fix:修复麦麦回复过去消息

This commit is contained in:
SengokuCola
2025-04-26 17:35:23 +08:00
parent e52959d838
commit 042e969292
5 changed files with 172 additions and 73 deletions

View File

@@ -86,9 +86,27 @@ class InterestChatting:
logger.debug("后台兴趣更新任务已创建并启动。")
def add_interest_dict(self, message: MessageRecv, interest_value: float, is_mentioned: bool):
"""添加消息到兴趣字典
参数:
message: 接收到的消息
interest_value: 兴趣值
is_mentioned: 是否被提及
功能:
1. 将消息添加到兴趣字典
2. 更新最后交互时间
3. 如果字典长度超过10删除最旧的消息
"""
# 添加新消息
self.interest_dict[message.message_info.message_id] = (message, interest_value, is_mentioned)
self.last_interaction_time = time.time()
# 如果字典长度超过10删除最旧的消息
if len(self.interest_dict) > 10:
oldest_key = next(iter(self.interest_dict))
self.interest_dict.pop(oldest_key)
async def _calculate_decay(self):
"""计算兴趣值的衰减

View File

@@ -2,6 +2,7 @@ import asyncio
import time
import random
from typing import Dict, Any, Optional, List
import json # 导入 json 模块
# 导入日志模块
from src.common.logger import get_module_logger, LogConfig, SUBHEARTFLOW_MANAGER_STYLE_CONFIG
@@ -400,69 +401,65 @@ class SubHeartflowManager:
if current_subflow_state == ChatState.ABSENT:
# 构建Prompt
prompt = (
f"子心流 [{stream_name}] 当前处于非活跃(ABSENT)状态\n"
f"子心流 [{stream_name}] 当前处于非活跃(ABSENT)状态.\n"
f"{mai_state_description}\n"
f"最近观察到的内容摘要:\n---\n{combined_summary}\n---\n"
f"基于以上信息,该子心流是否表现出足够的活跃迹象或重要性,"
f"值得将其唤醒并进入常规聊天(CHAT)状态?"
f"回答 ''''"
f"值得将其唤醒并进入常规聊天(CHAT)状态?\n"
f"以 JSON 格式回答,包含一个键 'decision',其值为 true 或 false.\n"
f"例如:{{\"decision\": true}}\n"
f"请只输出有效的 JSON 对象。"
)
# 调用LLM评估
try:
# 使用 self._llm_evaluate_state_transition
should_activate = await self._llm_evaluate_state_transition(prompt)
if should_activate:
# 检查CHAT限额
if current_chat_count < chat_limit:
logger.info(
f"{log_prefix} [{stream_name}] LLM建议激活到CHAT状态且未达上限({current_chat_count}/{chat_limit})。正在尝试转换..."
)
await sub_hf.change_chat_state(ChatState.CHAT)
if sub_hf.chat_state.chat_status == ChatState.CHAT:
transitioned_to_chat += 1
current_chat_count += 1 # 更新计数器
else:
logger.warning(f"{log_prefix} [{stream_name}] 尝试激活到CHAT失败。")
should_activate = await self._llm_evaluate_state_transition(prompt)
if should_activate is None: # 处理解析失败或意外情况
logger.warning(f"{log_prefix} [{stream_name}] LLM评估返回无效结果跳过。")
continue
if should_activate:
# 检查CHAT限额
# 使用不上锁的版本,因为我们已经在锁内
current_chat_count = self.count_subflows_by_state_nolock(ChatState.CHAT)
if current_chat_count < chat_limit:
logger.info(
f"{log_prefix} [{stream_name}] LLM建议激活到CHAT状态且未达上限({current_chat_count}/{chat_limit})。正在尝试转换..."
)
await sub_hf.change_chat_state(ChatState.CHAT)
if sub_hf.chat_state.chat_status == ChatState.CHAT:
transitioned_to_chat += 1
else:
logger.info(
f"{log_prefix} [{stream_name}] LLM建议激活到CHAT状态但已达到上限({current_chat_count}/{chat_limit})。跳过转换。"
)
except Exception as e:
logger.error(
f"{log_prefix} [{stream_name}] LLM评估或状态转换(ABSENT->CHAT)时出错: {e}", exc_info=True
)
logger.warning(f"{log_prefix} [{stream_name}] 尝试激活到CHAT失败。")
else:
logger.info(
f"{log_prefix} [{stream_name}] LLM建议激活到CHAT状态但已达到上限({current_chat_count}/{chat_limit})。跳过转换。"
)
# --- 针对 CHAT 状态 ---
elif current_subflow_state == ChatState.CHAT:
# 构建Prompt
prompt = (
f"子心流 [{stream_name}] 当前处于常规聊天(CHAT)状态\n"
f"子心流 [{stream_name}] 当前处于常规聊天(CHAT)状态.\n"
f"{mai_state_description}\n"
f"最近观察到的内容摘要:\n---\n{combined_summary}\n---\n"
f"基于以上信息,该子心流是否表现出不活跃、对话结束或不再需要关注的迹象,"
f"应该让其进入休眠(ABSENT)状态?"
f"回答 ''''"
f"应该让其进入休眠(ABSENT)状态?\n"
f"以 JSON 格式回答,包含一个键 'decision',其值为 true (表示应休眠) 或 false (表示不应休眠).\n"
f"例如:{{\"decision\": true}}\n"
f"请只输出有效的 JSON 对象。"
)
# 调用LLM评估
try:
# 使用 self._llm_evaluate_state_transition
should_deactivate = await self._llm_evaluate_state_transition(prompt)
