.data.get(key)
if isinstance(value, list):
return value
return []

View File

@@ -0,0 +1,34 @@
from typing import Dict, Any
from dataclasses import dataclass, field
from .info_base import InfoBase
@dataclass
class MindInfo(InfoBase):
"""思维信息类
用于存储和管理当前思维状态的信息。
Attributes:
type (str): 信息类型标识符,默认为 "mind"
data (Dict[str, Any]): 包含 current_mind 的数据字典
"""
type: str = "mind"
data: Dict[str, Any] = field(default_factory=lambda: {"current_mind": ""})
def get_current_mind(self) -> str:
"""获取当前思维状态
Returns:
str: 当前思维状态
"""
return self.get_info("current_mind") or ""
def set_current_mind(self, mind: str) -> None:
"""设置当前思维状态
Args:
mind: 要设置的思维状态
"""
self.data["current_mind"] = mind

View File

@@ -0,0 +1,107 @@
from typing import Dict, Optional
from dataclasses import dataclass
from .info_base import InfoBase
@dataclass
class ObsInfo(InfoBase):
"""OBS信息类
用于记录和管理OBS相关的信息包括说话消息、截断后的说话消息和聊天类型。
继承自 InfoBase 类,使用字典存储具体数据。
Attributes:
type (str): 信息类型标识符,固定为 "obs"
Data Fields:
talking_message (str): 说话消息内容
talking_message_str_truncate (str): 截断后的说话消息内容
chat_type (str): 聊天类型,可以是 "private"(私聊)、"group"(群聊)或 "other"(其他)
"""
type: str = "obs"
def set_talking_message(self, message: str) -> None:
"""设置说话消息
Args:
message (str): 说话消息内容
"""
self.data["talking_message"] = message
def set_talking_message_str_truncate(self, message: str) -> None:
"""设置截断后的说话消息
Args:
message (str): 截断后的说话消息内容
"""
self.data["talking_message_str_truncate"] = message
def set_chat_type(self, chat_type: str) -> None:
"""设置聊天类型
Args:
chat_type (str): 聊天类型,可以是 "private"(私聊)、"group"(群聊)或 "other"(其他)
"""
if chat_type not in ["private", "group", "other"]:
chat_type = "other"
self.data["chat_type"] = chat_type
def set_chat_target(self, chat_target: str) -> None:
"""设置聊天目标
Args:
chat_target (str): 聊天目标,可以是 "private"(私聊)、"group"(群聊)或 "other"(其他)
"""
self.data["chat_target"] = chat_target
def get_talking_message(self) -> Optional[str]:
"""获取说话消息
Returns:
Optional[str]: 说话消息内容,如果未设置则返回 None
"""
return self.get_info("talking_message")
def get_talking_message_str_truncate(self) -> Optional[str]:
"""获取截断后的说话消息
Returns:
Optional[str]: 截断后的说话消息内容,如果未设置则返回 None
"""
return self.get_info("talking_message_str_truncate")
def get_chat_type(self) -> str:
"""获取聊天类型
Returns:
str: 聊天类型,默认为 "other"
"""
return self.get_info("chat_type") or "other"
def get_type(self) -> str:
"""获取信息类型
Returns:
str: 当前信息对象的类型标识符
"""
return self.type
def get_data(self) -> Dict[str, str]:
"""获取所有信息数据
Returns:
Dict[str, str]: 包含所有信息数据的字典
"""
return self.data
def get_info(self, key: str) -> Optional[str]:
"""获取特定属性的信息
Args:
key: 要获取的属性键名
Returns:
Optional[str]: 属性值,如果键不存在则返回 None
"""
return self.data.get(key)

View File

@@ -0,0 +1,69 @@
from typing import Dict, Optional, Any, List
from dataclasses import dataclass, field
@dataclass
class StructuredInfo:
"""信息基类
这是一个基础信息类,用于存储和管理各种类型的信息数据。
所有具体的信息类都应该继承自这个基类。
Attributes:
type (str): 信息类型标识符,默认为 "base"
data (Dict[str, Union[str, Dict, list]]): 存储具体信息数据的字典,
支持存储字符串、字典、列表等嵌套数据结构
"""
type: str = "structured_info"
data: Dict[str, Any] = field(default_factory=dict)
def get_type(self) -> str:
"""获取信息类型
Returns:
str: 当前信息对象的类型标识符
"""
return self.type
def get_data(self) -> Dict[str, Any]:
"""获取所有信息数据
Returns:
Dict[str, Any]: 包含所有信息数据的字典
"""
return self.data
def get_info(self, key: str) -> Optional[Any]:
"""获取特定属性的信息
Args:
key: 要获取的属性键名
Returns:
Optional[Any]: 属性值,如果键不存在则返回 None
"""
return self.data.get(key)
def get_info_list(self, key: str) -> List[Any]:
"""获取特定属性的信息列表
Args:
key: 要获取的属性键名
Returns:
List[Any]: 属性值列表,如果键不存在则返回空列表
"""
value = self.data.get(key)
if isinstance(value, list):
return value
return []
def set_info(self, key: str, value: Any) -> None:
"""设置特定属性的信息值
Args:
key: 要设置的属性键名
value: 要设置的属性值
"""
self.data[key] = value

View File

@@ -0,0 +1,57 @@
from src.heart_flow.chatting_observation import Observation
from datetime import datetime
from src.common.logger_manager import get_logger
import traceback
# Import the new utility function
from src.plugins.memory_system.Hippocampus import HippocampusManager
import jieba
from typing import List
logger = get_logger("memory")
class MemoryObservation(Observation):
def __init__(self, observe_id):
super().__init__(observe_id)
self.observe_info: str = ""
self.context: str = ""
self.running_memory: List[dict] = []
def get_observe_info(self):
for memory in self.running_memory:
self.observe_info += f"{memory['topic']}:{memory['content']}\n"
return self.observe_info
async def observe(self):
# ---------- 2. 获取记忆 ----------
try:
# 从聊天内容中提取关键词
chat_words = set(jieba.cut(self.context))
# 过滤掉停用词和单字词
keywords = [word for word in chat_words if len(word) > 1]
# 去重并限制数量
keywords = list(set(keywords))[:5]
logger.debug(f"取的关键词: {keywords}")
# 调用记忆系统获取相关记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_topic(
valid_keywords=keywords, max_memory_num=3, max_memory_length=2, max_depth=3
)
logger.debug(f"获取到的记忆: {related_memory}")
if related_memory:
for topic, memory in related_memory:
new_item = {"type": "memory", "id": topic, "content": memory, "ttl": 3}
self.structured_info.append(new_item)
# 将记忆添加到 running_memory
self.running_memory.append(
{"topic": topic, "content": memory, "timestamp": datetime.now().isoformat()}
)
logger.debug(f"添加新记忆: {topic} - {memory}")
except Exception as e:
logger.error(f"观察 记忆时出错: {e}")
logger.error(traceback.format_exc())

