refactor: 重构配置模块

This commit is contained in:
Oct-autumn
2025-05-16 16:50:53 +08:00
parent 5d5033452d
commit 021e7f1a97
52 changed files with 902 additions and 1102 deletions

View File

@@ -25,9 +25,10 @@ logger = get_logger("expressor")
class DefaultExpressor:
def __init__(self, chat_id: str):
self.log_prefix = "expressor"
# TODO: API-Adapter修改标记
self.express_model = LLMRequest(
model=global_config.llm_normal,
temperature=global_config.llm_normal["temp"],
model=global_config.model.normal,
temperature=global_config.model.normal["temp"],
max_tokens=256,
request_type="response_heartflow",
)
@@ -51,8 +52,8 @@ class DefaultExpressor:
messageinfo = anchor_message.message_info
thinking_time_point = parse_thinking_id_to_timestamp(thinking_id)
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=messageinfo.platform,
)
# logger.debug(f"创建思考消息:{anchor_message}")
@@ -141,7 +142,7 @@ class DefaultExpressor:
try:
# 1. 获取情绪影响因子并调整模型温度
arousal_multiplier = mood_manager.get_arousal_multiplier()
current_temp = float(global_config.llm_normal["temp"]) * arousal_multiplier
current_temp = float(global_config.model.normal["temp"]) * arousal_multiplier
self.express_model.params["temperature"] = current_temp # 动态调整温度
# 2. 获取信息捕捉器
@@ -183,6 +184,7 @@ class DefaultExpressor:
try:
with Timer("LLM生成", {}): # 内部计时器,可选保留
# TODO: API-Adapter修改标记
# logger.info(f"{self.log_prefix}[Replier-{thinking_id}]\nPrompt:\n{prompt}\n")
content, reasoning_content, model_name = await self.express_model.generate_response(prompt)
@@ -330,8 +332,8 @@ class DefaultExpressor:
thinking_start_time = await self.heart_fc_sender.get_thinking_start_time(self.chat_id, thinking_id)
bot_user_info = UserInfo(
user_id=global_config.BOT_QQ,
user_nickname=global_config.BOT_NICKNAME,
user_id=global_config.bot.qq_account,
user_nickname=global_config.bot.nickname,
platform=self.chat_stream.platform,
)

View File

@@ -77,8 +77,9 @@ def init_prompt() -> None:
class ExpressionLearner:
def __init__(self) -> None:
# TODO: API-Adapter修改标记
self.express_learn_model: LLMRequest = LLMRequest(
model=global_config.llm_normal,
model=global_config.model.normal,
temperature=0.1,
max_tokens=256,
request_type="response_heartflow",
@@ -289,7 +290,7 @@ class ExpressionLearner:
# 构建prompt
prompt = await global_prompt_manager.format_prompt(
"personality_expression_prompt",
personality=global_config.expression_style,
personality=global_config.personality.expression_style,
)
# logger.info(f"个性表达方式提取prompt: {prompt}")

View File

@@ -112,7 +112,7 @@ def _check_ban_words(text: str, chat, userinfo) -> bool:
Returns:
bool: 是否包含过滤词
"""
for word in global_config.ban_words:
for word in global_config.chat.ban_words:
if word in text:
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
@@ -132,7 +132,7 @@ def _check_ban_regex(text: str, chat, userinfo) -> bool:
Returns:
bool: 是否匹配过滤正则
"""
for pattern in global_config.ban_msgs_regex:
for pattern in global_config.chat.ban_msgs_regex:
if pattern.search(text):
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")