if should_deactivate:
logger.info(f"{log_prefix} [{stream_name}] LLM建议进入ABSENT状态。正在尝试转换...")
await sub_hf.change_chat_state(ChatState.ABSENT)
if sub_hf.chat_state.chat_status == ChatState.ABSENT:
transitioned_to_absent += 1
current_chat_count -= 1 # 更新计数器
else:
logger.warning(f"{log_prefix} [{stream_name}] 尝试转换为ABSENT失败。")
except Exception as e:
logger.error(
f"{log_prefix} [{stream_name}] LLM评估或状态转换(CHAT->ABSENT)时出错: {e}", exc_info=True
)
should_deactivate = await self._llm_evaluate_state_transition(prompt)
if should_deactivate is None: # 处理解析失败或意外情况
logger.warning(f"{log_prefix} [{stream_name}] LLM评估返回无效结果跳过。")
continue
# 可以选择性地为 FOCUSED 状态添加评估逻辑,例如判断是否降级回 CHAT 或 ABSENT
if should_deactivate:
logger.info(f"{log_prefix} [{stream_name}] LLM建议进入ABSENT状态。正在尝试转换...")
await sub_hf.change_chat_state(ChatState.ABSENT)
if sub_hf.chat_state.chat_status == ChatState.ABSENT:
transitioned_to_absent += 1
logger.info(
f"{log_prefix} LLM评估周期结束。"
@@ -470,38 +467,58 @@ class SubHeartflowManager:
f" 成功转换到ABSENT: {transitioned_to_absent}."
)
async def _llm_evaluate_state_transition(self, prompt: str) -> bool:
async def _llm_evaluate_state_transition(self, prompt: str) -> Optional[bool]:
"""
使用 LLM 评估是否应进行状态转换。
使用 LLM 评估是否应进行状态转换,期望 LLM 返回 JSON 格式
Args:
prompt: 提供给 LLM 的提示信息。
prompt: 提供给 LLM 的提示信息,要求返回 {"decision": true/false}
Returns:
bool: True 表示应该转换False 表示不应该转换
Optional[bool]: 如果成功解析 LLM 的 JSON 响应并提取了 'decision' 键的值,则返回该布尔值
如果 LLM 调用失败、返回无效 JSON 或 JSON 中缺少 'decision' 键或其值不是布尔型,则返回 None。
"""
log_prefix = "[LLM状态评估]"
try:
# --- 真实的 LLM 调用 ---
response_text, _ = await self.llm_state_evaluator.generate_response_async(prompt)
logger.debug(f"{log_prefix} 使用模型 {self.llm_state_evaluator.model_name} 评估,原始响应: {response_text}")
# 解析响应 - 这里需要根据你的LLM的确切输出来调整逻辑
# 假设 LLM 会明确回答 "是" 或 "否"
if response_text and "" in response_text.strip():
logger.debug(f"{log_prefix} LLM评估结果: 建议转换 (响应包含 '')")
return True
elif response_text and "" in response_text.strip():
logger.debug(f"{log_prefix} LLM评估结果: 建议不转换 (响应包含 '')")
return False
else:
logger.warning(f"{log_prefix} LLM 未明确回答 '''',响应: {response_text}")
# 可以设定一个默认行为,例如默认不转换
return False
logger.debug(f"{log_prefix} 使用模型 {self.llm_state_evaluator.model_name} 评估,原始响应: ```{response_text}```")
# --- 解析 JSON 响应 ---
try:
# 尝试去除可能的Markdown代码块标记
cleaned_response = response_text.strip().strip('`').strip()
if cleaned_response.startswith('json'):
cleaned_response = cleaned_response[4:].strip()
data = json.loads(cleaned_response)
decision = data.get("decision") # 使用 .get() 避免 KeyError
if isinstance(decision, bool):
logger.debug(f"{log_prefix} LLM评估结果 (来自JSON): {'建议转换' if decision else '建议不转换'}")
return decision
else:
logger.warning(f"{log_prefix} LLM 返回的 JSON 中 'decision' 键的值不是布尔型: {decision}。响应: {response_text}")
return None # 值类型不正确
except json.JSONDecodeError as json_err:
logger.warning(f"{log_prefix} LLM 返回的响应不是有效的 JSON: {json_err}。响应: {response_text}")
# 尝试在非JSON响应中查找关键词作为后备方案 (可选)
if "true" in response_text.lower():
logger.debug(f"{log_prefix} 在非JSON响应中找到 'true',解释为建议转换")
return True
if "false" in response_text.lower():
logger.debug(f"{log_prefix} 在非JSON响应中找到 'false',解释为建议不转换")
return False
return None # JSON 解析失败,也未找到关键词
except Exception as parse_err: # 捕获其他可能的解析错误
logger.warning(f"{log_prefix} 解析 LLM JSON 响应时发生意外错误: {parse_err}。响应: {response_text}")
return None
except Exception as e:
logger.error(f"{log_prefix} 调用 LLM 进行状态评估时出错: {e}", exc_info=True)
logger.error(f"{log_prefix} 调用 LLM 或处理其响应时出错: {e}", exc_info=True)
traceback.print_exc()
return False
return None # LLM 调用或处理失败
def count_subflows_by_state(self, state: ChatState) -> int:
"""统计指定状态的子心流数量"""