View File

@@ -1,24 +1,10 @@
# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
from src.common.logger_manager import get_logger
import traceback
from src.plugins.utils.chat_message_builder import (
get_raw_msg_before_timestamp_with_chat,
build_readable_messages,
get_raw_msg_by_timestamp_with_chat,
num_new_messages_since,
get_person_id_list,
)
from src.plugins.utils.prompt_builder import Prompt, global_prompt_manager
from typing import Optional
import difflib
from src.plugins.chat.message import MessageRecv # 添加 MessageRecv 导入
from src.plugins.utils.prompt_builder import Prompt
# Import the new utility function
from .utils_chat import get_chat_type_and_target_info
logger = get_logger("observation")
@@ -41,259 +27,10 @@ Prompt(
# 所有观察的基类
class Observation:
def __init__(self, observe_type, observe_id):
def __init__(self, observe_id):
self.observe_info = ""
self.observe_type = observe_type
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
async def observe(self):
pass
# 聊天观察
class ChattingObservation(Observation):
def __init__(self, chat_id):
super().__init__("chat", chat_id)
self.chat_id = chat_id
# --- Initialize attributes (defaults) ---
self.is_group_chat: bool = False
self.chat_target_info: Optional[dict] = None
# --- End Initialization ---
# --- Other attributes initialized in __init__ ---
self.talking_message = []
self.talking_message_str = ""
self.talking_message_str_truncate = ""
self.name = global_config.BOT_NICKNAME
self.nick_name = global_config.BOT_ALIAS_NAMES
self.max_now_obs_len = global_config.observation_context_size
self.overlap_len = global_config.compressed_length
self.mid_memorys = []
self.max_mid_memory_len = global_config.compress_length_limit
self.mid_memory_info = ""
self.person_list = []
self.llm_summary = LLMRequest(
model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
)
async def initialize(self):
# --- Use utility function to determine chat type and fetch info ---
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.chat_id)
# logger.debug(f"is_group_chat: {self.is_group_chat}")
# logger.debug(f"chat_target_info: {self.chat_target_info}")
# --- End using utility function ---
# Fetch initial messages (existing logic)
initial_messages = get_raw_msg_before_timestamp_with_chat(self.chat_id, self.last_observe_time, 10)
self.talking_message = initial_messages
self.talking_message_str = await build_readable_messages(self.talking_message)
# 进行一次观察 返回观察结果observe_info
def get_observe_info(self, ids=None):
if ids:
mid_memory_str = ""
for id in ids:
print(f"id{id}")
try:
for mid_memory in self.mid_memorys:
if mid_memory["id"] == id:
mid_memory_by_id = mid_memory
msg_str = ""
for msg in mid_memory_by_id["messages"]:
msg_str += f"{msg['detailed_plain_text']}"
# time_diff = int((datetime.now().timestamp() - mid_memory_by_id["created_at"]) / 60)
# mid_memory_str += f"距离现在{time_diff}分钟前:\n{msg_str}\n"
mid_memory_str += f"{msg_str}\n"
except Exception as e:
logger.error(f"获取mid_memory_id失败: {e}")
traceback.print_exc()
return self.talking_message_str
return mid_memory_str + "现在群里正在聊:\n" + self.talking_message_str
else:
return self.talking_message_str
async def observe(self):
# 自上一次观察的新消息
new_messages_list = get_raw_msg_by_timestamp_with_chat(
chat_id=self.chat_id,
timestamp_start=self.last_observe_time,
timestamp_end=datetime.now().timestamp(),
limit=self.max_now_obs_len,
limit_mode="latest",
)
last_obs_time_mark = self.last_observe_time
if new_messages_list:
self.last_observe_time = new_messages_list[-1]["time"]
self.talking_message.extend(new_messages_list)
if len(self.talking_message) > self.max_now_obs_len:
# 计算需要移除的消息数量,保留最新的 max_now_obs_len 条
messages_to_remove_count = len(self.talking_message) - self.max_now_obs_len
oldest_messages = self.talking_message[:messages_to_remove_count]
self.talking_message = self.talking_message[messages_to_remove_count:] # 保留后半部分,即最新的
oldest_messages_str = await build_readable_messages(
messages=oldest_messages, timestamp_mode="normal", read_mark=0
)
# --- Build prompt using template ---
prompt = None # Initialize prompt as None
try:
# 构建 Prompt - 根据 is_group_chat 选择模板
if self.is_group_chat:
prompt_template_name = "chat_summary_group_prompt"
prompt = await global_prompt_manager.format_prompt(
prompt_template_name, chat_logs=oldest_messages_str
)
else:
# For private chat, add chat_target to the prompt variables
prompt_template_name = "chat_summary_private_prompt"
# Determine the target name for the prompt
chat_target_name = "对方" # Default fallback
if self.chat_target_info:
# Prioritize person_name, then nickname
chat_target_name = (
self.chat_target_info.get("person_name")
or self.chat_target_info.get("user_nickname")
or chat_target_name
)
# Format the private chat prompt
prompt = await global_prompt_manager.format_prompt(
prompt_template_name,
# Assuming the private prompt template uses {chat_target}
chat_target=chat_target_name,
chat_logs=oldest_messages_str,
)
except Exception as e:
logger.error(f"构建总结 Prompt 失败 for chat {self.chat_id}: {e}")
# prompt remains None
summary = "没有主题的闲聊" # 默认值
if prompt: # Check if prompt was built successfully
try:
summary_result, _, _ = await self.llm_summary.generate_response(prompt)
if summary_result: # 确保结果不为空
summary = summary_result
except Exception as e:
logger.error(f"总结主题失败 for chat {self.chat_id}: {e}")
# 保留默认总结 "没有主题的闲聊"
else:
logger.warning(f"因 Prompt 构建失败,跳过 LLM 总结 for chat {self.chat_id}")
mid_memory = {
"id": str(int(datetime.now().timestamp())),
"theme": summary,
"messages": oldest_messages, # 存储原始消息对象
"readable_messages": oldest_messages_str,
# "timestamps": oldest_timestamps,
"chat_id": self.chat_id,
"created_at": datetime.now().timestamp(),
}
self.mid_memorys.append(mid_memory)
if len(self.mid_memorys) > self.max_mid_memory_len:
self.mid_memorys.pop(0) # 移除最旧的
mid_memory_str = "之前聊天的内容概述是:\n"
for mid_memory_item in self.mid_memorys: # 重命名循环变量以示区分
time_diff = int((datetime.now().timestamp() - mid_memory_item["created_at"]) / 60)
mid_memory_str += (
f"距离现在{time_diff}分钟前(聊天记录id:{mid_memory_item['id']}){mid_memory_item['theme']}\n"
)
self.mid_memory_info = mid_memory_str
self.talking_message_str = await build_readable_messages(
messages=self.talking_message,
timestamp_mode="lite",
read_mark=last_obs_time_mark,
)
self.talking_message_str_truncate = await build_readable_messages(
messages=self.talking_message,
timestamp_mode="normal",
read_mark=last_obs_time_mark,
truncate=True,
)
self.person_list = await get_person_id_list(self.talking_message)
# print(f"self.11111person_list: {self.person_list}")
logger.trace(
f"Chat {self.chat_id} - 压缩早期记忆:{self.mid_memory_info}\n现在聊天内容:{self.talking_message_str}"
)
async def find_best_matching_message(self, search_str: str, min_similarity: float = 0.6) -> Optional[MessageRecv]:
"""
在 talking_message 中查找与 search_str 最匹配的消息。
Args:
search_str: 要搜索的字符串。
min_similarity: 要求的最低相似度0到1之间
Returns:
匹配的 MessageRecv 实例,如果找不到则返回 None。
"""
best_match_score = -1.0
best_match_dict = None
if not self.talking_message:
logger.debug(f"Chat {self.chat_id}: talking_message is empty, cannot find match for '{search_str}'")
return None
for message_dict in self.talking_message:
try:
# 临时创建 MessageRecv 以处理文本
temp_msg = MessageRecv(message_dict)
await temp_msg.process() # 处理消息以获取 processed_plain_text
current_text = temp_msg.processed_plain_text
if not current_text: # 跳过没有文本内容的消息
continue
# 计算相似度
matcher = difflib.SequenceMatcher(None, search_str, current_text)
score = matcher.ratio()
# logger.debug(f"Comparing '{search_str}' with '{current_text}', score: {score}") # 可选:用于调试
if score > best_match_score:
best_match_score = score
best_match_dict = message_dict
except Exception as e:
logger.error(f"Error processing message for matching in chat {self.chat_id}: {e}", exc_info=True)
continue # 继续处理下一条消息
if best_match_dict is not None and best_match_score >= min_similarity:
logger.debug(f"Found best match for '{search_str}' with score {best_match_score:.2f}")
try:
final_msg = MessageRecv(best_match_dict)
await final_msg.process()
# 确保 MessageRecv 实例有关联的 chat_stream
if hasattr(self, "chat_stream"):
final_msg.update_chat_stream(self.chat_stream)
else:
logger.warning(
f"ChattingObservation instance for chat {self.chat_id} does not have a chat_stream attribute set."
)
return final_msg
except Exception as e:
logger.error(f"Error creating final MessageRecv for chat {self.chat_id}: {e}", exc_info=True)
return None
else:
logger.debug(
f"No suitable match found for '{search_str}' in chat {self.chat_id} (best score: {best_match_score:.2f}, threshold: {min_similarity})"
)
return None
async def has_new_messages_since(self, timestamp: float) -> bool:
"""检查指定时间戳之后是否有新消息"""
count = num_new_messages_since(chat_id=self.chat_id, timestamp_start=timestamp)
return count > 0

View File

@@ -1,4 +1,5 @@
from .observation import Observation, ChattingObservation
from .observation import Observation
from .chatting_observation import ChattingObservation
import asyncio
import time
from typing import Optional, List, Dict, Tuple, Callable, Coroutine
@@ -10,7 +11,6 @@ from src.plugins.heartFC_chat.heartFC_chat import HeartFChatting
from src.plugins.heartFC_chat.normal_chat import NormalChat
from src.heart_flow.mai_state_manager import MaiStateInfo
from src.heart_flow.chat_state_info import ChatState, ChatStateInfo
from src.heart_flow.sub_mind import SubMind
from .utils_chat import get_chat_type_and_target_info
from .interest_chatting import InterestChatting
@@ -68,11 +68,6 @@ class SubHeartflow:
self.observations: List[ChattingObservation] = [] # 观察列表
# self.running_knowledges = [] # 运行中的知识,待完善
# LLM模型配置负责进行思考
self.sub_mind = SubMind(
subheartflow_id=self.subheartflow_id, chat_state=self.chat_state, observations=self.observations
)
# 日志前缀 - Moved determination to initialize
self.log_prefix = str(subheartflow_id) # Initial default prefix
@@ -186,7 +181,6 @@ class SubHeartflow:
# 创建 HeartFChatting 实例,并传递 从构造函数传入的 回调函数
self.heart_fc_instance = HeartFChatting(
chat_id=self.subheartflow_id,
sub_mind=self.sub_mind,
observations=self.observations, # 传递所有观察者
on_consecutive_no_reply_callback=self.hfc_no_reply_callback, # <-- Use stored callback
)
@@ -288,9 +282,6 @@ class SubHeartflow:
logger.info(f"{self.log_prefix} 子心流后台任务已停止。")
def update_current_mind(self, response):
self.sub_mind.update_current_mind(response)
def add_observation(self, observation: Observation):
for existing_obs in self.observations:
if existing_obs.observe_id == observation.observe_id:
@@ -332,7 +323,6 @@ class SubHeartflow:
interest_state = await self.get_interest_state()
return {
"interest_state": interest_state,
"current_mind": self.sub_mind.current_mind,
"chat_state": self.chat_state.chat_status.value,
"chat_state_changed_time": self.chat_state_changed_time,
}

View File

@@ -14,7 +14,7 @@ from src.plugins.chat.chat_stream import chat_manager
# 导入心流相关类
from src.heart_flow.sub_heartflow import SubHeartflow, ChatState
from src.heart_flow.mai_state_manager import MaiStateInfo
from .observation import ChattingObservation
from src.heart_flow.chatting_observation import ChattingObservation
# 导入LLM请求工具
from src.plugins.models.utils_model import LLMRequest

View File

@@ -2,24 +2,17 @@ from .observation import ChattingObservation
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import time
import traceback
from src.common.logger_manager import get_logger
from src.individuality.individuality import Individuality
import random
from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager
from src.do_tool.tool_use import ToolUser
from src.plugins.utils.json_utils import safe_json_dumps, process_llm_tool_calls
from src.heart_flow.chat_state_info import ChatStateInfo
from src.plugins.chat.chat_stream import chat_manager
from src.plugins.heartFC_chat.heartFC_Cycleinfo import CycleInfo
import difflib
from src.plugins.utils.json_utils import process_llm_tool_calls
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.memory_system.Hippocampus import HippocampusManager
import jieba
from src.common.logger_manager import get_logger
from src.heart_flow.sub_mind import SubMind
logger = get_logger("tool_use")
def init_prompt():
# ... 原有代码 ...
@@ -51,6 +44,7 @@ def init_prompt():
"""
Prompt(tool_executor_prompt, "tool_executor_prompt")
class ToolExecutor:
def __init__(self, subheartflow_id: str):
self.subheartflow_id = subheartflow_id
@@ -63,7 +57,9 @@ class ToolExecutor:
)
self.structured_info = []
async def execute_tools(self, sub_mind: SubMind, chat_target_name="对方", is_group_chat=False, return_details=False, cycle_info=None):
async def execute_tools(
self, sub_mind: SubMind, chat_target_name="对方", is_group_chat=False, return_details=False, cycle_info=None
):
"""
并行执行工具,返回结构化信息
@@ -119,7 +115,7 @@ class ToolExecutor:
prompt_personality=prompt_personality,
mood_info=mood_info,
bot_name=individuality.name,
time_now=time_now
time_now=time_now,
)
# 如果指定了cycle_info记录工具执行的prompt
@@ -128,9 +124,7 @@ class ToolExecutor:
# 调用LLM专注于工具使用
logger.info(f"开始执行工具调用{prompt}")
response, _, tool_calls = await self.llm_model.generate_response_tool_async(
prompt=prompt, tools=tools
)
response, _, tool_calls = await self.llm_model.generate_response_tool_async(prompt=prompt, tools=tools)
logger.debug(f"获取到工具原始输出:\n{tool_calls}")
# 处理工具调用和结果收集类似于SubMind中的逻辑
@@ -165,10 +159,7 @@ class ToolExecutor:
# 如果指定了cycle_info记录工具执行结果
if cycle_info:
cycle_info.set_tooluse_info(
tools_used=used_tools,
tool_results=new_structured_items
)
cycle_info.set_tooluse_info(tools_used=used_tools, tool_results=new_structured_items)
# 根据return_details决定返回值
if return_details:

