feat: 知识库小重构

This commit is contained in:
墨梓柒
2025-06-07 13:46:04 +08:00
parent 1a713ed0d9
commit 0038d9ff60
17 changed files with 6 additions and 6 deletions

View File

@@ -0,0 +1,63 @@
from .llm_client import LLMMessage
entity_extract_system_prompt = """你是一个性能优异的实体提取系统。请从段落中提取出所有实体并以JSON列表的形式输出。
输出格式示例:
[ "实体A", "实体B", "实体C" ]
请注意以下要求:
- 将代词(如“你”、“我”、“他”、“她”、“它”等)转化为对应的实体命名,以避免指代不清。
- 尽可能多的提取出段落中的全部实体;
"""
def build_entity_extract_context(paragraph: str) -> list[LLMMessage]:
messages = [
LLMMessage("system", entity_extract_system_prompt).to_dict(),
LLMMessage("user", f"""段落:\n```\n{paragraph}```""").to_dict(),
]
return messages
rdf_triple_extract_system_prompt = """你是一个性能优异的RDF资源描述框架由节点和边组成节点表示实体/资源、属性边则表示了实体和实体之间的关系以及实体和属性的关系。构造系统。你的任务是根据给定的段落和实体列表构建RDF图。
请使用JSON回复使用三元组的JSON列表输出RDF图中的关系每个三元组代表一个关系
输出格式示例:
[
["某实体","关系","某属性"],
["某实体","关系","某实体"],
["某资源","关系","某属性"]
]
请注意以下要求:
- 每个三元组应包含每个段落的实体命名列表中的至少一个命名实体,但最好是两个。
- 将代词(如“你”、“我”、“他”、“她”、“它”等)转化为对应的实体命名,以避免指代不清。
"""
def build_rdf_triple_extract_context(paragraph: str, entities: str) -> list[LLMMessage]:
messages = [
LLMMessage("system", rdf_triple_extract_system_prompt).to_dict(),
LLMMessage("user", f"""段落:\n```\n{paragraph}```\n\n实体列表:\n```\n{entities}```""").to_dict(),
]
return messages
qa_system_prompt = """
你是一个性能优异的QA系统。请根据给定的问题和一些可能对你有帮助的信息作出回答。
请注意以下要求:
- 你可以使用给定的信息来回答问题,但请不要直接引用它们。
- 你的回答应该简洁明了,避免冗长的解释。
- 如果你无法回答问题,请直接说“我不知道”。
"""
def build_qa_context(question: str, knowledge: list[tuple[str, str, str]]) -> list[LLMMessage]:
knowledge = "\n".join([f"{i + 1}. 相关性:{k[0]}\n{k[1]}" for i, k in enumerate(knowledge)])
messages = [
LLMMessage("system", qa_system_prompt).to_dict(),
LLMMessage("user", f"问题:\n{question}\n\n可能有帮助的信息:\n{knowledge}").to_dict(),
]
return messages