View File

@@ -404,10 +404,10 @@ class HeartFChatting:
return False, ""
# execute:执行
with Timer("执行动作", cycle_timers):
return await self._handle_action(
action, reasoning, planner_result.get("emoji_query", ""), cycle_timers, planner_start_db_time
)
return await self._handle_action(
action, reasoning, planner_result.get("emoji_query", ""), cycle_timers, planner_start_db_time
)
except PlannerError as e:
logger.error(f"{self.log_prefix} 规划错误: {e}")
@@ -560,7 +560,7 @@ class HeartFChatting:
observation = self.observations[0] if self.observations else None
try:
with Timer("Wait New Msg", cycle_timers):
with Timer("等待新消息", cycle_timers):
return await self._wait_for_new_message(observation, planner_start_db_time, self.log_prefix)
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} 等待被中断")
@@ -584,8 +584,8 @@ class HeartFChatting:
logger.info(f"{log_prefix} 检测到新消息")
return True
if time.monotonic() - wait_start_time > 300:
logger.warning(f"{log_prefix} 等待超时(300秒)")
if time.monotonic() - wait_start_time > 120:
logger.warning(f"{log_prefix} 等待超时(120秒)")
return False
await asyncio.sleep(1.5)
@@ -604,8 +604,6 @@ class HeartFChatting:
async def _handle_cycle_delay(self, action_taken_this_cycle: bool, cycle_start_time: float, log_prefix: str):
"""处理循环延迟"""
cycle_duration = time.monotonic() - cycle_start_time
# if cycle_duration > 0.1:
# logger.debug(f"{log_prefix} HeartFChatting: 周期耗时 {cycle_duration:.2f}s.")
try:
sleep_duration = 0.0

View File

@@ -67,6 +67,7 @@ def init_prompt():
2. 文字回复(text_reply)适用:
- 有实质性内容需要表达
- 有人提到你,但你还没有回应他
- 可以追加emoji_query表达情绪(格式:情绪描述,如"俏皮的调侃")
- 不要追加太多表情