View File

@@ -0,0 +1,34 @@
# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger_manager import get_logger
# Import the new utility function
logger = get_logger("observation")
# 所有观察的基类
class WorkingObservation:
def __init__(self, observe_id):
self.observe_info = ""
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
self.history_loop = []
self.structured_info = []
def get_observe_info(self):
return self.structured_info
def add_structured_info(self, structured_info: dict):
self.structured_info.append(structured_info)
async def observe(self):
observed_structured_infos = []
for structured_info in self.structured_info:
if structured_info.get("ttl") > 0:
structured_info["ttl"] -= 1
observed_structured_infos.append(structured_info)
logger.debug(f"观察到结构化信息仍旧在: {structured_info}")
self.structured_info = observed_structured_infos

View File

@@ -100,6 +100,7 @@ class MessageRecv(Message):
Args:
message_dict: MessageCQ序列化后的字典
"""
# print(f"message_dict: {message_dict}")
self.message_info = BaseMessageInfo.from_dict(message_dict.get("message_info", {}))
self.message_segment = Seg.from_dict(message_dict.get("message_segment", {}))

View File

@@ -212,7 +212,7 @@ class MessageManager:
_ = message.update_thinking_time() # 更新思考时间
thinking_start_time = message.thinking_start_time
now_time = time.time()
logger.debug(f"thinking_start_time:{thinking_start_time},now_time:{now_time}")
# logger.debug(f"thinking_start_time:{thinking_start_time},now_time:{now_time}")
thinking_messages_count, thinking_messages_length = count_messages_between(
start_time=thinking_start_time, end_time=now_time, stream_id=message.chat_stream.stream_id
)
@@ -236,7 +236,7 @@ class MessageManager:
await message.process() # 预处理消息内容
logger.debug(f"{message}")
# logger.debug(f"{message}")
# 使用全局 message_sender 实例
await send_message(message)

View File

@@ -117,7 +117,7 @@ class ImageManager:
cached_description = self._get_description_from_db(image_hash, "emoji")
if cached_description:
# logger.debug(f"缓存表情包描述: {cached_description}")
return f"[表达了{cached_description}]"
return f"[表情包,含义看起来是{cached_description}]"
# 调用AI获取描述
if image_format == "gif" or image_format == "GIF":
@@ -131,7 +131,7 @@ class ImageManager:
cached_description = self._get_description_from_db(image_hash, "emoji")
if cached_description:
logger.warning(f"虽然生成了描述,但是找到缓存表情包描述: {cached_description}")
return f"[表达了{cached_description}]"
return f"[表情包,含义看起来是{cached_description}]"
# 根据配置决定是否保存图片
if global_config.save_emoji:

View File

@@ -1,12 +1,12 @@
import os
import time
import json
from typing import List, Dict, Any, Optional, Tuple
from typing import List, Dict, Any, Tuple
from src.plugins.heartFC_chat.heartFC_Cycleinfo import CycleInfo
from src.common.logger_manager import get_logger
logger = get_logger("cycle_analyzer")
class CycleAnalyzer:
"""循环信息分析类提供查询和分析CycleInfo的工具"""
@@ -30,8 +30,7 @@ class CycleAnalyzer:
if not os.path.exists(self.base_dir):
return []
return [d for d in os.listdir(self.base_dir)
if os.path.isdir(os.path.join(self.base_dir, d))]
return [d for d in os.listdir(self.base_dir) if os.path.isdir(os.path.join(self.base_dir, d))]
except Exception as e:
logger.error(f"获取聊天流列表时出错: {e}")
return []
@@ -89,7 +88,7 @@ class CycleAnalyzer:
if not os.path.exists(filepath):
return f"文件不存在: {filepath}"
with open(filepath, 'r', encoding='utf-8') as f:
with open(filepath, "r", encoding="utf-8") as f:
return f.read()
except Exception as e:
logger.error(f"读取循环文件内容时出错: {e}")
@@ -116,11 +115,11 @@ class CycleAnalyzer:
tool_usage = {}
for filepath in files:
with open(filepath, 'r', encoding='utf-8') as f:
with open(filepath, "r", encoding="utf-8") as f:
content = f.read()
# 解析动作类型
for line in content.split('\n'):
for line in content.split("\n"):
if line.startswith("动作:"):
action = line[3:].strip()
action_counts[action] = action_counts.get(action, 0) + 1
@@ -128,14 +127,14 @@ class CycleAnalyzer:
# 解析耗时
elif line.startswith("耗时:"):
try:
duration = float(line[3:].strip().split('')[0])
duration = float(line[3:].strip().split("")[0])
total_duration += duration
except:
pass
# 解析工具使用
elif line.startswith("使用的工具:"):
tools = line[6:].strip().split(', ')
tools = line[6:].strip().split(", ")
for tool in tools:
tool_usage[tool] = tool_usage.get(tool, 0) + 1
@@ -146,7 +145,7 @@ class CycleAnalyzer:
"动作统计": action_counts,
"平均耗时": f"{avg_duration:.2f}",
"总耗时": f"{total_duration:.2f}",
"工具使用次数": tool_usage
"工具使用次数": tool_usage,
}
except Exception as e:
logger.error(f"分析聊天流循环时出错: {e}")
@@ -172,7 +171,7 @@ class CycleAnalyzer:
try:
# 从文件名中提取时间戳
filename = os.path.basename(filepath)
timestamp_str = filename.split('_', 2)[2].split('.')[0]
timestamp_str = filename.split("_", 2)[2].split(".")[0]
timestamp = time.mktime(time.strptime(timestamp_str, "%Y%m%d_%H%M%S"))
all_cycles.append((timestamp, stream_id, filepath))
except:
@@ -205,7 +204,7 @@ if __name__ == "__main__":
# 获取最新的循环
cycles = analyzer.get_stream_cycles(stream_id, limit=1)
if cycles:
print(f"\n最新循环内容:")
print("\n最新循环内容:")
print(analyzer.get_cycle_content(cycles[0]))
# 获取所有聊天流中最新的3个循环