View File

@@ -6,14 +6,13 @@ from src.chat.utils.chat_message_builder import build_readable_messages, get_raw
from src.chat.person_info.relationship_manager import relationship_manager
from src.chat.utils.utils import get_embedding
import time
from typing import Union, Optional, Dict, Any
from typing import Union, Optional
from src.common.database import db
from src.chat.utils.utils import get_recent_group_speaker
from src.manager.mood_manager import mood_manager
from src.chat.memory_system.Hippocampus import HippocampusManager
from src.chat.knowledge.knowledge_lib import qa_manager
from src.chat.focus_chat.expressors.exprssion_learner import expression_learner
import traceback
import random
@@ -142,7 +141,7 @@ async def _build_prompt_focus(
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=global_config.observation_context_size,
limit=global_config.chat.observation_context_size,
)
chat_talking_prompt = await build_readable_messages(
message_list_before_now,
@@ -209,7 +208,7 @@ async def _build_prompt_focus(
chat_target=chat_target_1, # Used in group template
# chat_talking_prompt=chat_talking_prompt,
chat_info=chat_talking_prompt,
bot_name=global_config.BOT_NICKNAME,
bot_name=global_config.bot.nickname,
# prompt_personality=prompt_personality,
prompt_personality="",
reason=reason,
@@ -225,7 +224,7 @@ async def _build_prompt_focus(
info_from_tools=structured_info_prompt,
sender_name=effective_sender_name, # Used in private template
chat_talking_prompt=chat_talking_prompt,
bot_name=global_config.BOT_NICKNAME,
bot_name=global_config.bot.nickname,
prompt_personality=prompt_personality,
# chat_target and chat_target_2 are not used in private template
current_mind_info=current_mind_info,
@@ -280,7 +279,7 @@ class PromptBuilder:
who_chat_in_group = get_recent_group_speaker(
chat_stream.stream_id,
(chat_stream.user_info.platform, chat_stream.user_info.user_id) if chat_stream.user_info else None,
limit=global_config.observation_context_size,
limit=global_config.chat.observation_context_size,
)
elif chat_stream.user_info:
who_chat_in_group.append(
@@ -328,7 +327,7 @@ class PromptBuilder:
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=chat_stream.stream_id,
timestamp=time.time(),
limit=global_config.observation_context_size,
limit=global_config.chat.observation_context_size,
)
chat_talking_prompt = await build_readable_messages(
message_list_before_now,
@@ -340,18 +339,15 @@ class PromptBuilder:
# 关键词检测与反应
keywords_reaction_prompt = ""
for rule in global_config.keywords_reaction_rules:
if rule.get("enable", False):
if any(keyword in message_txt.lower() for keyword in rule.get("keywords", [])):
logger.info(
f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}"
)
keywords_reaction_prompt += rule.get("reaction", "") + ""
for rule in global_config.keyword_reaction.rules:
if rule.enable:
if any(keyword in message_txt for keyword in rule.keywords):
logger.info(f"检测到以下关键词之一:{rule.keywords},触发反应:{rule.reaction}")
keywords_reaction_prompt += f"{rule.reaction}"
else:
for pattern in rule.get("regex", []):
result = pattern.search(message_txt)
if result:
reaction = rule.get("reaction", "")
for pattern in rule.regex:
if result := pattern.search(message_txt):
reaction = rule.reaction
for name, content in result.groupdict().items():
reaction = reaction.replace(f"[{name}]", content)
logger.info(f"匹配到以下正则表达式:{pattern},触发反应:{reaction}")
@@ -397,8 +393,8 @@ class PromptBuilder:
chat_target_2=chat_target_2,
chat_talking_prompt=chat_talking_prompt,
message_txt=message_txt,
bot_name=global_config.BOT_NICKNAME,
bot_other_names="/".join(global_config.BOT_ALIAS_NAMES),
bot_name=global_config.bot.nickname,
bot_other_names="/".join(global_config.bot.alias_names),
prompt_personality=prompt_personality,
mood_prompt=mood_prompt,
reply_style1=reply_style1_chosen,
@@ -419,8 +415,8 @@ class PromptBuilder:
prompt_info=prompt_info,
chat_talking_prompt=chat_talking_prompt,
message_txt=message_txt,
bot_name=global_config.BOT_NICKNAME,
bot_other_names="/".join(global_config.BOT_ALIAS_NAMES),
bot_name=global_config.bot.nickname,
bot_other_names="/".join(global_config.bot.alias_names),
prompt_personality=prompt_personality,
mood_prompt=mood_prompt,
reply_style1=reply_style1_chosen,

View File

@@ -26,8 +26,9 @@ class ChattingInfoProcessor(BaseProcessor):
def __init__(self):
"""初始化观察处理器"""
super().__init__()
# TODO: API-Adapter修改标记
self.llm_summary = LLMRequest(
model=global_config.llm_observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
model=global_config.model.observation, temperature=0.7, max_tokens=300, request_type="chat_observation"
)
async def process_info(
@@ -108,12 +109,12 @@ class ChattingInfoProcessor(BaseProcessor):
"created_at": datetime.now().timestamp(),
}
obs.mid_memorys.append(mid_memory)
if len(obs.mid_memorys) > obs.max_mid_memory_len:
obs.mid_memorys.pop(0) # 移除最旧的
obs.mid_memories.append(mid_memory)
if len(obs.mid_memories) > obs.max_mid_memory_len:
obs.mid_memories.pop(0) # 移除最旧的
mid_memory_str = "之前聊天的内容概述是:\n"
for mid_memory_item in obs.mid_memorys: # 重命名循环变量以示区分
for mid_memory_item in obs.mid_memories: # 重命名循环变量以示区分
time_diff = int((datetime.now().timestamp() - mid_memory_item["created_at"]) / 60)
mid_memory_str += (
f"距离现在{time_diff}分钟前(聊天记录id:{mid_memory_item['id']}){mid_memory_item['theme']}\n"

View File

@@ -81,8 +81,8 @@ class MindProcessor(BaseProcessor):
self.subheartflow_id = subheartflow_id
self.llm_model = LLMRequest(
model=global_config.llm_sub_heartflow,
temperature=global_config.llm_sub_heartflow["temp"],
model=global_config.model.sub_heartflow,
temperature=global_config.model.sub_heartflow["temp"],
max_tokens=800,
request_type="sub_heart_flow",
)

View File

@@ -52,7 +52,7 @@ class ToolProcessor(BaseProcessor):
self.subheartflow_id = subheartflow_id
self.log_prefix = f"[{subheartflow_id}:ToolExecutor] "
self.llm_model = LLMRequest(
model=global_config.llm_tool_use,
model=global_config.model.tool_use,
max_tokens=500,
request_type="tool_execution",
)

View File

@@ -34,8 +34,9 @@ def init_prompt():
class MemoryActivator:
def __init__(self):
# TODO: API-Adapter修改标记
self.summary_model = LLMRequest(
model=global_config.llm_summary, temperature=0.7, max_tokens=50, request_type="chat_observation"
model=global_config.model.summary, temperature=0.7, max_tokens=50, request_type="chat_observation"
)
self.running_memory = []