View File

@@ -1,6 +1,7 @@
import time
import asyncio
import traceback
import statistics # 导入 statistics 模块
from random import random
from typing import List, Optional # 导入 Optional
@@ -46,6 +47,8 @@ class NormalChat:
self.gpt = NormalChatGenerator()
self.mood_manager = MoodManager.get_instance() # MoodManager 保持单例
# 存储此实例的兴趣监控任务
self.start_time = time.time()
self._chat_task: Optional[asyncio.Task] = None
logger.info(f"[{self.stream_name}] NormalChat 实例初始化完成。")
@@ -317,6 +320,59 @@ class NormalChat:
# 意愿管理器注销当前message信息 (无论是否回复,只要处理过就删除)
willing_manager.delete(message.message_info.message_id)
# --- 新增:处理初始高兴趣消息的私有方法 ---
async def _process_initial_interest_messages(self):
"""处理启动时存在于 interest_dict 中的高兴趣消息。"""
items_to_process = list(self.interest_dict.items())
if not items_to_process:
return # 没有初始消息,直接返回
logger.info(f"[{self.stream_name}] 发现 {len(items_to_process)} 条初始兴趣消息,开始处理高兴趣部分...")
interest_values = [item[1][1] for item in items_to_process] # 提取兴趣值列表
messages_to_reply = [] # 需要立即回复的消息
if len(interest_values) == 1:
# 如果只有一个消息,直接处理
messages_to_reply.append(items_to_process[0])
logger.info(f"[{self.stream_name}] 只有一条初始消息,直接处理。")
elif len(interest_values) > 1:
# 计算均值和标准差
try:
mean_interest = statistics.mean(interest_values)
stdev_interest = statistics.stdev(interest_values)
threshold = mean_interest + stdev_interest
logger.info(f"[{self.stream_name}] 初始兴趣值 均值: {mean_interest:.2f}, 标准差: {stdev_interest:.2f}, 阈值: {threshold:.2f}")
# 找出高于阈值的消息
for item in items_to_process:
msg_id, (message, interest_value, is_mentioned) = item
if interest_value > threshold:
messages_to_reply.append(item)
logger.info(f"[{self.stream_name}] 找到 {len(messages_to_reply)} 条高于阈值的初始消息进行处理。")
except statistics.StatisticsError as e:
logger.error(f"[{self.stream_name}] 计算初始兴趣统计值时出错: {e},跳过初始处理。")
# 处理需要回复的消息
processed_count = 0
for item in messages_to_reply:
msg_id, (message, interest_value, is_mentioned) = item
try:
logger.info(f"[{self.stream_name}] 处理初始高兴趣消息 {msg_id} (兴趣值: {interest_value:.2f})")
await self.normal_response(
message=message, is_mentioned=is_mentioned, interested_rate=interest_value
)
processed_count += 1
except Exception as e:
logger.error(f"[{self.stream_name}] 处理初始兴趣消息 {msg_id} 时出错: {e}\n{traceback.format_exc()}")
finally:
# 无论成功与否都清空兴趣字典
self.interest_dict.clear()
logger.info(f"[{self.stream_name}] 初始高兴趣消息处理完毕,共处理 {processed_count} 条。剩余 {len(self.interest_dict)} 条待轮询。")
# --- 新增结束 ---
# 保持 staticmethod, 因为不依赖实例状态, 但需要 chat 对象来获取日志上下文
@staticmethod
def _check_ban_words(text: str, chat: ChatStream, userinfo: UserInfo) -> bool:
@@ -350,11 +406,20 @@ class NormalChat:
# 改为实例方法, 移除 chat 参数
async def start_chat(self):
"""为此 NormalChat 实例关联的 ChatStream 启动聊天任务(如果尚未运行)"""
"""为此 NormalChat 实例关联的 ChatStream 启动聊天任务(如果尚未运行)
并在启动前处理一次初始的高兴趣消息。"""
if self._chat_task is None or self._chat_task.done():
# --- 修改:调用新的私有方法处理初始消息 ---
await self._process_initial_interest_messages()
# --- 修改结束 ---
# 启动后台轮询任务
logger.info(f"[{self.stream_name}] 启动后台兴趣消息轮询任务...")
task = asyncio.create_task(self._reply_interested_message())
task.add_done_callback(lambda t: self._handle_task_completion(t)) # 回调现在是实例方法
self._chat_task = task
else:
logger.info(f"[{self.stream_name}] 聊天任务已在运行中。")
def _handle_task_completion(self, task: asyncio.Task):
"""任务完成回调处理"""