View File

@@ -1,15 +1,15 @@
import os
import sys
import argparse
from typing import List, Dict, Any
from src.plugins.heartFC_chat.cycle_analyzer import CycleAnalyzer
def print_section(title: str, width: int = 80):
"""打印分隔线和标题"""
print("\n" + "=" * width)
print(f" {title} ".center(width, "="))
print("=" * width)
def list_streams_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
"""列出所有聊天流"""
print_section("所有聊天流")
@@ -23,6 +23,7 @@ def list_streams_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
count = analyzer.get_stream_cycle_count(stream_id)
print(f"[{i + 1}] {stream_id} - {count} 个循环")
def analyze_stream_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
"""分析指定聊天流的循环信息"""
stream_id = args.stream_id
@@ -40,16 +41,17 @@ def analyze_stream_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
print(f" 平均耗时: {stats['平均耗时']}")
print("\n动作统计:")
for action, count in stats['动作统计'].items():
for action, count in stats["动作统计"].items():
if count > 0:
percent = (count / stats['总循环数']) * 100
percent = (count / stats["总循环数"]) * 100
print(f" {action}: {count} ({percent:.1f}%)")
if stats.get('工具使用次数'):
if stats.get("工具使用次数"):
print("\n工具使用次数:")
for tool, count in stats['工具使用次数'].items():
for tool, count in stats["工具使用次数"].items():
print(f" {tool}: {count}")
def list_cycles_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
"""列出指定聊天流的循环"""
stream_id = args.stream_id
@@ -70,10 +72,11 @@ def list_cycles_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
for i, filepath in enumerate(cycles):
filename = os.path.basename(filepath)
cycle_id = filename.split('_')[1]
timestamp = filename.split('_', 2)[2].split('.')[0]
cycle_id = filename.split("_")[1]
timestamp = filename.split("_", 2)[2].split(".")[0]
print(f"[{i + 1}] 循环ID: {cycle_id}, 时间: {timestamp}, 文件: {filename}")
def view_cycle_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
"""查看指定循环的详细信息"""
stream_id = args.stream_id
@@ -95,6 +98,7 @@ def view_cycle_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
content = analyzer.get_cycle_content(filepath)
print(content)
def latest_cycles_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
"""查看所有聊天流中最新的几个循环"""
count = args.count if args.count > 0 else 10
@@ -108,12 +112,12 @@ def latest_cycles_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
for i, (stream_id, filepath) in enumerate(latest_cycles):
filename = os.path.basename(filepath)
cycle_id = filename.split('_')[1]
timestamp = filename.split('_', 2)[2].split('.')[0]
cycle_id = filename.split("_")[1]
timestamp = filename.split("_", 2)[2].split(".")[0]
print(f"[{i + 1}] 聊天流: {stream_id}, 循环ID: {cycle_id}, 时间: {timestamp}")
# 可以选择性添加提取基本信息的功能
with open(filepath, 'r', encoding='utf-8') as f:
with open(filepath, "r", encoding="utf-8") as f:
for line in f:
if line.startswith("动作:"):
action = line.strip()
@@ -121,6 +125,7 @@ def latest_cycles_cmd(analyzer: CycleAnalyzer, args: argparse.Namespace):
break
print()
def main():
parser = argparse.ArgumentParser(description="HeartFC循环信息查看工具")
subparsers = parser.add_subparsers(dest="command", help="子命令")
@@ -163,5 +168,6 @@ def main():
else:
parser.print_help()
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,319 @@
import time
import traceback
from typing import List, Optional, Dict, Any
from src.plugins.chat.message import MessageRecv, MessageThinking, MessageSending
from src.plugins.chat.message import Seg # Local import needed after move
from src.plugins.chat.message import UserInfo
from src.plugins.chat.chat_stream import chat_manager
from src.common.logger_manager import get_logger
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
from src.plugins.chat.utils_image import image_path_to_base64 # Local import needed after move
from src.plugins.utils.timer_calculator import Timer # <--- Import Timer
from src.plugins.emoji_system.emoji_manager import emoji_manager
from src.plugins.heartFC_chat.heartflow_prompt_builder import prompt_builder
from src.plugins.heartFC_chat.heartFC_sender import HeartFCSender
from src.plugins.chat.utils import process_llm_response
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
from src.plugins.moods.moods import MoodManager
from src.heart_flow.utils_chat import get_chat_type_and_target_info
from src.plugins.chat.chat_stream import ChatStream
logger = get_logger("expressor")
class DefaultExpressor:
def __init__(self, chat_id: str):
self.log_prefix = "expressor"
self.express_model = LLMRequest(
model=global_config.llm_normal,
temperature=global_config.llm_normal["temp"],
max_tokens=256,
request_type="response_heartflow",
)
self.heart_fc_sender = HeartFCSender()
self.chat_id = chat_id
self.chat_stream: Optional[ChatStream] = None
self.is_group_chat = True
self.chat_target_info = None
async def initialize(self):
self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.chat_id)
async def _create_thinking_message(self, anchor_message: Optional[MessageRecv]) -> Optional[str]:
"""创建思考消息 (尝试锚定到 anchor_message)"""
if not anchor_message or not anchor_message.chat_stream:
logger.error(f"{self.log_prefix} 无法创建思考消息,缺少有效的锚点消息或聊天流。")
return None
chat = anchor_message.chat_stream
messageinfo = anchor_message.message_info
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=messageinfo.platform,
)
logger.debug(f"创建思考消息:{anchor_message}")
logger.debug(f"创建思考消息chat{chat}")
logger.debug(f"创建思考消息bot_user_info{bot_user_info}")
logger.debug(f"创建思考消息messageinfo{messageinfo}")
thinking_time_point = round(time.time(), 2)
thinking_id = "mt" + str(thinking_time_point)
thinking_message = MessageThinking(
message_id=thinking_id,
chat_stream=chat,
bot_user_info=bot_user_info,
reply=anchor_message, # 回复的是锚点消息
thinking_start_time=thinking_time_point,
)
logger.debug(f"创建思考消息thinking_message{thinking_message}")
# Access MessageManager directly (using heart_fc_sender)
await self.heart_fc_sender.register_thinking(thinking_message)
return thinking_id
async def deal_reply(
self,
cycle_timers: dict,
action_data: Dict[str, Any],
reasoning: str,
anchor_message: MessageRecv,
) -> tuple[bool, str]:
# 创建思考消息
thinking_id = await self._create_thinking_message(anchor_message)
if not thinking_id:
raise Exception("无法创建思考消息")
try:
has_sent_something = False
# 处理文本部分
text_part = action_data.get("text", [])
if text_part:
with Timer("生成回复", cycle_timers):
# 可以保留原有的文本处理逻辑或进行适当调整
reply = await self.express(
in_mind_reply=text_part,
anchor_message=anchor_message,
thinking_id=thinking_id,
reason=reasoning,
)
if reply:
with Timer("发送文本消息", cycle_timers):
await self._send_response_messages(
anchor_message=anchor_message,
thinking_id=thinking_id,
response_set=reply,
)
has_sent_something = True
else:
logger.warning(f"{self.log_prefix} 文本回复生成失败")
# 处理表情部分
emoji_keyword = action_data.get("emojis", [])
if emoji_keyword:
await self._handle_emoji(anchor_message, [], emoji_keyword)
has_sent_something = True
if not has_sent_something:
logger.warning(f"{self.log_prefix} 回复动作未包含任何有效内容")
return has_sent_something, thinking_id
except Exception as e:
logger.error(f"回复失败: {e}")
return False, thinking_id
# --- 回复器 (Replier) 的定义 --- #
async def express(
self,
in_mind_reply: str,
reason: str,
anchor_message: MessageRecv,
thinking_id: str,
) -> Optional[List[str]]:
"""
回复器 (Replier): 核心逻辑,负责生成回复文本。
(已整合原 HeartFCGenerator 的功能)
"""
try:
# 1. 获取情绪影响因子并调整模型温度
arousal_multiplier = MoodManager.get_instance().get_arousal_multiplier()
current_temp = global_config.llm_normal["temp"] * arousal_multiplier
self.express_model.temperature = current_temp # 动态调整温度
# 2. 获取信息捕捉器
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
# --- Determine sender_name for private chat ---
sender_name_for_prompt = "某人" # Default for group or if info unavailable
if not self.is_group_chat and self.chat_target_info:
# Prioritize person_name, then nickname
sender_name_for_prompt = (
self.chat_target_info.get("person_name")
or self.chat_target_info.get("user_nickname")
or sender_name_for_prompt
)
# --- End determining sender_name ---
# 3. 构建 Prompt
with Timer("构建Prompt", {}): # 内部计时器,可选保留
prompt = await prompt_builder.build_prompt(
build_mode="focus",
chat_stream=self.chat_stream, # Pass the stream object
in_mind_reply=in_mind_reply,
reason=reason,
current_mind_info="",
structured_info="",
sender_name=sender_name_for_prompt, # Pass determined name
)
# 4. 调用 LLM 生成回复
content = None
reasoning_content = None
model_name = "unknown_model"
if not prompt:
logger.error(f"{self.log_prefix}[Replier-{thinking_id}] Prompt 构建失败,无法生成回复。")
return None
try:
with Timer("LLM生成", {}): # 内部计时器,可选保留
content, reasoning_content, model_name = await self.express_model.generate_response(prompt)
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\nPrompt:\n{prompt}\n生成回复: {content}\n")
# 捕捉 LLM 输出信息
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=model_name
)
except Exception as llm_e:
# 精简报错信息
logger.error(f"{self.log_prefix}[Replier-{thinking_id}] LLM 生成失败: {llm_e}")
return None # LLM 调用失败则无法生成回复
# 5. 处理 LLM 响应
if not content:
logger.warning(f"{self.log_prefix}[Replier-{thinking_id}] LLM 生成了空内容。")
return None
processed_response = process_llm_response(content)
if not processed_response:
logger.warning(f"{self.log_prefix}[Replier-{thinking_id}] 处理后的回复为空。")
return None
return processed_response
except Exception as e:
logger.error(f"{self.log_prefix}[Replier-{thinking_id}] 回复生成意外失败: {e}")
traceback.print_exc()
return None
# --- 发送器 (Sender) --- #
async def _send_response_messages(
self, anchor_message: Optional[MessageRecv], response_set: List[str], thinking_id: str
) -> Optional[MessageSending]:
"""发送回复消息 (尝试锚定到 anchor_message),使用 HeartFCSender"""
if not anchor_message or not anchor_message.chat_stream:
logger.error(f"{self.log_prefix} 无法发送回复,缺少有效的锚点消息或聊天流。")
return None
chat = self.chat_stream
chat_id = self.chat_id
stream_name = chat_manager.get_stream_name(chat_id) or chat_id # 获取流名称用于日志
# 检查思考过程是否仍在进行,并获取开始时间
thinking_start_time = await self.heart_fc_sender.get_thinking_start_time(chat_id, thinking_id)
if thinking_start_time is None:
logger.warning(f"[{stream_name}] {thinking_id} 思考过程未找到或已结束,无法发送回复。")
return None
mark_head = False
first_bot_msg: Optional[MessageSending] = None
reply_message_ids = [] # 记录实际发送的消息ID
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=chat.platform,
)
for i, msg_text in enumerate(response_set):
# 为每个消息片段生成唯一ID
part_message_id = f"{thinking_id}_{i}"
message_segment = Seg(type="text", data=msg_text)
bot_message = MessageSending(
message_id=part_message_id, # 使用片段的唯一ID
chat_stream=chat,
bot_user_info=bot_user_info,
sender_info=anchor_message.message_info.user_info,
message_segment=message_segment,
reply=anchor_message, # 回复原始锚点
is_head=not mark_head,
is_emoji=False,
thinking_start_time=thinking_start_time, # 传递原始思考开始时间
)
try:
if not mark_head:
mark_head = True
first_bot_msg = bot_message # 保存第一个成功发送的消息对象
await self.heart_fc_sender.type_and_send_message(bot_message, typing=False)
else:
await self.heart_fc_sender.type_and_send_message(bot_message, typing=True)
reply_message_ids.append(part_message_id) # 记录我们生成的ID
except Exception as e:
logger.error(
f"{self.log_prefix}[Sender-{thinking_id}] 发送回复片段 {i} ({part_message_id}) 时失败: {e}"
)
# 这里可以选择是继续发送下一个片段还是中止
# 在尝试发送完所有片段后,完成原始的 thinking_id 状态
try:
await self.heart_fc_sender.complete_thinking(chat_id, thinking_id)
except Exception as e:
logger.error(f"{self.log_prefix}[Sender-{thinking_id}] 完成思考状态 {thinking_id} 时出错: {e}")
return first_bot_msg # 返回第一个成功发送的消息对象
async def _handle_emoji(self, anchor_message: Optional[MessageRecv], response_set: List[str], send_emoji: str = ""):
"""处理表情包 (尝试锚定到 anchor_message),使用 HeartFCSender"""
if not anchor_message or not anchor_message.chat_stream:
logger.error(f"{self.log_prefix} 无法处理表情包,缺少有效的锚点消息或聊天流。")
return
chat = anchor_message.chat_stream
emoji_raw = await emoji_manager.get_emoji_for_text(send_emoji)
if emoji_raw:
emoji_path, description = emoji_raw
emoji_cq = image_path_to_base64(emoji_path)
thinking_time_point = round(time.time(), 2) # 用于唯一ID
message_segment = Seg(type="emoji", data=emoji_cq)
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
platform=anchor_message.message_info.platform,
)
bot_message = MessageSending(
message_id="me" + str(thinking_time_point), # 表情消息的唯一ID
chat_stream=chat,
bot_user_info=bot_user_info,
sender_info=anchor_message.message_info.user_info,
message_segment=message_segment,
reply=anchor_message, # 回复原始锚点
is_head=False, # 表情通常不是头部消息
is_emoji=True,
# 不需要 thinking_start_time
)
try:
await self.heart_fc_sender.send_and_store(bot_message)
except Exception as e:
logger.error(f"{self.log_prefix} 发送表情包 {bot_message.message_info.message_id} 时失败: {e}")

View File

@@ -4,7 +4,7 @@ import json
from typing import List, Optional, Dict, Any
class CycleInfo:
class CycleDetail:
"""循环信息记录类"""
def __init__(self, cycle_id: int):
@@ -70,9 +70,12 @@ class CycleInfo:
"""完成循环,记录结束时间"""
self.end_time = time.time()
def set_action_info(self, action_type: str, reasoning: str, action_taken: bool):
def set_action_info(
self, action_type: str, reasoning: str, action_taken: bool, action_data: Optional[Dict[str, Any]] = None
):
"""设置动作信息"""
self.action_type = action_type
self.action_data = action_data
self.reasoning = reasoning
self.action_taken = action_taken
@@ -143,7 +146,7 @@ class CycleInfo:
self.planner_info["parsed_result"] = parsed_result
@staticmethod
def save_to_file(cycle_info: 'CycleInfo', stream_id: str, base_dir: str = "log_debug") -> str:
def save_to_file(cycle_info: "CycleDetail", stream_id: str, base_dir: str = "log_debug") -> str:
"""
将CycleInfo保存到文件
@@ -169,7 +172,7 @@ class CycleInfo:
cycle_data = cycle_info.to_dict()
# 格式化输出成易读的格式
with open(filepath, 'w', encoding='utf-8') as f:
with open(filepath, "w", encoding="utf-8") as f:
# 写入基本信息
f.write(f"循环ID: {cycle_info.cycle_id}\n")
f.write(f"开始时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(cycle_info.start_time))}\n")
@@ -194,13 +197,13 @@ class CycleInfo:
# 写入响应信息
f.write("== 响应信息 ==\n")
f.write(f"锚点消息ID: {cycle_info.response_info['anchor_message_id']}\n")
if cycle_info.response_info['response_text']:
if cycle_info.response_info["response_text"]:
f.write("回复文本:\n")
for i, text in enumerate(cycle_info.response_info['response_text']):
for i, text in enumerate(cycle_info.response_info["response_text"]):
f.write(f" [{i + 1}] {text}\n")
if cycle_info.response_info['emoji_info']:
if cycle_info.response_info["emoji_info"]:
f.write(f"表情信息: {cycle_info.response_info['emoji_info']}\n")
if cycle_info.response_info['reply_message_ids']:
if cycle_info.response_info["reply_message_ids"]:
f.write(f"回复消息ID: {', '.join(cycle_info.response_info['reply_message_ids'])}\n")
f.write("\n")
@@ -213,14 +216,14 @@ class CycleInfo:
# 写入ToolUse信息
f.write("== 工具使用信息 ==\n")
if cycle_info.tooluse_info['tools_used']:
if cycle_info.tooluse_info["tools_used"]:
f.write(f"使用的工具: {', '.join(cycle_info.tooluse_info['tools_used'])}\n")
else:
f.write("未使用工具\n")
if cycle_info.tooluse_info['tool_results']:
if cycle_info.tooluse_info["tool_results"]:
f.write("工具结果:\n")
for i, result in enumerate(cycle_info.tooluse_info['tool_results']):
for i, result in enumerate(cycle_info.tooluse_info["tool_results"]):
f.write(f" [{i + 1}] 类型: {result.get('type', '未知')}, 内容: {result.get('content', '')}\n")
f.write("\n")
f.write("工具执行 Prompt:\n")
@@ -257,7 +260,7 @@ class CycleInfo:
return None
# 尝试从文件末尾读取JSON数据
with open(filepath, 'r', encoding='utf-8') as f:
with open(filepath, "r", encoding="utf-8") as f:
lines = f.readlines()
# 查找"解析结果:"后的JSON数据
@@ -296,8 +299,11 @@ class CycleInfo:
if not os.path.exists(stream_dir):
return []
files = [os.path.join(stream_dir, f) for f in os.listdir(stream_dir)
if f.startswith("cycle_") and f.endswith(".txt")]
files = [
os.path.join(stream_dir, f)
for f in os.listdir(stream_dir)
if f.startswith("cycle_") and f.endswith(".txt")
]
return sorted(files)
except Exception as e:
print(f"列出循环文件时出错: {e}")

File diff suppressed because it is too large Load Diff

View File

@@ -99,9 +99,13 @@ class HeartFCSender:
_ = message.update_thinking_time()
# --- 条件应用 set_reply 逻辑 ---
if message.apply_set_reply_logic and message.is_head and not message.is_private_message():
if (
message.is_head
and not message.is_private_message()
and message.reply.processed_plain_text != "[System Trigger Context]"
):
logger.debug(f"[{chat_id}] 应用 set_reply 逻辑: {message.processed_plain_text[:20]}...")
message.set_reply()
message.set_reply(message.reply)
# --- 结束条件 set_reply ---
await message.process()

View File

@@ -15,29 +15,51 @@ from ..memory_system.Hippocampus import HippocampusManager
from ..schedule.schedule_generator import bot_schedule
from ..knowledge.knowledge_lib import qa_manager
import traceback
from .heartFC_Cycleinfo import CycleInfo
from .heartFC_Cycleinfo import CycleDetail
logger = get_logger("prompt")
def init_prompt():
# Prompt(
# """
# {info_from_tools}
# {chat_target}
# {chat_talking_prompt}
# 现在你想要在群里发言或者回复。\n
# 你需要扮演一位网名叫{bot_name}的人进行回复,这个人的特点是:"{prompt_personality}"。
# 你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,你可以参考贴吧,知乎或者微博的回复风格。
# 看到以上聊天记录,你刚刚在想:
# {current_mind_info}
# 因为上述想法,你决定发言,原因是:{reason}
# 依照这些内容组织回复:{in_mind_reply},不要原句回复,根据下面的要求,对其进行修改
# 要求:是尽量简短一些。把握聊天内容,{reply_style2}。不要复读自己说的话。{prompt_ger}
# {reply_style1},说中文,不要刻意突出自身学科背景。
# {moderation_prompt}。不要浮夸,平淡一些。
# 注意:回复不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。""",
# "heart_flow_prompt",
# )
Prompt(
"""
{info_from_tools}
你可以参考以下的语言习惯:
当表示惊叹时,使用 我嘞个xxxx
当表示惊讶无语是,使用 不是?
当表示无语时,使用 阿这
当表示震惊时,使用 卧槽
{chat_target}
{chat_talking_prompt}
现在你想要在群里发言或者回复。\n
你需要扮演一位网名叫{bot_name}的人进行回复,这个人的特点是:"{prompt_personality}"
你正在{chat_target_2},现在请你读读之前的聊天记录,然后给出日常且口语化的回复,平淡一些,你可以参考贴吧,知乎或者微博的回复风格。
看到以上聊天记录,你刚刚在想:
{current_mind_info}
因为上述想法,你决定发言,原因是:{reason}
依照这些内容组织回复:{in_mind_reply},不要原句回复,根据下面的要求,对其进行修改
要求:是尽量简短一些。把握聊天内容,{reply_style2}。不要复读自己说的话。{prompt_ger}
{reply_style1},说中文,不要刻意突出自身学科背景。
{moderation_prompt}。不要浮夸,平淡一些。
你想表达:{in_mind_reply}
原因是:{reason}
请根据你想表达的内容,参考上述语言习惯,和下面的要求,给出回复
回复要求:
尽量简短一些。{reply_style2}{prompt_ger}
{reply_style1},说中文,不要刻意突出自身学科背景。不要浮夸,平淡一些。
注意:回复不要输出多余内容(包括前后缀冒号和引号括号表情包at或 @等 )。""",
"heart_flow_prompt",
)
@@ -71,14 +93,19 @@ def init_prompt():
2. 回复(reply)适用:
- 有实质性内容需要表达
- 有人提到你,但你还没有回应他
- 可以追加emoji_query表达情绪(emoji_query填写表情包的适用场合也就是当前场合)
- 不要追加太多表情
- 在合适的时候添加表情(不要总是添加)
- 如果你要回复特定某人的某句话或者你想回复较早的消息请在target中指定那句话的原始文本
3. 回复要求
3. 回复target选择
-如果选择了target不用特别提到某个人的人名
- 除非有明确的回复目标否则不要添加target
4. 回复要求:
-不要太浮夸
-一次只回复一个人
-一次只回复一个话题
4. 自我对话处理:
5. 自我对话处理:
- 如果是自己发的消息想继续,需自然衔接
- 避免重复或评价自己的发言
- 不要和自己聊天
@@ -95,8 +122,9 @@ def init_prompt():
如果选择reply请按以下JSON格式返回:
{{
"action": "reply",
"text": ["第一段文本", "第二段文本"], // 可选,如果想发送文本
"emojis": ["表情关键词1", "表情关键词2"] // 可选,如果想发送表情
"text": "你想表达的内容",
"emojis": "表情关键词",
"target": "你想要回复的原始文本内容(非必须,仅文本,不包含发送者)",
"reasoning": "你的决策理由",
}}
@@ -196,7 +224,9 @@ def init_prompt():
)
async def _build_prompt_focus(reason, current_mind_info, structured_info, chat_stream, sender_name, in_mind_reply) -> str:
async def _build_prompt_focus(
reason, current_mind_info, structured_info, chat_stream, sender_name, in_mind_reply
) -> str:
individuality = Individuality.get_instance()
prompt_personality = individuality.get_prompt(x_person=0, level=2)
@@ -265,19 +295,20 @@ async def _build_prompt_focus(reason, current_mind_info, structured_info, chat_s
prompt = await global_prompt_manager.format_prompt(
template_name,
info_from_tools=structured_info_prompt,
# info_from_tools=structured_info_prompt,
chat_target=chat_target_1, # Used in group template
chat_talking_prompt=chat_talking_prompt,
# chat_talking_prompt=chat_talking_prompt,
bot_name=global_config.BOT_NICKNAME,
prompt_personality=prompt_personality,
# prompt_personality=prompt_personality,
prompt_personality="",
chat_target_2=chat_target_2, # Used in group template
current_mind_info=current_mind_info,
# current_mind_info=current_mind_info,
reply_style2=reply_style2_chosen,
reply_style1=reply_style1_chosen,
reason=reason,
in_mind_reply=in_mind_reply,
prompt_ger=prompt_ger,
moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
# moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
# sender_name is not used in the group template
)
else: # Private chat
@@ -766,11 +797,11 @@ class PromptBuilder:
self,
is_group_chat: bool, # Now passed as argument
chat_target_info: Optional[dict], # Now passed as argument
cycle_history: Deque["CycleInfo"], # Now passed as argument (Type hint needs import or string)
observed_messages_str: str,
current_mind: Optional[str],
structured_info: Dict[str, Any],
current_available_actions: Dict[str, str],
cycle_info: Optional[str],
# replan_prompt: str, # Replan logic still simplified
) -> str:
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
@@ -809,35 +840,6 @@ class PromptBuilder:
else:
current_mind_block = "你的内心想法:\n[没有特别的想法]"
# Cycle info block (using passed cycle_history)
cycle_info_block = ""
recent_active_cycles = []
for cycle in reversed(cycle_history):
if cycle.action_taken:
recent_active_cycles.append(cycle)
if len(recent_active_cycles) == 3:
break
consecutive_text_replies = 0
responses_for_prompt = []
for cycle in recent_active_cycles:
if cycle.action_type == "text_reply":
consecutive_text_replies += 1
response_text = cycle.response_info.get("response_text", [])
formatted_response = "[空回复]" if not response_text else " ".join(response_text)
responses_for_prompt.append(formatted_response)
else:
break
if consecutive_text_replies >= 3:
cycle_info_block = f'你已经连续回复了三条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}",第三近: "{responses_for_prompt[2]}")。你回复的有点多了,请注意'
elif consecutive_text_replies == 2:
cycle_info_block = f'你已经连续回复了两条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}"),请注意'
elif consecutive_text_replies == 1:
cycle_info_block = f'你刚刚已经回复一条消息(内容: "{responses_for_prompt[0]}"'
if cycle_info_block:
cycle_info_block = f"\n【近期回复历史】\n{cycle_info_block}\n"
else:
cycle_info_block = "\n【近期回复历史】\n(最近没有连续文本回复)\n"
individuality = Individuality.get_instance()
prompt_personality = individuality.get_prompt(x_person=2, level=2)
@@ -857,7 +859,7 @@ class PromptBuilder:
structured_info_block=structured_info_block,
chat_content_block=chat_content_block,
current_mind_block=current_mind_block,
cycle_info_block=cycle_info_block,
cycle_info_block=cycle_info,
action_options_text=action_options_text,
# example_action=example_action_key,
)
@@ -872,7 +874,7 @@ class PromptBuilder:
self,
is_group_chat: bool,
chat_target_info: Optional[dict],
cycle_history: Deque["CycleInfo"],
cycle_history: Deque["CycleDetail"],
observed_messages_str: str,
structured_info: str,
current_available_actions: Dict[str, str],

View File

@@ -0,0 +1,44 @@
import time
import traceback
from typing import Optional
from src.plugins.chat.message import MessageRecv, BaseMessageInfo
from src.plugins.chat.chat_stream import ChatStream
from src.plugins.chat.message import UserInfo
from src.common.logger_manager import get_logger
logger = get_logger(__name__)
async def _create_empty_anchor_message(
platform: str, group_info: dict, chat_stream: ChatStream
) -> Optional[MessageRecv]:
"""
重构观察到的最后一条消息作为回复的锚点,
如果重构失败或观察为空,则创建一个占位符。
"""
try:
placeholder_id = f"mid_pf_{int(time.time() * 1000)}"
placeholder_user = UserInfo(user_id="system_trigger", user_nickname="System Trigger", platform=platform)
placeholder_msg_info = BaseMessageInfo(
message_id=placeholder_id,
platform=platform,
group_info=group_info,
user_info=placeholder_user,
time=time.time(),
)
placeholder_msg_dict = {
"message_info": placeholder_msg_info.to_dict(),
"processed_plain_text": "[System Trigger Context]",
"raw_message": "",
"time": placeholder_msg_info.time,
}
anchor_message = MessageRecv(placeholder_msg_dict)
anchor_message.update_chat_stream(chat_stream)
logger.debug(f"创建占位符锚点消息: ID={anchor_message.message_info.message_id}")
return anchor_message
except Exception as e:
logger.error(f"Error getting/creating anchor message: {e}")
logger.error(traceback.format_exc())
return None

View File

@@ -0,0 +1,48 @@
from abc import ABC, abstractmethod
from typing import List, Any, Optional
from src.heart_flow.info.info_base import InfoBase
from src.heart_flow.chatting_observation import Observation
from src.common.logger_manager import get_logger
logger = get_logger("base_processor")
class BaseProcessor(ABC):
"""信息处理器基类
所有具体的信息处理器都应该继承这个基类并实现process_info方法。
支持处理InfoBase和Observation类型的输入。
"""
@abstractmethod
def __init__(self):
"""初始化处理器"""
pass
@abstractmethod
async def process_info(
self, infos: List[InfoBase], observations: Optional[List[Observation]] = None, **kwargs: Any
) -> List[InfoBase]:
"""处理信息对象的抽象方法
Args:
infos: InfoBase对象列表
observations: 可选的Observation对象列表
**kwargs: 其他可选参数
Returns:
List[InfoBase]: 处理后的InfoBase实例列表
"""
pass
def _create_processed_item(self, info_type: str, info_data: Any) -> dict:
"""创建处理后的信息项
Args:
info_type: 信息类型
info_data: 信息数据
Returns:
dict: 处理后的信息项
"""
return {"type": info_type, "id": f"info_{info_type}", "content": info_data, "ttl": 3}

View File

@@ -0,0 +1,70 @@
from typing import List, Optional, Any
from src.heart_flow.info.obs_info import ObsInfo
from src.heart_flow.chatting_observation import Observation
from src.heart_flow.info.info_base import InfoBase
from .base_processor import BaseProcessor
from src.common.logger_manager import get_logger
from src.heart_flow.chatting_observation import ChattingObservation
from src.heart_flow.hfcloop_observation import HFCloopObservation
from src.heart_flow.info.cycle_info import CycleInfo
logger = get_logger("observation")
class ChattingInfoProcessor(BaseProcessor):
"""观察处理器
用于处理Observation对象将其转换为ObsInfo对象。
"""
def __init__(self):
"""初始化观察处理器"""
super().__init__()
async def process_info(self, observations: Optional[List[Observation]] = None, **kwargs: Any) -> List[InfoBase]:
"""处理Observation对象
Args:
infos: InfoBase对象列表
observations: 可选的Observation对象列表
**kwargs: 其他可选参数
Returns:
List[InfoBase]: 处理后的ObsInfo实例列表
"""
print(f"observations: {observations}")
processed_infos = []
# 处理Observation对象
if observations:
for obs in observations:
print(f"obs: {obs}")
if isinstance(obs, ChattingObservation):
obs_info = ObsInfo()
# 设置说话消息
if hasattr(obs, "talking_message_str"):
obs_info.set_talking_message(obs.talking_message_str)
# 设置截断后的说话消息
if hasattr(obs, "talking_message_str_truncate"):
obs_info.set_talking_message_str_truncate(obs.talking_message_str_truncate)
# 设置聊天类型
is_group_chat = obs.is_group_chat
if is_group_chat:
chat_type = "group"
else:
chat_type = "private"
obs_info.set_chat_target(obs.chat_target_info.get("person_name", "某人"))
obs_info.set_chat_type(chat_type)
logger.debug(f"聊天信息处理器处理后的信息: {obs_info}")
processed_infos.append(obs_info)
if isinstance(obs, HFCloopObservation):
obs_info = CycleInfo()
obs_info.set_observe_info(obs.observe_info)
processed_infos.append(obs_info)
return processed_infos

View File

@@ -1,4 +1,4 @@
from .observation import ChattingObservation
from src.heart_flow.chatting_observation import ChattingObservation, Observation
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import time
@@ -6,17 +6,21 @@ import traceback
from src.common.logger_manager import get_logger
from src.individuality.individuality import Individuality
import random
from ..plugins.utils.prompt_builder import Prompt, global_prompt_manager
from src.do_tool.tool_use import ToolUser
from src.plugins.utils.json_utils import safe_json_dumps, process_llm_tool_calls
from src.heart_flow.chat_state_info import ChatStateInfo
from src.plugins.utils.prompt_builder import Prompt, global_prompt_manager
from src.plugins.utils.json_utils import safe_json_dumps
from src.plugins.chat.chat_stream import chat_manager
from src.plugins.heartFC_chat.heartFC_Cycleinfo import CycleInfo
import difflib
from src.plugins.person_info.relationship_manager import relationship_manager
from src.plugins.memory_system.Hippocampus import HippocampusManager
import jieba
from .base_processor import BaseProcessor
from src.heart_flow.info.mind_info import MindInfo
from typing import List, Optional
from src.heart_flow.memory_observation import MemoryObservation
from src.heart_flow.hfcloop_observation import HFCloopObservation
from src.plugins.heartFC_chat.info_processors.processor_utils import (
calculate_similarity,
calculate_replacement_probability,
get_spark,
)
logger = get_logger("sub_heartflow")
@@ -67,43 +71,9 @@ def init_prompt():
Prompt(private_prompt, "sub_heartflow_prompt_private_before")
def calculate_similarity(text_a: str, text_b: str) -> float:
"""
计算两个文本字符串的相似度
"""
if not text_a or not text_b:
return 0.0
matcher = difflib.SequenceMatcher(None, text_a, text_b)
return matcher.ratio()
def calculate_replacement_probability(similarity: float) -> float:
"""
根据相似度计算替换的概率
规则
- 相似度 <= 0.4: 概率 = 0
- 相似度 >= 0.9: 概率 = 1
- 相似度 == 0.6: 概率 = 0.7
- 0.4 < 相似度 <= 0.6: 线性插值 (0.4, 0) (0.6, 0.7)
- 0.6 < 相似度 < 0.9: 线性插值 (0.6, 0.7) (0.9, 1.0)
"""
if similarity <= 0.4:
return 0.0
elif similarity >= 0.9:
return 1.0
elif 0.4 < similarity <= 0.6:
# p = 3.5 * s - 1.4
probability = 3.5 * similarity - 1.4
return max(0.0, probability)
else: # 0.6 < similarity < 0.9
# p = s + 0.1
probability = similarity + 0.1
return min(1.0, max(0.0, probability))
class SubMind:
def __init__(self, subheartflow_id: str, chat_state: ChatStateInfo, observations: ChattingObservation):
self.last_active_time = None
class MindProcessor(BaseProcessor):
def __init__(self, subheartflow_id: str):
super().__init__()
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
@@ -113,9 +83,6 @@ class SubMind:
request_type="sub_heart_flow",
)
self.chat_state = chat_state
self.observations = observations
self.current_mind = ""
self.past_mind = []
self.structured_info = []
@@ -153,16 +120,28 @@ class SubMind:
self.structured_info_str = "\n".join(lines)
logger.debug(f"{self.log_prefix} 更新 structured_info_str: \n{self.structured_info_str}")
async def do_thinking_before_reply(self, history_cycle: list[CycleInfo] = None, parallel_mode: bool = True, no_tools: bool = True, return_prompt: bool = False, cycle_info: CycleInfo = None):
async def process_info(self, observations: Optional[List[Observation]] = None, *infos) -> List[dict]:
"""处理信息对象
Args:
*infos: 可变数量的InfoBase类型的信息对象
Returns:
List[dict]: 处理后的结构化信息列表
"""
current_mind = await self.do_thinking_before_reply(observations)
mind_info = MindInfo()
mind_info.set_current_mind(current_mind)
return [mind_info]
async def do_thinking_before_reply(self, observations: Optional[List[Observation]] = None):
"""
在回复前进行思考生成内心想法并收集工具调用结果
参数:
history_cycle: 历史循环信息
parallel_mode: 是否在并行模式下执行默认为True
no_tools: 是否禁用工具调用默认为True
return_prompt: 是否返回prompt默认为False
cycle_info: 循环信息对象可用于记录详细执行信息
observations: 观察信息
返回:
如果return_prompt为False:
@@ -170,8 +149,6 @@ class SubMind:
如果return_prompt为True:
tuple: (current_mind, past_mind, prompt) 当前想法过去的想法列表和使用的prompt
"""
# 更新活跃时间
self.last_active_time = time.time()
# ---------- 0. 更新和清理 structured_info ----------
if self.structured_info:
@@ -191,68 +168,25 @@ class SubMind:
# ---------- 1. 准备基础数据 ----------
# 获取现有想法和情绪状态
previous_mind = self.current_mind if self.current_mind else ""
mood_info = self.chat_state.mood
# 获取观察对象
observation: ChattingObservation = self.observations[0] if self.observations else None
if not observation or not hasattr(observation, "is_group_chat"): # Ensure it's ChattingObservation or similar
logger.error(f"{self.log_prefix} 无法获取有效的观察对象或缺少聊天类型信息")
self.update_current_mind("(观察出错了...)")
return self.current_mind, self.past_mind
for observation in observations:
if isinstance(observation, ChattingObservation):
# 获取聊天元信息
is_group_chat = observation.is_group_chat
chat_target_info = observation.chat_target_info
chat_target_name = "对方" # Default for private
chat_target_name = "对方" # 私聊默认名称
if not is_group_chat and chat_target_info:
# 优先使用person_name其次user_nickname最后回退到默认值
chat_target_name = (
chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or chat_target_name
)
# 获取观察内容
# 获取聊天内容
chat_observe_info = observation.get_observe_info()
person_list = observation.person_list
# ---------- 2. 获取记忆 ----------
try:
# 从聊天内容中提取关键词
chat_words = set(jieba.cut(chat_observe_info))
# 过滤掉停用词和单字词
keywords = [word for word in chat_words if len(word) > 1]
# 去重并限制数量
keywords = list(set(keywords))[:5]
logger.debug(f"{self.log_prefix} 提取的关键词: {keywords}")
# 检查已有记忆,过滤掉已存在的主题
existing_topics = set()
for item in self.structured_info:
if item["type"] == "memory":
existing_topics.add(item["id"])
# 过滤掉已存在的主题
filtered_keywords = [k for k in keywords if k not in existing_topics]
if not filtered_keywords:
logger.debug(f"{self.log_prefix} 所有关键词对应的记忆都已存在,跳过记忆提取")
else:
# 调用记忆系统获取相关记忆
related_memory = await HippocampusManager.get_instance().get_memory_from_topic(
valid_keywords=filtered_keywords, max_memory_num=3, max_memory_length=2, max_depth=3
)
logger.debug(f"{self.log_prefix} 获取到的记忆: {related_memory}")
if related_memory:
for topic, memory in related_memory:
new_item = {"type": "memory", "id": topic, "content": memory, "ttl": 3}
self.structured_info.append(new_item)
logger.debug(f"{self.log_prefix} 添加新记忆: {topic} - {memory}")
else:
logger.debug(f"{self.log_prefix} 没有找到相关记忆")
except Exception as e:
logger.error(f"{self.log_prefix} 获取记忆时出错: {e}")
logger.error(traceback.format_exc())
if isinstance(observation, MemoryObservation):
memory_observe_info = observation.get_observe_info()
if isinstance(observation, HFCloopObservation):
hfcloop_observe_info = observation.get_observe_info()
# ---------- 3. 准备个性化数据 ----------
# 获取个性化信息
@@ -268,72 +202,9 @@ class SubMind:
# 获取当前时间
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# ---------- 4. 构建思考指导部分 ----------
# 创建本地随机数生成器,基于分钟数作为种子
local_random = random.Random()
current_minute = int(time.strftime("%M"))
local_random.seed(current_minute)
# 思考指导选项和权重
hf_options = [
("可以参考之前的想法,在原来想法的基础上继续思考", 0.2),
("可以参考之前的想法,在原来的想法上尝试新的话题", 0.4),
("不要太深入", 0.2),
("进行深入思考", 0.2),
]
# 准备循环信息块 (分析最近的活动循环)
recent_active_cycles = []
for cycle in reversed(history_cycle):
# 只关心实际执行了动作的循环
if cycle.action_taken:
recent_active_cycles.append(cycle)
# 最多找最近的3个活动循环
if len(recent_active_cycles) == 3:
break
cycle_info_block = ""
consecutive_text_replies = 0
responses_for_prompt = []
# 检查这最近的活动循环中有多少是连续的文本回复 (从最近的开始看)
for cycle in recent_active_cycles:
if cycle.action_type == "text_reply":
consecutive_text_replies += 1
# 获取回复内容,如果不存在则返回'[空回复]'
response_text = cycle.response_info.get("response_text", [])
# 使用简单的 join 来格式化回复内容列表
formatted_response = "[空回复]" if not response_text else " ".join(response_text)
responses_for_prompt.append(formatted_response)
else:
# 一旦遇到非文本回复,连续性中断
break
# 根据连续文本回复的数量构建提示信息
# 注意: responses_for_prompt 列表是从最近到最远排序的
if consecutive_text_replies >= 3: # 如果最近的三个活动都是文本回复
cycle_info_block = f'你已经连续回复了三条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}",第三近: "{responses_for_prompt[2]}")。你回复的有点多了,请注意'
elif consecutive_text_replies == 2: # 如果最近的两个活动是文本回复
cycle_info_block = f'你已经连续回复了两条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}"),请注意'
elif consecutive_text_replies == 1: # 如果最近的一个活动是文本回复
cycle_info_block = f'你刚刚已经回复一条消息(内容: "{responses_for_prompt[0]}"'
# 包装提示块,增加可读性,即使没有连续回复也给个标记
if cycle_info_block:
cycle_info_block = f"\n【近期回复历史】\n{cycle_info_block}\n"
else:
# 如果最近的活动循环不是文本回复,或者没有活动循环
cycle_info_block = "\n【近期回复历史】\n(最近没有连续文本回复)\n"
# 加权随机选择思考指导
hf_do_next = local_random.choices(
[option[0] for option in hf_options], weights=[option[1] for option in hf_options], k=1
)[0]
spark_prompt = get_spark()
# ---------- 5. 构建最终提示词 ----------
# --- 根据聊天类型选择模板 ---
logger.debug(f"is_group_chat: {is_group_chat}")
template_name = "sub_heartflow_prompt_before" if is_group_chat else "sub_heartflow_prompt_private_before"
logger.debug(f"{self.log_prefix} 使用{'群聊' if is_group_chat else '私聊'}思考模板")
@@ -344,31 +215,21 @@ class SubMind:
bot_name=individuality.name,
time_now=time_now,
chat_observe_info=chat_observe_info,
mood_info=mood_info,
hf_do_next=hf_do_next,
mood_info="mood_info",
hf_do_next=spark_prompt,
last_mind=previous_mind,
cycle_info_block=cycle_info_block,
cycle_info_block=hfcloop_observe_info,
chat_target_name=chat_target_name,
)
# 在构建完提示词后生成最终的prompt字符串
final_prompt = prompt
# ---------- 6. 调用LLM ----------
# 如果指定了cycle_info记录structured_info和prompt
if cycle_info:
cycle_info.set_submind_info(
prompt=final_prompt,
structured_info=self.structured_info_str
)
content = "" # 初始化内容变量
try:
# 调用LLM生成响应
response = await self.llm_model.generate_response_async(
prompt=final_prompt
)
response, _ = await self.llm_model.generate_response_async(prompt=final_prompt)
# 直接使用LLM返回的文本响应作为 content
content = response if response else ""
@@ -380,15 +241,26 @@ class SubMind:
content = "思考过程中出现错误"
# 记录初步思考结果
logger.debug(f"{self.log_prefix} 初步心流思考结果: {content}\nprompt: {final_prompt}\n")
logger.debug(f"{self.log_prefix} 思考prompt: \n{final_prompt}\n")
# 处理空响应情况
if not content:
content = "(不知道该想些什么...)"
logger.warning(f"{self.log_prefix} LLM返回空结果思考失败。")
# ---------- 7. 应用概率性去重和修饰 ----------
new_content = content # 保存 LLM 直接输出的结果
# ---------- 8. 更新思考状态并返回结果 ----------
logger.info(f"{self.log_prefix} 思考结果: {content}")
# 更新当前思考内容
self.update_current_mind(content)
return content
def update_current_mind(self, response):
if self.current_mind: # 只有当 current_mind 非空时才添加到 past_mind
self.past_mind.append(self.current_mind)
self.current_mind = response
def de_similar(self, previous_mind, new_content):
try:
similarity = calculate_similarity(previous_mind, new_content)
replacement_prob = calculate_replacement_probability(similarity)
@@ -422,7 +294,9 @@ class SubMind:
else:
# 相似度较高但非100%,执行标准去重逻辑
logger.debug(f"{self.log_prefix} 执行概率性去重 (概率: {replacement_prob:.2f})...")
logger.debug(f"{self.log_prefix} previous_mind类型: {type(previous_mind)}, new_content类型: {type(new_content)}")
logger.debug(
f"{self.log_prefix} previous_mind类型: {type(previous_mind)}, new_content类型: {type(new_content)}"
)
matcher = difflib.SequenceMatcher(None, previous_mind, new_content)
logger.debug(f"{self.log_prefix} matcher类型: {type(matcher)}")
@@ -433,7 +307,9 @@ class SubMind:
# 获取并记录所有匹配块
matching_blocks = matcher.get_matching_blocks()
logger.debug(f"{self.log_prefix} 匹配块数量: {len(matching_blocks)}")
logger.debug(f"{self.log_prefix} 匹配块示例(前3个): {matching_blocks[:3] if len(matching_blocks) > 3 else matching_blocks}")
logger.debug(
f"{self.log_prefix} 匹配块示例(前3个): {matching_blocks[:3] if len(matching_blocks) > 3 else matching_blocks}"
)
# get_matching_blocks()返回形如[(i, j, n), ...]的列表其中i是a中的索引j是b中的索引n是匹配的长度
for idx, match in enumerate(matching_blocks):
@@ -449,9 +325,13 @@ class SubMind:
# 确保添加的是字符串,而不是元组
try:
non_matching_part = new_content[last_match_end_in_b:j]
logger.debug(f"{self.log_prefix} 添加非匹配部分: '{non_matching_part}', 类型: {type(non_matching_part)}")
logger.debug(
f"{self.log_prefix} 添加非匹配部分: '{non_matching_part}', 类型: {type(non_matching_part)}"
)
if not isinstance(non_matching_part, str):
logger.warning(f"{self.log_prefix} 非匹配部分不是字符串类型: {type(non_matching_part)}")
logger.warning(
f"{self.log_prefix} 非匹配部分不是字符串类型: {type(non_matching_part)}"
)
non_matching_part = str(non_matching_part)
deduplicated_parts.append(non_matching_part)
except Exception as e:
@@ -511,31 +391,7 @@ class SubMind:
# 出错时保留原始 content
content = new_content
# ---------- 8. 更新思考状态并返回结果 ----------
logger.info(f"{self.log_prefix} 最终心流思考结果: {content}")
# 更新当前思考内容
self.update_current_mind(content)
# 在原始代码的return语句前记录结果并根据return_prompt决定返回值
if cycle_info:
cycle_info.set_submind_info(
result=content
)
if return_prompt:
return content, self.past_mind, final_prompt
else:
return content, self.past_mind
def update_current_mind(self, response):
if self.current_mind: # 只有当 current_mind 非空时才添加到 past_mind
self.past_mind.append(self.current_mind)
# 可以考虑限制 past_mind 的大小,例如:
# max_past_mind_size = 10
# if len(self.past_mind) > max_past_mind_size:
# self.past_mind.pop(0) # 移除最旧的
self.current_mind = response
return content
init_prompt()

View File

@@ -0,0 +1,56 @@
import difflib
import random
import time
def calculate_similarity(text_a: str, text_b: str) -> float:
"""
计算两个文本字符串的相似度。
"""
if not text_a or not text_b:
return 0.0
matcher = difflib.SequenceMatcher(None, text_a, text_b)
return matcher.ratio()
def calculate_replacement_probability(similarity: float) -> float:
"""
根据相似度计算替换的概率。
规则:
- 相似度 <= 0.4: 概率 = 0
- 相似度 >= 0.9: 概率 = 1
- 相似度 == 0.6: 概率 = 0.7
- 0.4 < 相似度 <= 0.6: 线性插值 (0.4, 0) 到 (0.6, 0.7)
- 0.6 < 相似度 < 0.9: 线性插值 (0.6, 0.7) 到 (0.9, 1.0)
"""
if similarity <= 0.4:
return 0.0
elif similarity >= 0.9:
return 1.0
elif 0.4 < similarity <= 0.6:
# p = 3.5 * s - 1.4
probability = 3.5 * similarity - 1.4
return max(0.0, probability)
else: # 0.6 < similarity < 0.9
# p = s + 0.1
probability = similarity + 0.1
return min(1.0, max(0.0, probability))
def get_spark():
local_random = random.Random()
current_minute = int(time.strftime("%M"))
local_random.seed(current_minute)
hf_options = [
("可以参考之前的想法,在原来想法的基础上继续思考", 0.2),
("可以参考之前的想法,在原来的想法上尝试新的话题", 0.4),
("不要太深入", 0.2),
("进行深入思考", 0.2),
]
# 加权随机选择思考指导
hf_do_next = local_random.choices(
[option[0] for option in hf_options], weights=[option[1] for option in hf_options], k=1
)[0]
return hf_do_next

View File

@@ -0,0 +1,200 @@
from src.heart_flow.chatting_observation import ChattingObservation
from src.plugins.models.utils_model import LLMRequest
from src.config.config import global_config
import time
from src.common.logger_manager import get_logger
from src.individuality.individuality import Individuality
from src.plugins.utils.prompt_builder import Prompt, global_prompt_manager
from src.do_tool.tool_use import ToolUser
from src.plugins.utils.json_utils import process_llm_tool_calls
from src.plugins.person_info.relationship_manager import relationship_manager
from .base_processor import BaseProcessor
from typing import List, Optional
from src.heart_flow.chatting_observation import Observation
from src.heart_flow.working_observation import WorkingObservation
from src.heart_flow.info.structured_info import StructuredInfo
logger = get_logger("tool_use")
def init_prompt():
# ... 原有代码 ...
# 添加工具执行器提示词
tool_executor_prompt = """
你是一个专门执行工具的助手。你的名字是{bot_name}。现在是{time_now}
你要在群聊中扮演以下角色:
{prompt_personality}
你当前的额外信息:
{extra_info}
你的心情是:{mood_info}
{relation_prompt}
群里正在进行的聊天内容:
{chat_observe_info}
请仔细分析聊天内容,考虑以下几点:
1. 内容中是否包含需要查询信息的问题
2. 是否需要执行特定操作
3. 是否有明确的工具使用指令
4. 考虑用户与你的关系以及当前的对话氛围
如果需要使用工具,请直接调用相应的工具函数。如果不需要使用工具,请简单输出"无需使用工具"
尽量只在确实必要时才使用工具。
"""
Prompt(tool_executor_prompt, "tool_executor_prompt")
class ToolProcessor(BaseProcessor):
def __init__(self, subheartflow_id: str):
super().__init__()
self.subheartflow_id = subheartflow_id
self.log_prefix = f"[{subheartflow_id}:ToolExecutor] "
self.llm_model = LLMRequest(
model=global_config.llm_normal,
max_tokens=500,
request_type="tool_execution",
)
self.structured_info = []
async def process_info(self, observations: Optional[List[Observation]] = None, *infos) -> List[dict]:
"""处理信息对象
Args:
*infos: 可变数量的InfoBase类型的信息对象
Returns:
list: 处理后的结构化信息列表
"""
if observations:
for observation in observations:
if isinstance(observation, ChattingObservation):
result, used_tools, prompt = await self.execute_tools(observation)
# 更新WorkingObservation中的结构化信息
for observation in observations:
if isinstance(observation, WorkingObservation):
for structured_info in result:
logger.debug(f"{self.log_prefix} 更新WorkingObservation中的结构化信息: {structured_info}")
observation.add_structured_info(structured_info)
working_infos = observation.get_observe_info()
logger.debug(f"{self.log_prefix} 获取更新后WorkingObservation中的结构化信息: {working_infos}")
structured_info = StructuredInfo()
for working_info in working_infos:
structured_info.set_info(working_info.get("type"), working_info.get("content"))
return [structured_info]
async def execute_tools(self, observation: ChattingObservation):
"""
并行执行工具,返回结构化信息
参数:
sub_mind: 子思维对象
chat_target_name: 聊天目标名称,默认为"对方"
is_group_chat: 是否为群聊默认为False
return_details: 是否返回详细信息默认为False
cycle_info: 循环信息对象,可用于记录详细执行信息
返回:
如果return_details为False:
List[Dict]: 工具执行结果的结构化信息列表
如果return_details为True:
Tuple[List[Dict], List[str], str]: (工具执行结果列表, 使用的工具列表, 工具执行提示词)
"""
tool_instance = ToolUser()
tools = tool_instance._define_tools()
logger.debug(f"observation: {observation}")
logger.debug(f"observation.chat_target_info: {observation.chat_target_info}")
logger.debug(f"observation.is_group_chat: {observation.is_group_chat}")
logger.debug(f"observation.person_list: {observation.person_list}")
is_group_chat = observation.is_group_chat
if not is_group_chat:
chat_target_name = (
observation.chat_target_info.get("person_name")
or observation.chat_target_info.get("user_nickname")
or "对方"
)
else:
chat_target_name = "群聊"
chat_observe_info = observation.get_observe_info()
person_list = observation.person_list
# 构建关系信息
relation_prompt = "【关系信息】\n"
for person in person_list:
relation_prompt += await relationship_manager.build_relationship_info(person, is_id=True)
# 获取个性信息
individuality = Individuality.get_instance()
prompt_personality = individuality.get_prompt(x_person=2, level=2)
# 获取心情信息
mood_info = observation.chat_state.mood if hasattr(observation, "chat_state") else ""
# 获取时间信息
time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# 构建专用于工具调用的提示词
prompt = await global_prompt_manager.format_prompt(
"tool_executor_prompt",
extra_info="extra_structured_info",
chat_observe_info=chat_observe_info,
# chat_target_name=chat_target_name,
is_group_chat=is_group_chat,
relation_prompt=relation_prompt,
prompt_personality=prompt_personality,
mood_info=mood_info,
bot_name=individuality.name,
time_now=time_now,
)
# 调用LLM专注于工具使用
logger.info(f"开始执行工具调用{prompt}")
response, _, tool_calls = await self.llm_model.generate_response_tool_async(prompt=prompt, tools=tools)
logger.debug(f"获取到工具原始输出:\n{tool_calls}")
# 处理工具调用和结果收集类似于SubMind中的逻辑
new_structured_items = []
used_tools = [] # 记录使用了哪些工具
if tool_calls:
success, valid_tool_calls, error_msg = process_llm_tool_calls(tool_calls)
if success and valid_tool_calls:
for tool_call in valid_tool_calls:
try:
# 记录使用的工具名称
tool_name = tool_call.get("name", "unknown_tool")
used_tools.append(tool_name)
result = await tool_instance._execute_tool_call(tool_call)
name = result.get("type", "unknown_type")
content = result.get("content", "")
logger.info(f"工具{name},获得信息:{content}")
if result:
new_item = {
"type": result.get("type", "unknown_type"),
"id": result.get("id", f"tool_exec_{time.time()}"),
"content": result.get("content", ""),
"ttl": 3,
}
new_structured_items.append(new_item)
except Exception as e:
logger.error(f"{self.log_prefix}工具执行失败: {e}")
return new_structured_items, used_tools, prompt
init_prompt()

View File

@@ -352,6 +352,9 @@ class NormalChat:
# --- 新增:处理初始高兴趣消息的私有方法 ---
async def _process_initial_interest_messages(self):
"""处理启动时存在于 interest_dict 中的高兴趣消息。"""
if not self.interest_dict:
return # 如果 interest_dict 为 None 或空,直接返回
items_to_process = list(self.interest_dict.items())
if not items_to_process:
return # 没有初始消息,直接返回